3D RECONSTRUCTION OF A MULTISCALE MICROSTRUCTURE BY ANISOTROPIC TESSELLATION MODELS

Authors

  • Hellen Altendorf Centre of Mathematical Morphology, Mines Paris Tech, 35 rue Saint Honoré 77305 Fontainebleau cedex, France
  • Felix Latourte EDF R&D, Matériaux et Mécanique des Composants, Renardières, Moret-sur-Loing, France
  • Dominique Jeulin Centre of Mathematical Morphology, Mines Paris Tech, 35 rue Saint Honoré 77305 Fontainebleau cedex, France
  • Matthieu Faessel Centre of Mathematical Morphology, Mines Paris Tech, 35 rue Saint Honoré 77305 Fontainebleau cedex, France
  • Lucie Saintoyant EDF R&D, Matériaux et Mécanique des Composants, Renardières, Moret-sur-Loing, France

DOI:

https://doi.org/10.5566/ias.v33.p121-130

Keywords:

anisotropic tessellation, martensitic steel, multiscale 3D microstructure, stochastic modeling

Abstract

In the area of tessellation models, there is an intense activity to fully understand the classical models of Voronoi, Laguerre and Johnson-Mehl. Still, these models are all simulations of isotropic growth and are therefore limited to very simple and partly convex cell shapes. The here considered microstructure of martensitic steel has a much more complex and highly non convex cell shape, requiring new tessellation models. This paper presents a new approach for anisotropic tessellation models that resolve to the well-studied cases of Laguerre and Johnson-Mehl for spherical germs. Much better reconstructions can be achieved with these models and thus more realistic microstructure simulations can be produced for materials widely used in industry like martensitic and bainitic steels.

References

Albert S, Matsui M, Watanabe T, Hongo H, Kubo K,

Tabuchi M (2003). Variation in the type iv cracking

behaviour of a high cr steel weld with post weld heat

treatment. International Journal of Pressure Vessels and

Piping :405–13.

Blaschke W (1921-29). Vorlesungen über

Differentialgeometrie III. Springer, Berlin.

Descartes R (1644). Les Principes de la Philosophie.

Elzevier, Amsterdam.

Dirichlet GL (1850). Über die Reduktion der positiven

quadratischen Formen mit drei unbestimmten ganzen

Zahlen. Journal fur die Reine und Angewandte

Mathematik 40:209–27.

Jeulin D (2013). Random tessellations and boolean random

functions. In: Hendriks C, Borgefors G, Strand R,

eds., Mathematical Morphology and Its Applications

to Signal and Image Processing, vol. 7883 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg,

–36.

Johnson WA, Mehl RF (1939). Reaction kinetics in

processes of nucleation and growth. Trans AIME

:416–58.

Lautensack C (2007). Random Laguerre Tessellations.

Ph.D. thesis, Universität Karlsruhe (TH).

McCartin BJ (2007). On concentration and inertia

ellipsoids. Applied Mathematical Sciences 1:1–11.

Vivier F (2009). Fluage à 500°C d'un joint soudé d'un

acier 9Cr-1Mo modifié: évolution de la microstructure

et comportement mécanique. Ph.D. thesis, ParisTech -

MAT- Centre des matériaux PM Fourt.

Voronoi G (1908). Nouvelles applications des paramtères

continus la théorie des formes quadratiques. premier

mémoire. sur quelques propriétés des formes quadratiques

positives parfaites. Journal für die reine und angewandte

Mathematik Crelles Journal 1908:97–102.

Downloads

Published

2014-05-23

Issue

Section

Original Research Paper

How to Cite

Altendorf, H., Latourte, F., Jeulin, D., Faessel, M., & Saintoyant, L. (2014). 3D RECONSTRUCTION OF A MULTISCALE MICROSTRUCTURE BY ANISOTROPIC TESSELLATION MODELS. Image Analysis and Stereology, 33(2), 121-130. https://doi.org/10.5566/ias.v33.p121-130

Most read articles by the same author(s)

1 2 3 > >>