COLUMN TESSELLATIONS
DOI:
https://doi.org/10.5566/ias.1285Keywords:
combinatorial topology, random tessellations, stochastic geometryAbstract
A new class of non facet-to-facet random tessellations in three-dimensional space is introduced -- the so-called column tessellations. The spatial construction is based on a stationary planar tessellation; each cell of the spatial tessellation is a prism whose base facet is congruent to a cell of the planar tessellation. Thus intensities, topological and metric mean values of the spatial tessellation can be calculated from suitably chosen parameters of the planar tessellation.References
bibitem[Chiu etal(2013)]{chiu:2013}
Chiu SN, Stoyan D, Kendall WS, Mecke J (2013). Stochastic geometry and
its applications. 3rd Ed. Chichester: Wiley.
bibitem[Cowan(2013)]{cowan:2013}
Cowan R (2013). Line segments in the isotropic planar STIT
tessellation. Adv Appl Probab 45:295--311.
bibitem[Cowan and Th"ale(2014)]{cowan:2014}
Cowan R, Th"ale C (2014). The character of planar tessellations which
are not side-to-side. Image Anal Stereol 33:39--54.
bibitem[Cowan and Weiss(2015)]{cowan:2015}
Cowan R, Weiss V (2015). Constraints on the fundamental topological
parameters of spatial tessellations. Math Nachr 288:540--65.
bibitem[Gr"unbaum and Shephard(1987)]{gruenbaum:1987}
Gr"unbaum B, Shephard GC (1987). Tilings and Patterns. New York: WH Freeman.
bibitem[Mecke(1984)]{mecke:1984}
Mecke J (1984). Parametric representation of mean values for stationary
random mosaics. Math Operationsforsch Statist Ser Statist 15:437--42.
bibitem[Mecke etal(2008)]{mecke:2008}
Mecke J, Nagel W, Weiss V (2008). The iteration of random
tessellations and a construction of a homogeneous process of cell divisions.
Adv Appl Probab 40:49--59.
bibitem[M{o}ller(1989)]{moller:1989}
M{o}ller J (1989). Random tessellations in ${mathbb R}^d$. Adv Appl
Probab 21:37--73.
bibitem[Mosser and Matth"{a}i(2014)]{mosser:2014}
Mosser LJ, Matth"{a}i SK (2014). Tessellations stable under iteration -- Evaluation of application as an improved stochastic discrete fracture modeling algorithm. Proceedings International discrete fracture network engineering conference, Vancouver.
bibitem[Nagel and Weiss(2005)]{nagel:2005}
Nagel W, Weiss V (2005). Crack STIT tessellations -- characterization
of stationary random tessellations stable with respect to iteration. Adv
Appl Probab 37:859--83.
bibitem[Nagel and Weiss(2008)]{nagel:2008}
Nagel W, Weiss V (2008). Mean values for homogeneous STIT tessellations in 3D. Image Anal Stereol 27:29--37.
bibitem[Radecke(1980)]{radecke:1980}
Radecke W (1980). Some mean-value relations on stationary
random mosaics in the space. Math Nachr 97:203--10.
bibitem[Schneider and Weil(2008)]{schneider:2008}
Schneider R, Weil W (2008). Stochastic and integral geometry.
Berlin: Springer.
bibitem[Th"ale and Weiss(2013)]{thaele:2013}
Th"ale C, Weiss V (2013). The combinatorial structure of spatial
STIT tessellations. Discrete Comput Geom 50:649--72.
bibitem[Th"ale etal(2012)]{thaele:2012}
Th"ale C, Weiss V, Nagel W (2012). Spatial STIT tessellations:
Distributional results for I-segments. Adv Appl Probab 44:1--20.
bibitem[Weiss and Cowan(2011)]{weiss:2011}
Weiss V, Cowan R (2011). Topological relationships in spatial
tessellations. Adv Appl Probab 43:963--84.