Statistical Assessment of Stress Redistribution in Loaded Polycrystals

Authors

DOI:

https://doi.org/10.5566/ias.2642

Keywords:

distance correlation, elastic anisotropy, generalised semivariogram, heteroscedasticity, lattice disorientation, test of independence

Abstract

This work deals with the analysis of stress redistribution in a polycrystal due to external loading, anisotropy of elastic properties, and microstructure characteristics. A statistical method that enables assessing relationships between stress fields and microstructure features of interest is suggested. The notion of generalised semivariogram is introduced and used to determine the extent of spatial dependence in multivariate random fields. Afterwards, it is allowed to perform the tests of independence based on the distance correlation coefficient. The detected non-spatial dependencies are further examined, focusing on the identification of the actual type of heteroscedasticity. The method is aimed at analysing large computational datasets resulting from numerical simulations of stress redistribution in polycrystals under external loads. It is demonstrated on datasets computed on a realistic microstructure of a NiTi wire subjected to tension while considering uniform and preferential lattice orientation distributions and various degrees of elastic anisotropy. The method shows for the considered microstructure and loading that the degree of elastic anisotropy does not affect the dependencies contrarily to the lattice orientation distribution.

References

Abdallah B, Willot F, Jeulin D (2015). Stokes flow through a Boolean model of spheres: Representative volume element. Transp. Porous Media 109(3):711--26.

Adams BL, Kalidindi SR, Fullwood DT (2013). Microstructure-Sensitive Design for Performance Optimization. Elsevier Inc.

Angulo J (2014). Structure tensor image filtering using Riemannian L1 and L∞ center-of-mass. Image Anal. Stereol. 33(2):95--105.

Barbe F, Decker L, Jeulin D, Cailletaud G (2001). Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model. Int. J. Plasticity 17(4):513--36.

Breusch TS, Pagan AR (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica 47(5):1287--94.

Brough DB, Wheeler D, Kalidindi SR (2017). Materials knowledge systems in Python - A data science framework for accelerated development of hierarchical materials. Integr. Mater. Manuf. Innov. 6(1):36--53.

Bunge HJ (1969). Texture Analysis in Materials Science. Butterworth-Heinemann.

Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR (2010). Microstructure sensitive design for performance optimization. Prog. Mater. Sci. 55(6):477--562.

Heller L, Karafiátová I, Petrich L, Pawlas Z, Shayanfard P, Beneš V, Schmidt V, Šittner P (2020). Numerical microstructure model of NiTi wire reconstructed from 3D-XRD data. Model. Simul. Mater. Sc. 28(5):055007.

Hill R (1963). Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11(5):357--72.

Hirsekorn S (1990). Elastic Properties of Polycrystals: A Review. Texture Microstruct. 12:1--14.

Koenker R, Bassett GJ (1982). Robust Tests for Heteroscedasticity Based on Regression Quantiles. Econometrica 46:43--61.

Kumar TK (1975). Multicollinearity in Regression Analysis. Rev. Econ. Stat. 57(3):365--6.

Lyons R (2013). Distance covariance in metric spaces. Ann. Probab. 41(5):3284--305.

MacQueen JB (1967). Some methods for classification and analysis of multivariate observations. Berkeley Symposium on Mathematical Statistics and Probability 5(1):281--97.

Myllymäki M, Mrkvička T, Grabarnik P, Seijo H, Hahn, U (2017). Global envelope tests for spatial processes. J. R. Stat. Soc. B 79:318--404.

O’Brien RM (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality and Quantity 41:673--90.

Otsuka K, Wayman CM (1998). Shape Memory Materials. Cambridge University Press.

Pawlas Z, Karafiátová I, Heller L (2020). Random tessellations marked with crystallographic orientations. Spatial Statistics 39:100469.

Petrich L, Staněk J, Wang M, Westhoff D, Heller L, Šittner P, Krill CE, Beneš V, Schmidt V (2019). Reconstruction of Grains in Polycrystalline Materials From Incomplete Data Using Laguerre Tessellations. Microsc. Microanal. 25(3):743--52.

Sanei SHR and Fertig RS (2015). Uncorrelated volume element for stochastic modeling of microstructures based on local fiber volume fraction variation. Compos. Sci. Technol. 117:191--8.

Sedmák P, Pilch J, Heller L, Kopeček J, Wright J, Sedlák P, Frost M, Šittner P (2016). Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load. Science (New York, N.Y.) 353:559--62.

Schabenberger O, Gotway CA (2001). Statistical Methods for Spatial Data Analysis. Chapman and Hall/CRC.

Székely GJ, Rizzo ML, Bakirov NK (2007). Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6):2769--94.

Székely GJ, Rizzo ML (2009). Brownian distance covariance. Ann. Appl. Stat. 3(4):1236--65.

Willot F, Brenner R, Trumel H (2020). Elastostatic field distributions in polycrystals and cracked media. Philos. Mag. 100(6):661--87.

Yamaji A, Sato K (2006). Distances for the solutions of stress tensor inversion in relation to misfit angles that accompany the solutions. Geophys. J. Int. 167:933--42.

Zener CM, Siegel S (1949). Elasticity and Anelasticity of Metals. J. Phys. Colloid Chem. 53(9):1468.

Zienkiewicz O, Taylor R, Zhu JZ (2013). The Finite Element Method: Its Basis and Fundamentals: Seventh Edition. Elsevier Ltd.

Downloads

Published

2022-04-08

Issue

Section

Original Research Paper

How to Cite

Karafiátová, I., Pawlas, Z., & Heller, L. (2022). Statistical Assessment of Stress Redistribution in Loaded Polycrystals. Image Analysis and Stereology, 41(1). https://doi.org/10.5566/ias.2642