A Completed Multiple Threshold Encoding Pattern for Texture Classification
DOI:
https://doi.org/10.5566/ias.2824Keywords:
binary pattern, completed encoding, image texture analysis, texture image classificationAbstract
The binary pattern family has drawn wide attention for texture representation due to its promising performance and simple operation. However, most binary pattern methods focus on local neighborhoods but ignore center pixels. Even if some studies introduce the center based sub-pattern to provide complementary information, existing center based sub-patterns are much weaker than other local neighborhood based sub-patterns. This severe unbalance limits the classification performance of fusion features significantly. To alleviate this problem, this paper designs a multiple threshold center pattern (MTCP) to provide a more discriminative and complementary local texture representation with a compact form. First, a multiple threshold encoding strategy is designed to encode the center pixel that generates three 1-bit binary patterns. Second, it adopts a compact multi-pattern encoding strategy to combine them into a 3-bit MTCP. Furthermore, this paper proposes a completed multiple threshold encoding pattern by fusing the MTCP, local sign pattern, and local magnitude pattern. Comprehensive experimental evaluations on three popular texture classification benchmarks confirm that the completed multiple threshold encoding pattern achieves superior texture classification performance.
References
• Armi L, Fekri-Ershad S (2019). Texture image Classification based on improved local Quinary patterns. MULTIMED TOOLS APPL 78(14): 18995-9018.
• Boostani, Reza, Shakoor, et al. (2017). Extended Mapping Local Binary Pattern Operator for Texture Classification. INT J PATTERN RECOGN 31(6): 1-22.
• Chakraborty S, Singh S K, Chakraborty P (2017a). Local directional gradient pattern: a local descriptor for face recognition. MULTIMED TOOLS APPL 76:1201-16.
• Chakraborty S, Singh S K, Chakraborty P (2017b). Local quadruple pattern: A novel descriptor for facial image recognition and retrieval. COMPUT ELECTR ENG 62: 92-104.
• Chakraborty S, Singh S K, Chakraborty P (2018). Local Gradient Hexa Pattern: A Descriptor for Face Recognition and Retrieval. IEEE T CIRC SYST VID 28(1):171-80.
• Dana K J, Ginneken B V, Nayar S K, et al. (1999). Reflectance and texture of real-world surfaces. ACM T GRAPHIC 18(1): 1-34.
• Dimitropoulos K, Barmpoutis P, Grammalidis N (2017). Higher Order Linear Dynamical Systems for Smoke Detection in Video Surveillance Applications. IEEE T CIRC SYST VID 27(5): 1143-54.
• Fei L, Zhang B, Xu Y, et al. (2020). Local Discriminant Direction Binary Pattern for Palmprint Representation and Recognition. IEEE T CIRC SYST VID 30(2): 468-81.
• Guo Z, Zhang L, Zhang D (2010). A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE T IMAGE PROCESS 19(6): 1657-63.
• Hao Y, Li S, Mo H, et al. (2017). Affine-Gradient Based Local Binary Pattern Descriptor for Texture Classification. Proceedings of ICIG 2017, 10666. Springer, Cham, 199-210.
• Hu R, Li X, Guo Z (2018). Decorrelated local binary patterns for efficient texture classification. MULTIMED TOOLS APPL 77: 6863-82.
• Lee J Y, Lin J L, Chen Y W, et al. (2015). Depth-Based Texture Coding in AVC-Compatible 3D Video Coding. IEEE T CIRC SYST VID 25(8): 1347-61.
• Li L, Fieguth P, M Pietikäinen, et al. (2016). Median Robust Extended Local Binary Pattern for Texture Classification. IEEE T IMAGE PROCESS 25(3): 1368-81.
• Li Y, Xu X, Li B, et al. (2018). Circular regional mean completed local binary pattern for texture classification. J ELECTRON IMAGING 27(4).
• Liu L, Long Y, Fieguth P W, et al (2014). BRINT: Binary Rotation Invariant and Noise Tolerant Texture Classification. IEEE T IMAGE PROCESS 23(7): 3071-84.
• Murala S, Maheshwari R P, Balasubramanian R (2012). Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval. IEEE T IMAGE PROCESS 21(5): 2874-86.
• Nanni L, Lumini R, Brahnam R (2010). Local binary patterns variants as texture descriptors for medical image analysis. ARTIF INTELL MED 49(2): 117-25.
• Nguyen V D, Nguyen D D, Nguyen T T, et al. (2014). Support Local Pattern and its Application to Disparity Improvement and Texture Classification. IEEE T CIRC SYST VID 24(2): 263-76.
