Improving the Machine Learning Performance for Image Recognition Using a New Set of Mountain Fourier Moments

Authors

  • Yahya Sahmoudi EST, Sidi Mohamed Ben Abdellah University
  • Omar el Ogri
  • Jaouad el Mekkaoui
  • Boujamaa Janati Idrissi
  • Amal Hjouji

DOI:

https://doi.org/10.5566/ias.3009

Keywords:

Multichannel invariant moments, Pattern recognition, Orthogonal Mountain functions, Mountain-Fourier invariant moments., K-nearest neighbours (KNN), support vector machine (SVM)

Abstract

The orthogonal moments are giving relevant results of these last years within the framework of object detection, pattern recognition and image reconstruction. This article is based on orthogonal functions called "Orthogonal Mountain functions (OMFs)" and we introduce a new set of moments called the multichannel Mountain Fourier moments (MMFMs), their performance is in reconstruction, noise invariants, rotation, scale and translation for image color. To validate these proposed techniques, we made several experimental tests to analyse images. We compare the results obtained from invariant moments and other current orthogonal invariant moments; the experiments show the power of the proposed moments.

References

Abdulhussain S. H., Mahmmod B. M., AlGhadhban A. & Flusser J. (2022). Face recognition algorithm based on fast computation of orthogonal moments. Mathematics, 10(15), 2721. https://doi.org/10.3390/ math10152721.

Abdulhussain S. H., Mahmmod B. M., Naser M. A., Alsabah M. Q., Ali R. & Al-Haddad S. A. R. (2021). A robust handwritten numeral recognition using hybrid orthogonal polynomials and moments. Sensors, 21(6), 1999. https://doi.org/10.3390/s21061999.

Aboelenen T., Hosny K. M. & Darwish M. M. (2020). Novel fractional-order generic Jacobi-Fourier moments for image analysis. Signal processing, 172, 107545. https://doi.org/10.1016/j.sigpro.2020.107545.

Ansary T. F., Daoudi M. & Vandeborre J. P. (2006). A bayesian 3-d search engine using adaptive views clustering. IEEE Transactions on Multimedia, 9(1), 78-88. doi: 10.1109/TMM.2006.886359.

Assefa, D., Mansinha, L., Tiampo, K. F., Rasmussen H. & Abdella K. (2010). Local quaternion Fourier transform and color image texture analysis. Signal Processing, 90(6), 1825-1835. https://doi.org/10.1016/j.sigpro. 2009.11.031.

Bailey R. R. & Srinath M. (1996). Orthogonal moment features for use with parametric and non-parametric classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4), 389-399. doi: 10.1109/34.491620.

Bao S., Song X., Hu G., Yang X. & Wang C. (2019). Colour face recognition using fuzzy quaternion-based discriminant analysis. International Journal of Machine Learning and Cybernetics, 10, 385-395.https://doi.org/10.1007/s13042-017-0722-4.

Batioua I., Benouini R. & Zenkouar K. (2020). Image recognition using new set of separable three-dimensional discrete orthogonal moment invariants. Multimedia Tools and Applications, 79(19), 13217-13245. https://doi.org/10.1007/s11042-019-08083-1.

Batioua I., Benouini R., Zenkouar K. & Zahi A. (2017). 3D image analysis by separable discrete orthogonal moments based on Krawtchouk and Tchebichef polynomials. Pattern Recognition, 71, 264-277. https://doi.org/10.1016/j.patcog.2017.06.013.

Chen B., Yu M., Su Q., Shim H. J. & Shi Y. Q. (2018). Fractional quaternion Zernike moments for robust color image copy-move forgery detection. IEEE Access, 6, 56637-56646. doi: 10.1109/ ACCESS.2018.2871952.

Chen B., Yu M., Su Q., Shim H. J. & Shi Y. Q. (2018). Fractional quaternion Zernike moments for robust color image copy-move forgery detection. IEEE Access, 6, 56637-56646. doi: 10.1109/ACCESS. 2018.2871952.

Chen B. J., Shu H. Z., Zhang H., Chen G., Toumoulin C., Dillenseger J. L. & Luo L. M. (2012). Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal processing, 92(2), 308-318. https://doi.org/10.1016/j.sigpro.2011.07.018.

