Endpoint Detection of Partially Overlapping Straight Fibers using High Positive Gaussian Curvature in 3D images

Authors

DOI:

https://doi.org/10.5566/ias.2197

Keywords:

endpoint segmentation, image processing, X-ray micro-computed tomography, fiber reinforced polymer

Abstract

This paper introduces a method for detecting endpoints of partially overlapping straight fibers in three-dimensional voxel image data. The novel approach directly determines fiber endpoints without the need for more expansive single-fiber segmentation. In the context of fiber-reinforced polymers, endpoint information is of practical significance as it can indicate potential damage in endless fiber systems, or can serve as input for estimating statistical fiber length distribution. We tackle this challenge by exploiting Gaussian curvature of the surface of the fibers. Fiber endpoints have high positive curvature, allowing one to distinguish them from the rest of a structure. Accuracy data of the proposed method are presented for various data sets. For simulated fiber systems with fiber volume fractions of less than 20 %, true positive rates above 94 % and false positive rates below 5 % are observed. Two well-resolved real data sets show a reduction of the first rate to 90.3 % and an increase of the second rate to 13.1 %.

References

Altendorf H (2012). Analysis and Modeling of Random Fiber Networks. Ph.D. thesis, TU Kaiserslautern, Mines ParisTech.

Andra H, Dobrovolskij D, Schladitz K, Staub S, Müller R (2019). Modelling of geometrical microstructures and mechanical behaviour of constituents. Berlin, Heidelberg: Springer Berlin Heidelberg, 31–56.

Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57:289–300.

Feder J (1980). Random sequential adsorption. J Theor Biol 87:237–54.

Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998). Multiscale vessel enhancement filtering. In: Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention,

MICCAI ’98. Springer-Verlag.

Franke J, Redenbach C, Zhang N (2016). On a mixture model for directional data on the sphere. Scand J Stat 43:139–55.

Friedman J, Hastie T, Tibshirani R (2001). The elements of statistical learning, vol. 1. Springer series in statistics New York, NY, USA.

Guo R, Azaiez J, Bellehumeur C (2005). Rheology of fiber filled polymer melts: Role of fiber-fiber interactions and polymer-fiber coupling. Polymer Engineering Science 45:385–99.

Kronenberger M, Schladitz K, Hamann B, Hagen H (2018). Fiber segmentation in crack regions of steel fiber reinforced concrete using principal curvature. Image Anal Stereol 37:127–37.

Kronenberger M, Wirjadi O, Freitag J, Hagen H (2015). Gaussian curvature using fundamental forms for binary voxel data. Graph Models 82:123–36.

Kuhlmann M, Redenbach C (2015). Estimation of fibre length distributions from fibre endpoints. Scand J Stat 42:1010–22.

Lux J (2013). Automatic segmentation and structural characterization of low density fibreboards. Image Anal Stereol 32:13–25.

Nielsen M, Olsen OF, Sig M, Sigurd M (2001). Koenderink corner points. In: International Workshop on Visual Form. Springer.

Ohser J, Schladitz K (2009). 3D images of materials structures: Processing and analysis. Chichester: Wiley.

Redenbach C, Rack A, Schladitz K, Wirjadi O, Godehardt M (2012). Beyond imaging: on the quantitative analysis of tomographic volume data. Int J Mater Res 103:217–27.

Rikvold PA, Stell G (1985). Porosity and specific surface for interpenetrable-sphere models of two-phase random media. J Chem Phys 82:1014–20.

Schladitz K, Peters S, Reinel-Bitzer D, Wiegmann A, Ohser J (2006). Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Comp Mater Sci 38:56–66.

Thirion JP, Gourdon A (1995). Computing the differential characteristics of isointensity surfaces. Comput Vision Image Und 61:190–202.

Torquato S (1991). Random heterogeneous media: microstructure and improved bounds on effective properties. Appl Mech Rev 44:37–76.

Viguie J, Latil P, Orgas L, Dumont P, du Roscoat SR, Bloch JF, Marulier C, Guiraud O (2013). Finding fibres and their contacts within 3D images of disordered fibrous media. Compos Sci Technol 89:202–10.

Weber B, Greenan G, Prohaska S, Baum D, Hege HC, Muller-Reichert T, Hyman AA, Verbavatz JM (2012). Automated tracing of microtubules in electron tomograms of plastic embedded samples of caenorhabditis elegans embryos. J Struct Biol 178:129–38. Special Issue: Electron Tomography.

Wernersson ELG, Hendriks CLL, Brun A (2011). Accurate estimation of Gaussian and mean curvature in volumetric images. In: 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization

and Transmission.

Wirjadi O (2009). Models and Algorithms for Image-Based Analysis of Microstructures. Ph.D. thesis, Technische Universität Kaiserslautern.

Wirjadi O, Godehardt M, Schladitz K, Wagner B, Rack A, Gurka M, Nissle S, Noll A (2014). Characterization of multilayer structures in fiber reinforced polymer employing synchrotron and laboratory X-ray CT. Int

J Mater Res 105:645–54.

Wirjadi O, Schladitz K, Easwaran P, Ohser J (2016). Estimating fibre direction distributions of reinforced composites from tomographic images. Image Anal Stereol 35:167–79.

Wirjadi O, Schladitz K, Rack A, Breuel T (2009). Applications of anisotropic image filters for computing 2D and 3D-fiber orientations. In: Stereology and Image Analysis–10th European Congress of ISS. Milan.

Downloads

Published

2019-12-13

Issue

Section

Original Research Paper

How to Cite

Kronenberger, M., Schladitz, K., Wirjadi, O., Weber, C., Hamann, B., & Hagen, H. (2019). Endpoint Detection of Partially Overlapping Straight Fibers using High Positive Gaussian Curvature in 3D images. Image Analysis and Stereology, 38(3), 245-253. https://doi.org/10.5566/ias.2197

Most read articles by the same author(s)

1 2 > >>