ESTIMATION OF MINKOWSKI TENSORS FROM DIGITAL GREY-SCALE IMAGES
DOI:
https://doi.org/10.5566/ias.1124Keywords:
digital stereology, grey-scale images, local algorithms, Minkowski tensorsAbstract
It was shown in Svane (2014b) that local algorithms based on grey-scale images sometimes lead to asymptotically unbiased estimators for surface area and integrated mean curvature. This paper extends the results to estimators for Minkowski tensors. In particular, asymptotically unbiased local algorithms for estimation of all volume and surface tensors and certain mean curvature tensors are given. This requires an extension of the asymptotic formulas of Svane (2014b) to estimators with position dependent weights.
References
Airy GB (1835). On the diffraction of an object-glass with circular aperture. Transactions of the Cambridge Philosophical Society 5:283--291.
Federer H (1959). Curvature measures. Trans. Amer. Math. Soc. 93:418--491.
Hug D, Last G, Weil W (2004). A local Steiner-type formula for general closed sets and applications. Math. Z. 246 no. 1-2:237--272.
Hug D, Schneider R, Schuster R (2008). Integral Geometry of Tensor Valuations. Adv. in Appl. Math. 41 no. 4:482-–509.
Kampf J (2012). A limitation of the estimation of intrinsic volumes via pixel configuration counts. WiMa Report 144.
Kiderlen M, Rataj J (2007). On infinitesimal increase of volumes of morphological transforms. Mathematika 53, no. 1: 103--127.
Köthe U (2008). What can we learn from discrete images about the continuous world? In: Discrete Geometry for Computer Imagery, Proc. DGCI 2008, LNCS 4992:4--19, Springer, Berlin.
McMullen P (1997). Isometry covariant valuations on convex bodies. Rend. Circ. Mat. Palermo (2), Suppl. 50:259--271.
Schneider R (1993). Convex bodies: The Brunn--Minkowski Theory. Cambridge University Press, Cambridge.
Schneider R, Schuster R (2002). Tensor valuations on convex bodies and integral geometry, II. Rend. Circ. Mat. Palermo (2), Suppl. 70: 295–314.
Schröder-Turk GE, Kapfer SC, Breidenbach B, Beisbart C, Mecke K (2008). Tensorial Minkowski functionals and anisotropy measures for planar patterns. J. Microsc. 238:57--74.
Schröder-Turk GE, Mickel W, Kapfer SC, Schaller FM, Breidenbach B, Hug D, Mecke K (2010a). Minkowski tensors of anisotropic spatial structure. arXiv.org: 1009.2340.
Schröder-Turk GE, Mickel W, Schröter M, Delaney GW, Saadatfar M, Senden TJ,
Mecke K, Aste T (2010b). Disordered spherical bead packs are anisotropic. Europhys. Lett. 90:34001 (6p).
Schröder-Turk GE, Mickel W, Kapfer SC, Klatt MA, Schaller FM, Hoffmann MJ, Kleppmann N, Armstrong P, Inayat A, Hug D, Reichelsdorfer M, Peukert W, Schwieger W, Mecke K (2011).
Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mater. 23:2535--2553.
Svane AM (2013a). On multigrid convergence of local algorithms for intrinsic volumes. To appear in: J. Math. Imaging Vis. DOI: 10.1007/s10851-013-0469-9.
Svane AM (2013b). Estimation of intrinsic volumes from digital grey-scale images. To appear in: J. Math. Imaging Vis. DOI: 10.1007/s10851-013-0450-7.