Chen G. & Krzyzak A. (2022). Feature Extraction for Patch Matching in Patch-Based Denoising Methods. Image Analysis & Stereology, 41(3), 217-227. https://doi.org/10.5566/ias.2812.

Darwish M. M., Hosny K. M. & Eltoukhy M. M. (2020). Novel multi-channel fractional-order radial harmonic Fourier moments for color image analysis. IEEE Access, 8, 40732-40743. doi: 10.1109/ACCESS.2020.2976759.

El Mekkaoui J., Hjouji A. & Qjidaa H. (2021). New set of non-separable 2D and 3D invariant moments for image representation and recognition. Multimedia Tools and Applications, 80, 12309-12333. https://doi.org/ 10.1007/s11042-020-10356-z.

El Ogri O., Daoui A., Yamni M., Karmouni H., Sayyouri M. & Qjidaa H. (2020). New set of fractional-order generalized Laguerre moment invariants for pattern recognition. Multimedia Tools and Applications, 79, 23261-23294. https://doi.org/10.1007/s11042-020-09084-1.

El Ogri O., Karmouni H., Sayyouri M. & Qjidaa H. (2021). 3D image recognition using new set of fractional-order Legendre moments and deep neural networks. Signal Processing: Image Communication, 98, 116410. https://doi.org/10.1016/j.image.2021.116410.

Fathi I. S., Ahmed M. A. & Makhlouf M. A. (2022). An efficient computation of discrete orthogonal moments for bio-signals reconstruction. EURASIP Journal on Advances in Signal Processing, 2022(1), 104. https://doi.org/10.1186/s13634-022-00938-4.

Griffin G. (2007). Caltech-256 Object Category Dataset. http://www.vision.caltech.edu/Image_Datasets /Caltech256/.

Guo L. Q. & Zhu M. (2011). Quaternion Fourier–Mellin moments for color images. Pattern Recognition, 44(2), 187-195. https://doi.org/10.1016/j.patcog.2010.08.017.

He B., Liu J., Yang T., Xiao B. & Peng Y. (2021). Quaternion fractional-order color orthogonal moment-based image representation and recognition. EURASIP Journal on Image and Video Processing, 2021(1), 17. https://doi.org/10.1186/s13640-021-00553-7.

Hjouji A., Bouikhalene B., EL-Mekkaoui J. & Qjidaa H. (2021). New set of adapted Gegenbauer–Chebyshev invariant moments for image recognition and classification. The Journal of Supercomputing, 77, 5637-5667. 2021;77. https://doi.org/10.1007/s11227-020-03450-4.

Hjouji A., Chakid R., El-Mekkaoui J. & Qjidaa H. (2021*). Adapted Jacobi orthogonal invariant moments for image representation and recognition. Circuits, Systems, and Signal Processing, 40, 2855-2882. https://doi.org/ 10.1007/s11227-022-04414-6.

Hmimid A., Sayyouri M. & Qjidaa H. (2015). Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recognition, 48(2), 509-521. https://doi.org/ 10.1016/j.patcog.2014.08.020.

Hosny K. M. & Darwish M. M. (2018). New set of quaternion moments for color images representation and recognition. Journal of Mathematical Imaging and Vision, 60, 717-736. https://doi.org/ 10.1007/s10851-018-0786-0.

Hosny K. M. & Darwish M. M. (2019). New set of multi-channel orthogonal moments for color image representation and recognition. Pattern Recognition, 88, 153-173. https://doi.org/10.1016/ j.patcog.2018.11.014.

Hosny K. M. & Darwish M. M. (2019). New set of multi-channel orthogonal moments for color image representation and recognition. Pattern Recognition, 88, 153-173. https://doi.org/10.1016/ j.patcog.2018.11.014.

Hosny K. M., Darwish M. M. & Aboelenen T. (2020). New fractional-order Legendre-Fourier moments for pattern recognition applications. Pattern Recognition, 103, 107324. https://doi.org/10.1016/ j.patcog.2020.107324.

Hosny K. M., Shouman, M. A. & Abdel Salam H. M. (2011). Fast computation of orthogonal Fourier–Mellin moments in polar coordinates. Journal of Real-Time Image Processing, 6, 73-80. https://doi.org/10.1007/s11554-009-0135-z.

