A New Fractional Approach for the Higher-Order q-Taylor Method

Authors

  • Nadia Allouch
  • Iqbal M. Batiha Al Zaytoonah University of Jordan
  • Iqbal H. Jebril
  • Samira Hamani
  • Areen Al-Khateeb
  • Shaher Momani

DOI:

https://doi.org/10.5566/ias.3286

Keywords:

Caputo q-derivative, Fractional q-difference equations, Generalized q-Taylor theorem, Higher-order q-Taylor method

Abstract

The main goal of this work is to propose a new fractional approach of the higher-order q-Taylor method with Initial Value Problems (IVPs) for fractional q-difference equations which is called the Fractional Higher-Order q-Taylor Method (FHOqTM). By applying the generalised q-Taylor theorem, this would be achieved. As a consequence, we calculate the FHOqTM’s local truncation error. Finally, we present numerical applications to validate our results by comparing the exact solution and the approximate solution obtained by (FHOqTM).

References

Abbas S, Benchohra M, Henderson J. (2021). Existence and Oscillation for Coupled Fractional q-Difference Systems. J. Fract. Calc. Appl., 12:143–155.

Abbas S, Benchohra M, Laledj N, Zhou Y. (2019). Existence and Ulam Stability for Implicit Fractional q-Difference Equation. Adv. Differ. Equ., 2019:480.

Abdeljawad T, Baleanu D. (2012). Caputo q-Fractional Initial Value Problems and a q-Analogue Mittag-Leffler Function. Commun. Nonlinear Sci. Numer. Simul., 16:4682–88.

Agarwal R. (1969). Certain Fractional q-Integrals and q-Derivatives. Proc. Camb. Philos. Soc., 66.

Ahmad B, Ntouyas SK, Purnaras IK. (2012). Existence Results for Nonlocal Boundary Value Problems of Nonlinear Fractional q-Difference Equations. Adv. Differ. Equ., 2011:140.

Allouch N, Hamani S. (2023). Boundary Value Problem for Fractional q-Difference Equations in Banach. Rocky Mountain J. Math., 53:1001–10.

Allouch N, Hamani S. (2024). Existence and Ulam Stability of Initial Value Problem for Fractional Perturbed Functional q-Difference Equations. Stud. Univ. Babes-Bolyai Math., 69:483–502.

Allouch N, Hamani S, Graef JR. (2022). Boundary Value Problem for Fractional q-Difference Equations with Integral Condition in Banach Space. Fractal Fract., 6:94.

Al-Salam W, Verma A. (1975). A Fractional Leibniz q-Formula. Pac. J. Math., 60:1–10.

Al-Salam W. (1966-1967). Some Fractional q-Integrals and q-Derivatives. Proc. Edinb. Math. Soc., 15:135–40.

Annaby MH, Mansour ZS. (2012). q-Fractional Calculus and Equations. Lecture Notes in Mathematics, 2056. Springer, Heidelberg.

Barrio R, Blesa F, Lara M. (2005). VSVO Formulation of the Taylor Method for the Numerical Solution of ODEs. Comp. Math. Applic., 50:93–111.

Barrio R. (2005). Performance of the Taylor Series Method for ODEs/DAEs. Appl. Math. Comp., 163:525–45.

Batiha IM, Abubaker AA, Jebril IH, Al-Shaikh SB, Matarneh K. (2023a). New Algorithms for Dealing with Fractional Initial Value Problems. Axioms, 12:15.

Batiha IM, Bataihah A, Al-Nana AA, Alshorm S, Jebril IH, Zraiqat A. (2023b). A Numerical Scheme for Dealing with Fractional Initial Value Problem. Int. J. Innov. Comp. Inf. Cont., 18:12.

Boutiara A, Etemad S, Alzabut J, Hussain A, Subramanian M, Rezapour S. (2021). On a Nonlinear Sequential Four-Point Fractional q-Difference Equation Involving q-Integral Operators in Boundary Conditions Along with Stability Criteria. Adv. Differ. Equ., 2021:1–23.

Garg M, Chanchlani L, Alha S. (2013). On Generalized q-Differential Transform. Aryab. J. Math. Inf., 5:265–74.

Hamadneh T, Hioual A, Alsayyed O, Al-Khassawneh YA, Al-Husban A, Ouannas A. (2023). The FitzHugh-Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation. Axioms, 12:806.

Hassan H. (2016). Generalized q-Taylor Formulas. Adv. Differ. Equ., 2016:12.

Jackson F. (1910). On q-Definite Integrals. Quart. J. Pure Appl. Math., 41:193–203.

Jackson F. (1908). On q-Functions and a Certain Difference Operator. Trans. R. Soc. Edinb., 46:253–81.

Kac V, Cheung P. (2002). Quantum Calculus. Springer, New York.

Zaid OM, Momani S. (2008). An Algorithm for the Numerical Solution of Differential Equations of Fractional Order. J. Appl. Math. Info., 26:15–27.

Rajkovic PM, Marinkovic SD, Stankovic MS. (2007a). Fractional Integrals and Derivatives in q-Calculus. Appl. Anal. Disc. Math., 1:311–23.

Rajkovic PM, Marinkovic SD, Stankovic MS. (2007b). On q-Analogues of Caputo Derivative and Mittag-Leffler Function. Fract. Calc. Appl. Anal., 10:359–73.

Sana G, Mohammed PO, Shin DY, Noor MA, Oudat MS. (2021). On Iterative Methods for Solving Nonlinear Equations in Quantum Calculus. Fractal Fract., 5:17.

Samei ME. (2019). Existence of Solutions for a System of Singular Sum Fractional q-Differential Equations via Quantum Calculus. Adv. Diff. Equ., 2019:23.

Samei ME, Yang W. (2020). Existence of Solutions for k-Dimensional System of Multi-Term Fractional q-Integro-Differential Equations under Anti-Periodic Boundary Conditions via Quantum Calculus. Math. Meth. Appl. Sci., 43:4360–82.

Usero D. (2008). Fractional Taylor Series for Caputo Fractional Derivatives. Construction of Numerical Schemes. Preprint submitted.

Downloads

Published

2024-11-29

Issue

Section

Original Research Paper

How to Cite

Allouch, N., Batiha, I. M., Jebril, I. H., Hamani, S., Al-Khateeb, A., & Momani, S. (2024). A New Fractional Approach for the Higher-Order q-Taylor Method. Image Analysis and Stereology, 43(3), 249-257. https://doi.org/10.5566/ias.3286