UNBIASED ESTIMATORS OF SPECIFIC CONNECTIVITY

Authors

  • Jean-Paul Jernot
  • Patricia Jouannot
  • Christian Lantuéjoul

DOI:

https://doi.org/10.5566/ias.v26.p129-136

Keywords:

Boolean model, edge effects, Euler-Poincaré characteristic, specific connectivity, unbiased estimation

Abstract

This paper deals with the estimation of the specific connectivity of a stationary random set in IRd. It turns out that the "natural" estimator is only asymptotically unbiased. The example of a boolean model of hypercubes illustrates the amplitude of the bias produced when the measurement field is relatively small with respect to the range of the random set. For that reason unbiased estimators are desired. Such an estimator can be found in the literature in the case where the measurement field is a right parallelotope. In this paper, this estimator is extended to apply to measurement fields of various shapes, and to possess a smaller variance. Finally an example from quantitative metallography (specific connectivity of a population of sintered bronze particles) is given.

Downloads

Published

2011-05-03

Issue

Section

Original Research Paper

How to Cite

Jernot, J.-P., Jouannot, P., & Lantuéjoul, C. (2011). UNBIASED ESTIMATORS OF SPECIFIC CONNECTIVITY. Image Analysis and Stereology, 26(3), 129-136. https://doi.org/10.5566/ias.v26.p129-136