COLUMN TESSELLATIONS

Authors

  • Linh Ngoc Nguyen Friedrich-Schiller-Universität Jena
  • Viola Weiss Ernst-Abbe-Hochschule Jena
  • Richard Cowan University of Sydney

DOI:

https://doi.org/10.5566/ias.1285

Keywords:

combinatorial topology, random tessellations, stochastic geometry

Abstract

A new class of non facet-to-facet random tessellations in three-dimensional space is introduced -- the so-called column tessellations. The spatial construction is based on a stationary planar tessellation; each cell of the spatial tessellation is a prism whose base facet is  congruent to a cell of the planar tessellation. Thus intensities, topological and metric mean values of the spatial tessellation can be calculated from suitably chosen parameters of the planar tessellation.

References

bibitem[Chiu etal(2013)]{chiu:2013}

Chiu SN, Stoyan D, Kendall WS, Mecke J (2013). Stochastic geometry and

its applications. 3rd Ed. Chichester: Wiley.

bibitem[Cowan(2013)]{cowan:2013}

Cowan R (2013). Line segments in the isotropic planar STIT

tessellation. Adv Appl Probab 45:295--311.

bibitem[Cowan and Th"ale(2014)]{cowan:2014}

Cowan R, Th"ale C (2014). The character of planar tessellations which

are not side-to-side. Image Anal Stereol 33:39--54.

bibitem[Cowan and Weiss(2015)]{cowan:2015}

Cowan R, Weiss V (2015). Constraints on the fundamental topological

parameters of spatial tessellations. Math Nachr 288:540--65.

bibitem[Gr"unbaum and Shephard(1987)]{gruenbaum:1987}

Gr"unbaum B, Shephard GC (1987). Tilings and Patterns. New York: WH Freeman.

bibitem[Mecke(1984)]{mecke:1984}

Mecke J (1984). Parametric representation of mean values for stationary

random mosaics. Math Operationsforsch Statist Ser Statist 15:437--42.

bibitem[Mecke etal(2008)]{mecke:2008}

Mecke J, Nagel W, Weiss V (2008). The iteration of random

tessellations and a construction of a homogeneous process of cell divisions.

Adv Appl Probab 40:49--59.

bibitem[M{o}ller(1989)]{moller:1989}

M{o}ller J (1989). Random tessellations in ${mathbb R}^d$. Adv Appl

Probab 21:37--73.

bibitem[Mosser and Matth"{a}i(2014)]{mosser:2014}

Mosser LJ, Matth"{a}i SK (2014). Tessellations stable under iteration -- Evaluation of application as an improved stochastic discrete fracture modeling algorithm. Proceedings International discrete fracture network engineering conference, Vancouver.

bibitem[Nagel and Weiss(2005)]{nagel:2005}

Nagel W, Weiss V (2005). Crack STIT tessellations -- characterization

of stationary random tessellations stable with respect to iteration. Adv

Appl Probab 37:859--83.

bibitem[Nagel and Weiss(2008)]{nagel:2008}

Nagel W, Weiss V (2008). Mean values for homogeneous STIT tessellations in 3D. Image Anal Stereol 27:29--37.

bibitem[Radecke(1980)]{radecke:1980}

Radecke W (1980). Some mean-value relations on stationary

random mosaics in the space. Math Nachr 97:203--10.

bibitem[Schneider and Weil(2008)]{schneider:2008}

Schneider R, Weil W (2008). Stochastic and integral geometry.

Berlin: Springer.

bibitem[Th"ale and Weiss(2013)]{thaele:2013}

Th"ale C, Weiss V (2013). The combinatorial structure of spatial

STIT tessellations. Discrete Comput Geom 50:649--72.

bibitem[Th"ale etal(2012)]{thaele:2012}

Th"ale C, Weiss V, Nagel W (2012). Spatial STIT tessellations:

Distributional results for I-segments. Adv Appl Probab 44:1--20.

bibitem[Weiss and Cowan(2011)]{weiss:2011}

Weiss V, Cowan R (2011). Topological relationships in spatial

tessellations. Adv Appl Probab 43:963--84.

Downloads

Published

2015-06-28

Issue

Section

Original Research Paper

How to Cite

Nguyen, L. N., Weiss, V., & Cowan, R. (2015). COLUMN TESSELLATIONS. Image Analysis and Stereology, 34(2), 87-100. https://doi.org/10.5566/ias.1285