Analysis of Isotropy and Uniformity of the Distribution of Reinforcing Phase in Cu/SiC Composite Materials Using μCT Methods

Authors

  • Katarzyna Pietrzak Lukasiewicz Research Network - Institute of Microelectronics and Photonics
  • Andrzej Gładki Lukasiewicz Research Network - Institute of Microelectronics and Photonics
  • Agata Strojny-Nędza Lukasiewicz Research Network - Institute of Microelectronics and Photonics
  • Tomasz Wejrzanowski Warsaw University of Technology, Faculty of Materials Science and Engineering, Poland
  • Kamil Kaszyca Lukasiewicz Research Network - Institute of Microelectronics and Photonics

DOI:

https://doi.org/10.5566/ias.1911

Keywords:

Cu/SiC composite materials, image analysis, isotropy, uniformity

Abstract

Tomography allows embedding of one space in another, especially ℛ2 → ℛ3, and observation of the nature of the volumetric internal composite structure. Now, not only a simple interpretation is expected of geometry defined via single thresholds of structures. The binary segmentation used for numerical structure analysis requires more detailed presentation. This paper shows an example of image analysis techniques applied to study the homogeneity of two-phase material. Using tomography analysis, the results of the homogeneity of the SiC particles with 10vol.%, 20vol.%, 30vol.%, 40vol.% volumetric bulk density of Cu/SiC composites are presented. Finally, for two independent coordinate systems, the distribution of  SiC particle masses and their total moments of inertia were determined. The results confirmed that for well-mixed composite powders the homogeneity of the reinforcing phase is expected in samples with a  SiC volume near 30vol.%. In this case, segregation by translation and rotation of SiC particles in the matrix, during the sintering process is restricted.

References

REFERENCES

Barmouz M., Araee A. (2014) Effect of SiC particles dispersion on the grain size and mechanical properties of Cu/SiC metal matrix nanocomposites produced via MFSP", J NANO RES 26: 53-8

Besharati M.K., Taherishargh G.M. (2011) Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles' size and volume fraction. MATER SCI ENG: A 528(3): 1740-9

Campbell F.C. (2010) Introduction to Composite Materials Structural Composite Materials. ASM International® http://www.asminternational.org

Chmielewski M., Pietrzak K., Strojny-Nędza A., Jarząbek D., Nosewicz S., (2017) Investigations of interface properties in copper-silicon carbide composites. ARCH METALL MATER 62(2B): 1315-8

Chmielewski M., Pietrzak K., Teodorczyk M., Nosewicz S., Jarzabek D., Zybała R., Bazarnik P., Lewandowska M., Strojny-Nedza A. (2017) Effect of metallic coating on the properties of coppersilicon carbide composites. APPL SURF SCI 421A: 159-69

DeHoff R.T., Rhines F.N. (1961) Determination of the number of particles per unit volume from measurements made on random plane section: the general cylinder and the ellipsoid. Trans AIME 221: 975-82

Gan K., Gu M. (2008) The compressibility of Cu/SiCp powder prepared by high-energy ball milling. J MATER PROCESS TECH 199 (1–3): 173-7

Gawdzińska K., Wojnar L., Maliński M., Chrapoński J. (2010) Structure homogeneity as a parameter for evaluation of composite casting quality. Archives of Foundry Engineering 10(3): 187–92

Głowacz E., Czarski A. (2008) Scheil-Schwartz-Saltykov method in the matrix depiction. Inżynieria Materiałowa 29(4): 418-20

He Y., Meng Y., Gong H., Chen S., Zhang B., Ding W., Luo Q., Li A. (2014) An automated threedimensional detection and segmentation method for touching cells by integrating concave points clustering and random walker algorithm., PLOS ONE 9(8)

Iguchi M., Suehirto T., Watanabe Y. (1982) Composite materials reinforced with polyoxymethylene wiskers. J MATER SCI 17: 1632-8

Jarzabek D., Chmielewski M., Dulnik J., Strojny-Nedza A. (2016) The influence of the particle size on the adhesion between ceramic particles and metal matrix in MMC composites. J MATER ENG PERFORM 25(8): 3139-45

Kimoto T., Cooper J. A. (2014) Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications , Major Physical Properties of Common SiC Polytypes, First Edition Published by John Wiley & Sons Singapore Pte Ltd. 7

Maire E., Withers P. J. (2014) Quantitative X-ray tomography. International Materials Reviews 59(1): 1-43, 23

Pietrzak K., Sobczak N., Chmielewski M., Homa M., Gazda A., Zybała R., Strojny-Nędza A. (2016) Effects of carbon allotropic forms on microstructure and thermal properties of Cu-C composites produced by SPS. J MATER ENG PERFORM 25(8): 3077-83

Schubert Th., Brendel A., Schmid K., Koeck Th., Ciupiński Ł., Zieliński W., Weißgärber T., Kieback B. (2007) Interfacial design of Cu/SiC composites prepared by powder metallurgy for heat sink applications. COMPOS PART A-APPL S. 38(12): 2398-403

Singh H., Kumar L., Alam S. N. (2015) Development of Cu Reinforced SiC Particulate Composites. 4th National Conference on Processing and Characterization of Materials IOP Conf. Series: MATER SCI ENG. 75

Srinivasan C., Karunanithi M. (2015) Fabrication of surface level Cu/SiCp nanocomposites by friction stir processing route. Journal of Nanotechnology. Article ID 612617: 1 -10 13 Underwood E.E. (1970) Quantitative Stereology, Addison-Wesley; Massachusetts, U.S.A.

Weber L., Tavangar R. (2007) On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. SCRIPTA MATER 57: 988–91

Wejrzanowski T., Spychalski W.L., Rożniatowski K., Kurzydłowski K.J., (2008), Image based analysis of complex microstructures of engineering materials. INT J APPL MATH COMP. 18(1): 33-9

Wejrzanowski T., Lewandowska M., Kurzydłowski K.J., (2010), Stereology of nanomaterials., IMAGE ANAL STEREOL 29: 1-12

Xu Y.H., Pitot H.C. (2003) An improved stereologic method for three-dimensional estimation of particle size distribution from observations in two dimensions and its application. COMPUT METH PROG BIO 72(1):1-20

Yoshida K., Morigami H. (2004) Thermal properties of diamond/copper composite material. MICROELECTRON RELIAB 44: 303–8

Zaman M., Bukhari S.N.S., Ir M., Brabazon D., Hashmi M.S.J. (2012) Evaluation on metal matrix composite of CuSiC as candidate for thermal management materials in electronics packaging. The 2nd International Malaysia-Ireland Joint Symposium on Engineering, Science and Business 2012.

Zhan Y., Zhang G. (2003) The effect of interfacial modifying on the mechanical and wear properties of SiC p/Cu composites. MATER LETT. 57: 4583

Downloads

Published

2021-04-09

Issue

Section

Original Research Paper

How to Cite

Pietrzak, K., Gładki, A., Strojny-Nędza, A., Wejrzanowski, T., & Kaszyca, K. (2021). Analysis of Isotropy and Uniformity of the Distribution of Reinforcing Phase in Cu/SiC Composite Materials Using μCT Methods. Image Analysis and Stereology, 40(1), 39-47. https://doi.org/10.5566/ias.1911

Most read articles by the same author(s)