Hu H. T., Zhang Y. D., Shao C. & Ju Q. (2014). Orthogonal moments based on exponent functions: Exponent-Fourier moments. Pattern Recognition, 47(8), 2596-2606. https://doi.org/10.1016/ j.patcog.2014.02.014.

Hu M. K. (1962). Visual pattern recognition by moment invariants. IRE transactions on information theory, 8(2), 179-187. https://doi.org/10.1109/TIT.1962.1057692.

Idan Z. N., Abdulhussain S. H. & Al-Haddad S. A. R. (2020). A new separable moment based on Tchebichef-Krawtchouk polynomials. IEEE Access, 8, 41013-41025. Doi : 10.1109/ACCESS.2020.2977305

Janati Idrissi B., El Ogri O. & EL-Mekkaoui J. (2024). A new retrieval system based on quaternion radial orthogonal Jacobi moments for biomedical color images. Multimedia Tools and Applications, 1-25. https://doi.org/10.1007/s11042-023-17936-9.

Jeny A. A., Junayed M. S. & Islam M. B. (2023). Deep Neural Network-Based Ensemble Model for Eye Diseases Detection and Classification. Image Analysis and Stereology, 42(2), 77-91. https://doi.org/10.5566/ias.2857.

Ji Z., Chen Q., Sun Q. S. & Xia D. S. (2009). A moment-based nonlocal-means algorithm for image denoising. Information Processing Letters, 109(23-24), 1238-1244. https://doi.org/10.1016/j.ipl. 2009.09.007.

Kanaya N., Iiguni Y. & Maeda H. (2002). 2-D DOA estimation method using Zernike moments. Signal processing, 82(3), 521-526. https://doi.org/10.1016/S0165-1684(01)00204-3.

Kim W. Y. & Kim Y. S. (2000). A region-based shape descriptor using Zernike moments. Signal processing: Image communication, 16(1-2), 95-102. https://doi.org/10.1016/S0923-5965(00)00019-9.

Lahouli I., Karakasis E., Haelterman R., Chtourou Z., De Cubber G., Gasteratos A. & Attia R. (2018). Hot spot method for pedestrian detection using saliency maps, discrete Chebyshev moments and support vector machine. IET Image processing, 12(7), 1284-1291. https://doi.org/10.1049/iet-ipr.2017.0221.

Li F.F., Andreeto M., Ranzato M. & Perona P. (2022). Caltech 101 (1.0) [Data set]. CaltechDATA. https://doi.org/10.22002/D1.20086.

Lin Y. H. & Chen C. H. (2008). Template matching using the parametric template vector with translation, rotation and scale invariance. Pattern Recognition, 41(7), 2413-2421. https://doi.org/ 10.1016/j.patcog.2008.01.017

Machhour A., Mallahi M. E., Zouhri, A. & Chenouni D. (2019). Image classification using shifted legendre-fourier moments and deep learning. In 2019 7th Mediterranean Congress of Telecommunications (CMT) (pp. 1-6). IEEE. doi: 10.1109/CMT.2019.8931326.

Nene S. A., Nayar S. K. & Murase H. (1996). Columbia Object Image Library (COIL-100). Technical Report CUCS-006-96. Columbia University Department of Computer Science, New York, NY.

Ping Z., Wu R. & Sheng Y. (2002). Image description with Chebyshev–Fourier moments. JOSA A, 19(9), 1748-1754. https://doi.org/10.1364/JOSAA.19.001748.

Qi S., Zhang Y., Wang C., Zhou J. & Cao X. (2021). A survey of orthogonal moments for image representation: theory, implementation, and evaluation. ACM Computing Surveys (CSUR), 55(1), 1-35. https://doi.org/10.1145/3479428.

Ren H., Ping Z., Bo W., Wu W. & Sheng Y. (2003). Multidistortion-invariant image recognition with radial harmonic Fourier moments. JOSA A, 20(4), 631-637. https://doi.org/10.1364/JOSAA.20.000631.

Sheng Y., & Shen L. (1994). Orthogonal Fourier–Mellin moments for invariant pattern recognition. JOSA A, 11(6), 1748-1757. https://doi.org/10.1364/JOSAA.11.001748.

Singh C. (2012). Local and global features-based image retrieval system using orthogonal radial moments. Optics and Lasers in Engineering, 50(5), 655-667.https://doi.org/10.1016/j.optlaseng. 2011.11.012.

