ARFBF MORPHOLOGICAL ANALYSIS - APPLICATION TO THE DISCRIMINATION OF CATALYST ACTIVE PHASES
DOI:
https://doi.org/10.5566/ias.1624Keywords:
auto-regressive field, fractional Brownian field, HRTEM imaging, mathematical morphology, texture analysisAbstract
This paper addresses the characterization of spatial arrangements of fringes in catalysts imaged by High Resolution Transmission Electron Microscopy (HRTEM). It presents a statistical model-based approach for analyzing these fringes. The proposed approach involves Fractional Brownian Field (FBF) and 2-D AutoRegressive (AR) modeling, as well as morphological analysis. The originality of the approach consists in identifying the image background as an FBF, subtracting this background, modeling the residual by 2-D AR so as to capture fringe information and, finally, discriminating catalysts from fringe characterizations obtained by morphological analysis. The overall analysis is called ARFBF (Auto-Regressive Fractional Brownian Field) based morphology characterization.
References
Akaike, H.
(1974). A new look at the statistical
model identification. IEEE Transactions on
Automatic Control, 19(6):716 – 23.
Alata, O. and C. Cariou
(2008a). Two-Dimensional Signal Analysis,
Chapter "2-D Linear Stochastic Modeling",
chapter 2, Pp. 65–114. ISTE, Wiley.
Alata, O. and C. Cariou
(2008b). Two-Dimensional Signal Analysis,
Chapter "2-D Spectral Analysis", chapter 3,
Pp. 115–74. ISTE, Wiley.
Alata, O., C. Cariou, C. Ramananjarasoa, and
M. Najim
(1998). Classification of rotated and scaled
textures using HMHV spectrum estimation
and the Fourier-Mellin transform. In
IEEE Int. Conf. Image Processing, ICIP,
volume 1, Pp. 53–6.
Alata, O. and C. Olivier
(2003). Choice of a 2-D causal autoregressive
texture model using information criteria.
Pattern Recognition Letters.
Alata, O. and C. Ramananjarasoa
(2005). Unsupervised textured image
segmentation using 2-D quarter plane
autoregressive support with four prediction
support. Pattern Recognition Letters,
:1069–81.
Atto, A., Y. Berthoumieu, and P. Bolon
(2013). 2-dimensional wavelet packet spectrum
for texture analysis. IEEE Transactions on
Image Processing, 22(6):2495–500.
Atto, A., D. Pastor, and G. Mercier
(2010). Wavelet packets of fractional
brownian motion: Asymptotic analysis and
spectrum estimation. IEEE Transactions on
Information Theory, 56:4741 – 53.
Atto, A., Z. Tan, O. Alata, and M. Moreaud
(2014). Non-stationary texture synthesis from
random field modeling. In IEEE Int. Conf.
Image Processing, ICIP, Pp. 4266–70.
Celce, B., S. Bres, F. Moreau, P. Gueroult, and
L. Sorbier
(2008). Semi-automatic detection of
sulfur slabs. STERMAT 2008 : VIII
International Conference on Stereology
and Image Analysis in Materials Sciences,
–6 septembre 2008 Zakopane, Polska.
Inżynieria Materiałowa 29 (4) : 421–6.
Da Costa, J.-P., P. Weisbecker, B. Farbos,
J. Leyssale, G. Vignoles, and C. Germain
(2015). Investigating carbon materials
nanostructure using image orientation
statistics. Carbon, 84:160–73.
Fieguth, P. W. and A. S. Willsky
(1996). Fractal estimation using models on
multiscale trees. IEEE Trans. Signal Proc.,
:1297–300.
Geantet, C. and L. Sorbier
(2012). Chapter 2.6 - Characterisation of
catalysts. STDI Frame Maker.
Geweke, J. and S. Porter-Hudak
(1983). The estimation and application of long
memory time series models. Journal of Time
Series Anal., 4:221–37.
Goncalves, W. and O. Bruno
(2013). Combining fractal and deterministic
walkers for texture analysis and classification.
Pattern Recognition, 46:2953–68.
Haralick, R. M.
(1979). Statistical and structural approaches to
texture. Proceedings of the IEEE, 67(5):786
– 804.
Huang, Q., J. R. Lorch, and R. C. Dubes
(1994). Can the fractal dimension of images be
measured? Pattern Recognition, 27(3):339–
Huang, Z. and C. Li
(2005). Anisotropic fractional brownian
random fields as white noise functionals. Acta
Mathematicae Applicatae Sinica, English
Series, 21(4):655–60.
Jackson, L. B. and H. C. Chien
(1979). Frequency and bearing estimation by
two-dimensional linear prediction. In IEEE
Int. Conf. Acoustic Speech and Sig. Proc.,
ICASSP, Pp. 665 – 8.
Kroese, D. P. and Z. I. Botev
(2013). Spatial process generation. Statistics
Computation.
