VARIANCE PREDICTION FOR POPULATION SIZE ESTIMATION

Authors

  • Ana Isabel Gomez Universidad de Cantabria
  • Marcos Cruz Universidad de Cantabria
  • Luis Manuel Cruz-Orive Universidad de Cantabria

DOI:

https://doi.org/10.5566/ias.1991

Keywords:

Cavalieri error variance predictor, geometric sampling, Monte Carlo resampling, particle counting, population size, Split error variance predictor, systematic quadrats

Abstract

Design unbiased estimation of population size by stereological methods is an efficient alternative to automatic computer vision methods, which are generally biased. Moreover, stereological methods offer the possibility of predicting the error variance from a single sample. Here we explore the statistical performance of two alternative variance estimators on a dataset of 26 labelled crowd pictures. The empirical mean square errors of the variance predictors are compared by means of Monte Carlo resampling.

Author Biographies

  • Ana Isabel Gomez, Universidad de Cantabria
    Department of Mathematics, Statistics and Computation, Faculty of Sciences
  • Marcos Cruz, Universidad de Cantabria
    Department of Mathematics, Statistics and Computation, Faculty of Sciences
  • Luis Manuel Cruz-Orive, Universidad de Cantabria
    Department of Mathematics, Statistics and Computation, Faculty of Sciences

References

Baddeley A, Rubak E, Turner R (2015).Spatial Point Patterns: Methodology and Applications with R. CRC Press.

Cancio R (2010). Simplemente ... Periodismo. Ediciones APM, Madrid.

Cruz M, Gómez D, Cruz-Orive LM (2015).

Efficient and unbiased estimation of population size.

newblock PLoS ONE 10:1--14.

Cruz M, González-Villa J (2018a). Simplified procedure for efficient and unbiased population size estimation. PloS one 13:e0206091.

Cruz M, González-Villa J (2018b). Unbiased population size estimation on still gigapixel images. Sociological Methods Research :0049124118799373.

Cruz-Orive LM (2004). Precision of the fractionator from Cavalieri designs. J Microsc 213:205--11.

Cruz-Orive LM (2006). A general variance predictor for Cavalieri slices. J Microsc 222:158--65.

Cruz-Orive LM, Geiser M (2004). Estimation of particle number by stereology: An update. J Aerosol Med 17:197--212.

Gual-Arnau X, Cruz-Orive LM (1998). Variance prediction under systematic sampling with geometric probes. Adv Appl Probab 30:889--903.

Gundersen HJG (1977). Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219--23.

Gundersen HJG, Jensen EBV, Ki^eu K, Nielsen J (1999). The efficiency of systematic sampling in stereology --- reconsidered. J Microsc 193:199--211.

Howard CV, Reed MG (2005). Unbiased Stereology. Three-dimensional Measurement in Microscopy. Oxford: Bios/ Taylor & Francis, 2nd ed.

Idrees H, Saleemi I, Seibert C, Shah M (2013). Multi-source multi-scale counting in extremely dense crowd images. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE.

Lindgren B (2017). Statistical Theory. Routledge.

Matheron G (1971). The Theory of Regionalized Variables and its Applications, vol.~5. Les Cahiers du Centre de Morphologie Mathèmatique de Fontainebleau, No. 5. Fontainebleau: Ecole national superieure des mines de Paris.

Miles RE (1978). The sampling, by quadrats, of planar aggregates. J Microsc 113:257–67.

Miles RE, Davy P (1977). On the choice of quadrats in stereology. J Microsc 110:27–44.

Santaló LA (1976). Integral Geometry and Geometric Probability. Addison-Wesley, Reading, Massachusetts.

Downloads

Published

2019-07-18

Issue

Section

Original Research Paper

How to Cite

Gomez, A. I., Cruz, M., & Cruz-Orive, L. M. (2019). VARIANCE PREDICTION FOR POPULATION SIZE ESTIMATION. Image Analysis and Stereology, 38(2), 131-139. https://doi.org/10.5566/ias.1991