Singh C. & Singh J. (2018). Multi-channel versus quaternion orthogonal rotation invariant moments for color image representation. Digital Signal Processing, 78, 376-392. https://doi.org/ 10.1016/j.dsp.2018.04.001.

Singh J. & Singh C. (2018). Quaternion generalized Chebyshev-Fourier and pseudo-Jacobi-Fourier moments for color object recognition. Optics & Laser Technology, 106, 234-250. https://doi.org/10.1016 /j.optlastec.2018.03.033.

Suk T. & Flusser J. (2009, September). Affine moment invariants of color images. In International Conference on Computer Analysis of Images and Patterns (pp. 334-341). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_41.

Teague M. R. (1980). Image analysis via the general theory of moments. Josa, 70(8), 920-930. https://doi.org/10.1364/JOSA.70.000920.

VIS @ ETH Zurich – Visual Intelligence and Systems | ETH Zurich n.d (Created: April 2003). Datasets – Computer Vision Group | ETH Zurich.

Vite-Chávez O., Flores-Troncoso J., Olivera-Reyna R. & Munoz-Minjares J. U. (2023). Improvement Procedure for Image Segmentation of Fruits and Vegetables Based on the Otsu Method. Image Analysis and Stereology, 42(3), 185-196. https://doi.org/10.5566/ias.2939.

Wang C., Wang X., Li Y., Xia Z. & Zhang C. (2018). Quaternion polar harmonic Fourier moments for color images. Information Sciences, 450, 141-156. https://doi.org/10.1016/j.ins.2018.03.040.

Wang C., Wang X., Xia Z., Ma B. & Shi Y. Q. (2019). Image description with polar harmonic Fourier moments. IEEE Transactions on Circuits and Systems for Video Technology, 30(12), 4440-4452. doi: 10.1109/TCSVT.2019.2960507.

Wang X. Y., Li W. Y., Yang H. Y., Wang P. & Li Y. W. (2015). Quaternion polar complex exponential transform for invariant color image description. Applied Mathematics and Computation, 256, 951-967. https://doi.org/10.1016/j.amc.2015.01.075.

Xiao B., Ma J. F. & Wang, X. (2010). Image analysis by Bessel–Fourier moments. Pattern Recognition, 43(8), 2620-2629. https://doi.org/10.1016/j.patcog.2010.03.013.

Xiao B., Wang G. Y. & Li W. S. (2014). Radial shifted Legendre moments for image analysis and invariant image recognition. Image and Vision Computing, 32(12), 994-1006. https://doi.org/10.1016/j.imavis.2014.09.002.

Xin Y., Pawlak M. & Liao S. (2007). Accurate computation of Zernike moments in polar coordinates. IEEE Transactions on Image Processing, 16(2), 581-587. https://doi.org/ 10.1109/TIP.2006.888346.

Yamni M., Daoui A., El Ogri O., Karmouni H., Sayyouri M. & Qjidaa H. (2021). Accurate 2D and 3D images classification using translation and scale invariants of Meixner moments. Multimedia Tools and Applications, 80(17), 26683-26712. https://doi.org/10.1007/s11042-020-10311-y.

Yap P. T., Jiang X. & Kot A. C. (2009). Two-dimensional polar harmonic transforms for invariant image representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7), 1259-1270. doi: 10.1109/TPAMI.2009.119.

Yu M., Chen B., Su Q. & Li L. (2019). Fractional quaternion cosine transforms and its application in color image copy-move forgery detection. Multimedia Tools and Applications, 78(7), 8057-8073. https://doi.org/10.1007/s11042-018-6595-z.

Zhang F., Liu S. Q., Wang D. B. & Guan W. (2009). Aircraft recognition in infrared image using wavelet moment invariants. Image and Vision Computing, 27(4), 313-318. https://doi.org/10 .1016/j.imavis.2008.08.007.

Downloads

Published

2024-04-03 — Updated on 2024-04-05

Issue

Section

Original Research Paper

How to Cite

Sahmoudi, Y., el Ogri, O., el Mekkaoui, J., Janati Idrissi, B., & Hjouji, A. (2024). Improving the Machine Learning Performance for Image Recognition Using a New Set of Mountain Fourier Moments. Image Analysis and Stereology, 43(1), 67-84. https://doi.org/10.5566/ias.3009