Mandelbrot, B. B. and J. W. V. Ness
(1968. Fractional Brownian motions, fractional
noises and application. SIAM Review,
(4):422–37.
Mao, J. and A. Jain
(1992). Texture classification and
segmentation using multi-resolution
simultaneous autoregressive (MR-SAR)
models. Pattern Recognition, 25(2):173–88.
Moreaud, M., D. Jeulin, V. Morard, and R. Revel.
(2012). TEM image analysis and modelling:
application to boehmites nanoparticles.
Journal of Microscopy, 245(2):186–99.
Moreaud, M., D. Jeulin, A. Thorel, and J. Y.
Chane-Ching
(2008). A quantitative morphological analysis
of nanostructured ceria–silica composite
catalysts. Journal of Microscopy, 232:293–
Nason, G. and B. Silverman
(1995). The stationary wavelet transform and
some statistical applications. Lecture Notes in
Statistics, 103:281–99.
Nikulshin, P., D. Ishutenko, A. Mozhaev,
K. Maslakov, and A. Pimerzin
(2014). Effects of composition and morphology
of active phase of CoMo/Al2O3 catalysts
prepared using Co2Mo10–heteropolyacid and
chelating agents on their catalytic properties
in HDS and HYD reactions. Journal of
Catalysis, 312:152–69.
Parzen, E.
(1962). On estimation of a probability density
function and mode. Ann. Math. Statist.,
:1065–76.
Peacock, J.
(1983). Two-dimensional goodness-of-fit
testing in astronomy. Monthly Notices of the
Royal Astronomical Society, 202(3):615–27.
Pesquet-Popescu, B. and P. Larzabal
(1997). 2D self-similar processes with
stationary fractional increments. SpringerVerlag
in Fractals in Engineering, Pp. 138–
Pesquet-Popescu, B. and J. L. Véhel
(2002). Stochastic fractal models for
image processing. IEEE Signal Processing
Magazine, 19:48–62.
Pré, P., G. Huchet, D. Jeulin, J. Rouzaud,
M. Sennour, and A. Thorel
(2013). A new approach to characterize
the nanostructure of activated carbons from
mathematical morphology applied to high
resolution transmission electron microscopy
images. Carbon 52, Pp. 239–58.
Qazi, I.-U.-H., O. Alata, J.-C. Burie, A. Moussa,
and C. Fernandez-Maloigne
(2011). Choice of a pertinent color space for
color texture characterization using parametric
spectral analysis. Pattern Recognition
Letters, 44:16–31.
Ranganath, S. and A. K. Jain
(1985). Two-dimensional linear prediction
models - part I: spectral factorization and
realization. IEEE Trans. on Acoustic Speech
and Signal Processing, ASSP-33(1):280–99.
Richard, F. and H. Bierme
(2010). Statistical tests of anisotropy for
fractional Brownian textures. Application to
full-field digital mammography. Journal of
Mathematical Imaging and Vision, 36(3):227
– 40.
Robinson, P. M.
(1995). Log-periodogram regression of times
series with long range dependence. The
Annals of Statistics, 23(3):1048–72.
Rosenblatt, M.
(1956). Remarks on some nonparametric
estimates of a density function. Ann. Math.
Statist., 27:832–7.
Serra, J.
(1988). Image analysis and mathematical
morphology: Theoretical advances. Academic
Press, London.
Souza, P.
(1982). Texture recognition via autoregression.
Pattern Recognition, 15(6):471–5.
Tafti, P., D. Van De Ville, and M. Unser
(2009). Invariances, Laplacian-like wavelet
bases, and the whitening of fractal processes.
IEEE Trans. on Image Processing, 18:689 –
Tan, Z., A. Atto, O. Alata, and M. Moreaud
(2015). ARFBF model for non-stationary
random fields and application in HRTEM
images. In IEEE Int. Conf. on Image
Processing, ICIP.
Toth, P., A. Palotas, E. Eddings, R. Whitaker,
and J. Lighty
(2013). A novel framework for the quantitative
analysis of high resolution transmission
electron micrographs of soot II. Robust
multiscale nanostructure quantification.
Combustion and Flame, 160:920–32.
Toulhoat, H. and P. Raybaud
(2013). Catalysis by transition metal
sulphides - from molecular theory to industrial
application. IFP Publications.
Van De Ville, D., T. Blu, and M. Unser
(2005). Isotropic polyharmonic B-splines:
Scaling functions and wavelets. IEEE Trans.
on Image Processing, 14:1798 – 813.
Yehliu, K., R. V. Wal, and A. Boehman
(2011). Development of an HRTEM
image analysis method to quantify carbon
nanostructure. Combustion and Flame,
:1837–51.
Zhang, B. S., Y. J. Yi, W. Zhang, C. H. Liang, and
D. S. Su
(2011). Electron microscopy investigation of
the microstructure of unsupported Ni-Mo-W
sulfide. Materials Characterization, 62:684–
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Image Analysis & Stereology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.