A COMPREHENSIVE FRAMEWORK FOR AUTOMATIC DETECTION OF PULMONARY NODULES IN LUNG CT IMAGES
DOI:
https://doi.org/10.5566/ias.v33.p13-27Keywords:
computed tomography (CT), computer-aided diagnosis (CADx), lung nodule detection, segmentationAbstract
Solitary pulmonary nodules may indicate an early stage of lung cancer. Hence, the early detection of nodules is the most efficient way for saving the lives of patients. The aim of this paper is to present a comprehensive Computer Aided Diagnosis (CADx) framework for detection of the lung nodules in computed tomography images. The four major components of the developed framework are lung segmentation, identification of candidate nodules, classification and visualization. The process starts with segmentation of lung regions from the thorax. Then, inside the segmented lung regions, candidate nodules are identified using an approach based on multiple thresholds followed by morphological opening and 3D region growing algorithm. Finally, a combination of a rule-based procedure and support vector machine classifier (SVM) is utilized to classify the candidate nodules. The proposed CADx method was validated on CT images of 60 patients, containing the total of 211 nodules, selected from the publicly available Lung Image Database Consortium (LIDC) image dataset. Comparing to the other state of the art methods, the proposed framework demonstrated acceptable detection performance (Sensitivity: 0.80; Fp/Scan: 3.9). Furthermore, we visualize a range of anatomical structures including the 3D lung structure and the segmented nodules along with the Maximum Intensity Projection (MIP) volume rendering method that will enable the radiologists to accurately and easily estimate the distance between the lung structures and the nodules which are frequently difficult at best to recognize from CT images.
References
Alilou M, Kovalev V (2013). Automatic object detection and segmentation of the histocytology images using reshapable agents. Image Anal Stereol, 32(2):89--99.
Armato SG, Giger ML, Moran CJ, Blackburn JT, Doi K,
MacMahon H (1999). Computerized detection of pulmonary nodules on CT scans. RADIOGRAPHICS 19(5):1303--11.
Armato SG, Giger ML, MacMahon H (2001). Automated detection of lung nodules in CT scans: Preliminary results. MED PHYS 28(8):1552--61.
Armato SG, McLennan G, McNitt-Gray MF, Meyer CR,
Yankelevitz D, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, et al (2004). Lung image database consortium: developing a resource for the medical imaging research community. RADIOLOGY 232(3):739–-48.
Awai K, Murao K, Ozawa A, Komi M, Hayakawa H, Hori S, Nishimura Y (2004). Pulmonary nodules at chest ct: Effect of computer aided diagnosis on radiologists detection performance. RADIOLOGY 230(2):347--52.
Burges CJ (1998). A tutorial on support vector machines for pattern recognition. DATA MIN KNOWL DISC 2(2):121--67.
Chan HP, Hadjiiski L, Zhou C, Sahiner B (2008). Computer-aided diagnosis of lung cancer and pulmonary embolism in computed tomography--a review. ACAD RADIOL 15(5):535--55.
Dehmeshki J, Ye X, Lin X, Valdivieso M, Amin H (2007). Automated detection of lung nodules in CT images using shape-based genetic algorithm. COMPUT MED IMAG GRAP 31(6):408--17.
Doi K (2007). Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. COMPUT MED IMAG GRAP 31(45):198--211.
Golosio B, Masala GL, Piccioli A, et al (2009). A novel multithreshold method for nodule detection in lung CT. MED PHYS 36(8):3607-18.
Gurcan MN, Sahiner B, Petrick N, Chan HP, Kazerooni EA,
Cascade PN, Hadjiiski L (2002). Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. MED PHYS 29(11):2552--8.
Guyon I, Elisseeff A (2003). An introduction to variable and feature selection. J MACH LEARN RES 3:1157--82.
Hardie RC, Rogers SK, Wilson T, Rogers A (2008). Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal 12(3):240--258.
Hu S, Hoffman E, Reinhardt J (2001). Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imag 20(6):490--8.
Kanazawa K, Kawata Y, Niki N, Satoh H, Ohmatsu H, Kakinuma R, Kaneko M, Moriyama N, Eguchi K (1998). Computer-aided diagnosis for pulmonary nodules based on helical CT images. COMPUT MED IMAG GRAP 22(2):157--67.
Leader JK, Zheng B, Rogers RM, Sciurba FC, Perez A, Chapman BE, Patel S, Fuhrman CR, Gur D (2003). Automated lung segmentation in X-ray computed tomography: development and evaluation of a heuristic threshold-based scheme. ACAD RADIOL 10(11):1224–36.
Lee Y, Hara T, Fujita H, Itoh S, Ishigaki T (2001). Automated detection of pulmonary nodules in helical CT images based on an improved template matching technique. IEEE Trans Med Imag 20(7):595--604.
Li Q (2007). Recent progress in computer-aided diagnosis of lung nodules on thin section CT. COMPUT MED IMAG GRAP 31(45):248--57.
Li Q, Li F, Doi K (2008). Computerized detection of lung nodules in thin section CT images by use of selective enhancement filters and an automated rule-based classifier. ACAD RADIOL 15(2):165--75.
McNitt-Gray MF, Armato III SG, Meyer CR, Reeves AP, McLen-
nan G, Pais RC, Freymann J, Brown MS, Engelmann RM, Bland
PH, et al (2007). The lung image database consortium (LIDC) data collection process for nodule detection and annotation. ACAD RADIOL 14(12):1464--74.
Messay T, Hardie RC, Rogers SK (2010). A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3):390--406.
Riccardi A, Petkov TS, Ferri G, Masotti M, Campanini R (2011).
Computer-aided detection of lung nodules via 3d fast radial transform, scale space representation, and zernike mip classification. MED PHYS 38(4):1962--71.
Rubin GD, Lyo JK, Paik DS, Sherbondy AJ, Chow LC, Leung
AN, Mindelzun R, Schraedley-Desmond PK, Zinck SE, Naidich
DP, et al (2005). Pulmonary nodules on multi–detector row CT scans: Performance comparison of radiologists and computer-aided detection. RADIOLOGY 234(1):274--83.
Saba L, Caddeo G, Mallarini G (2007). Computer-aided detection of pulmonary nodules in computed tomography: analysis and review of the literature. J COMPUT ASSIST TOMO 31(4):611--19.
Siegel R, Naishadham D, Jemal A (2012). Cancer statistics, 2012. CA-CANCER J CLIN 62(1):10--29.
Sluimer I, Schilham A, Prokop M, Van Ginneken B (2006). Computer analysis of computed tomography scans of the lung: a survey. IEEE T MED IMAGING 25(4):385--405.
Sone S, Li F, Yang Z, Honda T, Maruyama Y, Takashima S,
Hasegawa M, Kawakami S, Kubo K, Haniuda M, et al (2001). Results of three-year mass screening programme for lung cancer using mobile low-dose spiral computed tomography scanner. British journal of cancer 84(1):25.
Tan M, Deklerck R, Jansen B, Bister M, Cornelis J (2011). A novel
computer-aided lung nodule detection system for CT images. Medical physics 38(10):5630--45.
Teramoto A, Fujita H (2013). Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. Int J Comput Assist Radiol Surg 8:193--205.
Way TW, Hadjiiski LM, Sahiner B, Chan HP, Cascade PN, Kazerooni EA, Bogot N, Zhou C (2006). Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. MED PHYS 33(7):2323--37.
Ye X, Lin X, Dehmeshki J, Slabaugh G, Beddoe G (2009). Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE T BIO-MED ENG 56(7):1810--20.