Note on the Approximation of the Conditional Intensity of Non-stationary Cluster Point Processes
DOI:
https://doi.org/10.5566/ias.2653Keywords:
conditional intensity, Neyman-Scott process, point processAbstract
In this note we consider non-stationary cluster point processes and we derive their local intensity, i.e. the intensity of the process given the locations of one or more events of the process. We then provide some approximations of this local intensity.
References
Baudin M (1983). Note on the determination of cluster centers from a realization of a multidimensional Poisson cluster process. J Appl Probab 20(1):136-43.
Chiu SN, Stoyan D, Kendall WS, Mecke J (2013). Stochastic Geometry and Its Applications. Reading: Wiley Series in Probability and Statistic.
Cœurjolly J-F, Møller J, Waagepetersen R (2017). A tutorial on Palm distributions for spatial point processes. Int Stat Rev 85(3):404-20.
Gabriel E, Coville J, Chadœuf J (2017). Estimating the intensity function of spatial point processes outside the observation window. Spat Stat 22(2):225-39.
Gabriel E, Rodriguez–Cortes F, Coville J, Mateu J, Chadœuf J (2022). Mapping the intensity function of a non-stationary point process in unobserved areas. Stoch Environ Res Risk Assess https://doi.org/10.1007/s00477-022-02304-0
Lawson A, Denison D (2002). Spatial Cluster Modelling. Reading: hapman and Hall/CRC.
Neyman J, Scott E (1958). Statistical approach to problems of cosmology. J R Stat Soc Series B Stat Methodol 20(1):1–43.
Palm C (1943). Intensit¨atsschwankungen im Fernsprechverkehr. ricssons Techniks 44:1–189.
van Lieshout M-C, Baddeley A (1995). Markov chain Monte Carlo methods for clustering of image features. IET Conference Proceedings 4:241-45.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Image Analysis & Stereology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.