Supervised Nonparametric Classification in the Context of Replicated Point Patterns

Authors

DOI:

https://doi.org/10.5566/ias.2652

Keywords:

dissimilarity measures, kernel regression, spatial point patterns, supervised classification

Abstract

A spatial point pattern is a collection of points in space, representing, e.g. observed locations of trees, bird nests, centers of cells in a histological sample, etc. When several independent realizations of the underlying stochastic process are observed, these realizations are referred to as replicated point patterns. The main objective of this paper is to classify a newly observed pattern into one of the existing classes using a supervised nonparametric classification method, namely the Bayes classifier in combination with the k-nearest neighbors algorithms and the kernel regression method. The dissimilarity between a pair of patterns is defined using the functional summaries extracted from the point patterns via the Cramér-von Mises or Kolmogorov-Smirnov type formula. A set of simulation experiments is presented to investigate the performance of the proposed classifier with a dissimilarity measure based on functional summaries, such as the pair correlation function. The application of such a classifier to a real point pattern dataset is also illustrated.

References

Alba-Fernández MV, Ariza-López FJ, Dolores Jiménez-Gamero M, Rodríguez-Avia J (2016). On the similarity analysis of spatial patterns. Spat Stat 18:352-362.

Ayala G, Epifanio I, Simo A, Zapater V (2006). Clustering of spatial point patterns. Comput Stat Data Anal 50:1016-1032.

Baddeley A, Gill R (1997). Kaplan-Meier estimators of distance distributions for spatial point processes. Ann Stat 25:263-292.

Baddeley A, Rubak E, Turner R (2015). Spatial Point Patterns: Methodology and Applications with R. Chapman & Hall/CRC Press, Boca Raton.

Borchers H (2019). pracma: Practical Numerical Math Functions, R package version 2.2.9. https://CRAN.R-project.org/package=pracma

Cholaquidis A, Forzani L, Llop P, Moreno L (2017). On the classification problem for Poisson point processes. J Multivar Anal 153:1-15.

Daley D, Vere-Jones D (2008). An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure. 2nd edn. Springer, New York.

Dasgupta A, Raftery AE (1998). Detecting features in spatial point processes with clutter via model-based clustering. J Am Stat Assoc 93:294-302.

Ferraty F, Vieu P (2006). Nonparametric functional data analysis. Theory and practice. Springer-Verlag, New York.

Fisher RA (1936). The Use of Multiple Measurements in Taxonomic Problems. Ann Eugen 7:179-188.

Fisher RA (1938). The Statistical Utilization of Multiple Measurements. Ann Eugen 8:376-386.

Forzani L, Fraiman R, Llop P (2012). Consistent nonparametric regression for functional data under the Stone–Besicovitch conditions. IEEE Trans Inf Theory 58:6697-6708.

Hoffman JR, Mahler RPS (2004). Multitarget miss distance via optimal assignment. IEEE Trans Syst Man Cybern Syst Part A 34:327-336.

Illian J, Penttinen A, Stoyan H, Stoyan D (2004). Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, Chichester.

Koňasová K, Dvořák J (2021). Stochastic reconstruction for inhomogeneous point patterns. Methodol Comput Appl Probab 23:527-547.

Lavancier, F, Möller J, Rubak, E (2012). Determinantal point process models and statistical inference. J R Stat Soc 77:853-877.

Macchi, O (1975). The coincidence approach to~stochastic point processes. Adv Appl Probab 7:83-122.

Mateu J, Schoenberg FP, Diez DM, González JA, Lu W (2015). On measures of dissimilarity between point patterns: classification based on prototypes and multidimensional scaling. Biom J 57:340-358.

Wallig M, Weston S, Tenenbaum D (2019). doParallel: Foreach Parallel Adaptor for the 'parallel' Package, R package version 1.0.15. https://CRAN.R-project.org/package=doParallel

Möller J, Waagepetersen RP (2004). Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, Boca Raton.

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org

Redenbach C, Särkkä A, Sormani M (2015). Classification of points in superpositions of Strauss and Poisson processes. Spat Stat 12:81-95.

Ripley, BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255-266.

Schladitz K, Särkkä A, Pavenstädt I, Haferkamp O, Mattfeldt T (2003). Statistical analysis of intramembraneous particles using freeze fracture specimens. J Microsc 211:137-153.

Schuhmacher D, Vo BT, Vo BN (2008). A Consistent Metric for Performance Evaluation of Multi-Object Filters. IEEE Trans Signal Process 56:3447-3457.

Tranbarger Freier KE, Schoenberg FP (2010). On the Computation and Application of Prototype Point Patterns. Open Appl Informat J 4:1-9.

Thomas M (1949). A generalization of Poisson's binomial limit for use in ecology. Biometrika 36:18-25.

Tscheschel A, Stoyan D (2006). Statistical reconstruction of random point patterns. Comput Stat Data Anal 51:859-871.

Victor JD, Purpura K (1997). Metric-space analysis of spike trains: Theory, algorithms and application. Netw Comput Neural Syst 8:127164.

Vo BN, Dam N, Phung D, Tran QN, Vo BT (2018). Model-based learning for point pattern data. Pattern Recognit 84:136-151.

Walsh D, Raftery AE (2005). Classification of mixtures of spatial point processes via partial Bayes factors. J Comput Graph Stat 15:139-154.

Downloads

Published

2022-07-07

Issue

Section

Original Research Paper

How to Cite

Pawlasová, K., & Dvořák, J. (2022). Supervised Nonparametric Classification in the Context of Replicated Point Patterns. Image Analysis and Stereology, 41(2), 57-109. https://doi.org/10.5566/ias.2652

Most read articles by the same author(s)