• Nie R, Cao J , Zhou D, et al. (2021). Multi-Source Information Exchange Encoding with PCNN for Medical Image Fusion. IEEE T CIRC SYST VID 31(3): 986-1000.
• Ojala, Maenpaa, Pietikainen, et al. (2002). Outex - new framework for empirical evaluation of texture analysis algorithms. Proceedings of ICPR 2002, Quebec City, QC, Canada, 701-6.
• Ojala T, Pietikainen M, Maenpaa T (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE T PATTERN ANAL 24(7): 971-87.
• Pan Z, Li Z, Fan H, et al. (2017). Feature based local binary pattern for rotation invariant texture classification. EXPERT SYST APPL 88: 238-48.
• Pan Z, Wu X, Li Z, et al. (2017). Local Adaptive Binary Patterns Using Diamond Sampling Structure for Texture Classification. IEEE SIGNAL PROC LET 24(6): 828-32.
• Pan Z, Wu X, and Li Z (2020). Scale-adaptive local binary pattern for texture classification. MULTIMED TOOLS APPL 79: 5477-500.
• Qiang, Xiangjian, Wang, et al. (2015). Local N -Ary Pattern and Its Extension for Texture Classification. IEEE T CIRC SYST VID 25(9): 1495-506.
• Song K, Yan Y, Zhao Y, et al. (2015). Adjacent evaluation of local binary pattern for texture classification. J VIS COMMUN IMAGE R 33: 323-39.
• Song T, Feng J, Luo L, et al. (2021). Robust Texture Description Using Local Grouped Order Pattern and Non-Local Binary Pattern. IEEE T CIRC SYST VID 31(1):189-202.
• Song T, Li H, Meng F, et al. (2018). LETRIST: Locally Encoded Transform Feature Histogram for Rotation-Invariant Texture Classification. IEEE T CIRC SYST VID 28(7): 1565-79.
• Song T, Xin L, Gao C, et al. (2018). Grayscale-Inversion and Rotation Invariant Texture Description Using Sorted Local Gradient Pattern. IEEE SIGNAL PROC LET 25(5): 625-9.
• Sotoodeh M, Moosavi M R, Boostani R (2019). A Novel Adaptive LBP-Based Descriptor for Color Image Retrieval. EXPERT SYST APPL 127: 342-52.
• Tan X, Triggs B (2010). Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions. IEEE T IMAGE PROCESS 19(6):1635-50.
• Taha B, Hayat M, Berretti S, et al. (2020). Learned 3D Shape Representations Using Fused Geometrically Augmented Images: Application to Facial Expression and Action Unit Detection. IEEE T CIRC SYST VID 30(9): 2900-16.
• Wang K, Bichot C E, Li Y, et al. (2017). Local binary circumferential and radial derivative pattern for texture classification. PATTERN RECOGN 67: 213-29.
• Wei L, Dai H Y (2016). Real-time Road Congestion Detection Based on Image Texture Analysis. PROCEDIA ENGINEER 137: 196-201.
• Wu X, Sun J (2017). Joint-scale LBP: a new feature descriptor for texture classification. VISUAL COMPUT 33:317-29.
• Xu H. (2006). A Projective Invariant for Textures. Proceedings of CVPR 2006, New York, NY, USA, 1932-9.
• Xu X, Li Y, and Wu Q (2020a). A Multiscale Hierarchical Threshold-Based Completed Local Entropy Binary Pattern for Texture Classification. COGN COMPUT 12(1): 224-37.
• Xu X, Li Y, and Wu Q (2020b). A completed local shrinkage pattern for texture classification. APPL SOFT COMPUT 97: 106830.
• Xu X, Li Y, and Wu Q (2021). A compact multi-pattern encoding descriptor for texture classification. DIGIT SIGNAL PROCESS 114(2): 103081.
• Zhang Z, Liu S, Mei X, et al. (2017). Learning completed discriminative local features for texture classification. PATTERN RECOGN 67: 263-75.
• Zhao Y, Huang D S, Jia W. (2012). Completed Local Binary Count for Rotation Invariant Texture Classification. IEEE T IMAGE PROCESS 21(10): 4492-7.
• Zhao Y, Wang R G, Wang W M, et al. (2016). Local Quantization Code Histogram for Texture Classification. NEUROCOMPUTING 207(26): 354-64.
• Zhao Y, Wei J, Hu R X, et al (2013). Completed robust local binary pattern for texture classification. NEUROCOMPUTING 106(15): 68-76.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Bin Li, Yibing Li, Q. M. Jonathan Wu
This work is licensed under a Creative Commons Attribution 4.0 International License.