PERCOLATION TRANSITION AND TOPOLOGY

Authors

  • Patricia Jouannot-Chesney CRISMAT/CNRT/ENSICAEN
  • Jean-Paul Jernot CRISMAT/CNRT/ENSICAEN
  • Christian Lantuéjoul Mines ParisTech, Centre de Géosciences

DOI:

https://doi.org/10.5566/ias.1573

Keywords:

Euler-Poincaré characteristic, percolation threshold, topology

Abstract

A number of bidimensional random structures with increasing densities are simulated to explore possible links between Euler-Poincaré characteristic (EPC), or connectivity, and percolation threshold. For each structure model, the percolation threshold is compared with a number of typical points (extrema, zero crossings...) of the EPC curve. From these exercises, it can be concluded that the percolation threshold cannot be generally predicted using the evolution of the EPC.

References

Bretheau T, Jeulin D (1989). Caractéristiques morphologiques des constituants et comportement à la limite élastique d’un matériau biphasé Fe/Ag. Revue Phys Appl 24:861-9.

Hadwiger H (1957). Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer Verlag, Berlin.

Jeulin D, Moreaud M (2006). Percolation d’agrégats multi-échelles de sphères et de fibres : application aux nanocomposites. In Matériaux 2006. Dijon, 13-17 novembre.

Jouannot P, Jernot JP (1993). Morphological transformations on a randomly filled three-dimensional network. Acta Stereologica 12/1:1-10.

Jouannot P (1994). Etude topologique de structures aléatoires biphasées. PhD dissertation. Université de Caen.

Jouannot P, Jernot JP, Guyon E (1995). Etude de la connexité de structures aléatoires. CR Acad Sci Paris II B 321:425-30.

Karioris FG, Mendelson KS (1981). Statistics of the percolation threshold. J Phys C: Solid State Phys 14:321-7.

Lantuejoul C, Beucher S (1981). On the use of the geodesic metric in image analysis. J Microsc 121(1):39-49.

Levitz P, Tariel V, Stampanoni M, Gallucci E (2012). Topology of evolving pore networks. Eur Phys J Appl Phys 60:24202 1-9.

Mecke K, Arns C (2005). Fluids in porous media: a morphometric approach. J Phys Condens Matter 17:S503-34.

Mecke KR, Wagner H (1991). Euler characteristic and related measures for random geometric sets. J Stat Phys 64, 3-4:843-50.

Miller M, Blaak R, Hansen JP (2010). Topological characteristics of model gels. J Phys Condens Matter 22:104109.

Neher R, Mecke K, Wagner H (2008). Topological estimation of percolation thresholds. J Stat Mech P01011.

Ottavi H, Clerc J, Giraud G, Roussenq J, Guyon E, Mitescu CD (1978). Electrical conductivity of a mixture of conducting and insulating spheres : an application of some percolation concepts. J Phys C: Solid State Phys 11:1311-28.

Stauffer D (1985). Introduction to percolation theory. Taylor and Francis, London.

Stauffer D (2009). In Quantum and semi-classical percolation and breakdown in disordered solids. Lect Notes Phys 762, Sen AK, Bardhan KK, Chakrabarti BK Eds. Springer, Berlin.

Downloads

Published

2017-06-23

Issue

Section

Original Research Paper

How to Cite

Jouannot-Chesney, P., Jernot, J.-P., & Lantuéjoul, C. (2017). PERCOLATION TRANSITION AND TOPOLOGY. Image Analysis and Stereology, 36(2), 95-103. https://doi.org/10.5566/ias.1573