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ABSTRACT

In the present paper, Lévy-based error prediction in circular systematic sampling is developed. A model-
based statistical setting as in Hobolth and Jensen (2002) is used, but the assumption that the measurement
function is Gaussian is relaxed. The measurement function is represented as a periodic stationary stochastic
process X obtained by a kernel smoothing of a Lévy basis. The process X may have an arbitrary covariance
function. The distribution of the error predictor, based on measurements in n systematic directions is derived.
Statistical inference is developed for the model parameters in the case where the covariance function follows
the celebrated p-order covariance model.

Keywords: Fourier series, Lévy basis, planar particles, stationary stochastic processes, stereology, systematic
sampling.

INTRODUCTION

A long-standing problem in stereology is variance
estimation in systematic sampling. One class of
problems involves estimation of an integral of the form

Q =
∫ 2π

0
x(θ)dθ , (1)

where x(θ) is an integrable function on [0,2π), called
the measurement function. The estimator typically
considered is based on circular systematic sampling
and takes the form

Q̂n =
2π

n

n−1

∑
i=0

x(Θ+
2πi
n

) , n≥ 1 ,

where Θ is uniformly distributed in [0, 2π

n ). For
instance, if Y is a bounded convex planar set containing
the origin O, examples of Eq. 1 are

x(θ) =
{

1
2 r(θ)2 if Q = area of Y ,
h(θ) if Q = boundary length of Y ,

where r(θ) and h(θ) are the radial function and the
support function of Y in direction θ , respectively.
The geometric identity (Eq. 1) is in these cases a
consequence of polar decomposition in the plane and
an identity for mean width (Schneider, 1993, Eq.
5.3.12). If instead Y is a bounded convex spatial set
containing O, the volume and the surface area of
Y may be estimated by a two-step procedure which
involves circular systematic sampling in a section
through O and the use of the cubed radial function

or the squared support function (Gundersen, 1988;
Cruz-Orive, 2005). Yet another example is volume
estimation by the so-called vertical rotator (Jensen and
Gundersen, 1993).

In Gual-Arnau and Cruz-Orive (2000), a design-
based procedure of approximating the variance of Q̂n,
based on modelling the covariogram of x(θ) by a
polynomial model, is developed. Hobolth and Jensen
(2002) consider a model-based procedure, where the
measurement function is assumed to be a realization
of a periodic stationary stochastic Gaussian process
X = {X(θ) : θ ∈ [0,2π)}. It is shown in Hobolth and
Jensen (2002) that the covariogram model considered
in the paper by Gual-Arnau and Cruz-Orive (2000) is
a special case of a p-order covariance model for the
stochastic process X in the model-based set-up.

The p-order covariance model is given by

c(θ) = Cov(X(θ),X(0)) = λ0 +
∞

∑
s=2

λs cos(sθ) ,

λ
−1
s = α +β (s2p−22p) , s≥ 2 , (2)

where the model parameters satisfy p > 1/2, α,β > 0.
In Hobolth et al. (2003), this parametric covariance
function has been used in the modelling of the radial
function of a random star-shaped planar particle. In
this case, p determines the smoothness of the particles
boundary while α and β determine the ‘global’ and
the ‘local’ shape of the particle, respectively. (Note
that in Eq. 2, λ1 is set to zero which ensures that
the reference point of the particle is approximately
the centre of mass.) The model-based counterpart
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of the design-based methodology provided in Gual-
Arnau and Cruz-Orive (2000) was further developed in
Jónsdóttir et al. (2006), where the general form of the
p-order covariance model (Eq. 2) was used to obtain
a more accurate approximation of the prediction error
E(Q̂n−Q)2.

In Hobolth and Jensen (2002) and Jónsdóttir et al.
(2006), the process X is assumed to be Gaussian.
Motivated by the fact that powers of the radial function
and the support function are used in practice, we will
in this paper consider non-Gaussian models, obtained
as a kernel smoothing of a so-called Lévy basis. As
we will show, it is possible under the Lévy-based
model to derive the distribution of the error predictor
Q̂n−Q which may be markedly non-Gaussian for the
moderate sizes of n used in practice.

Lévy-based modelling has been popular in recent
years, e.g. in the modelling of turbulent flows,
spatio-temporal growth, spatial point processes and
random fields (Barndorff-Nielsen and Schmiegel,
2004; Jónsdóttir et al., 2008; Hellmund et al., 2008;
Jónsdóttir et al., 2013). More specifically, we will
consider stochastic processes of the form

X(θ) = µ +
∫ 2π

0
k(θ −φ)Z(dφ) , θ ∈ [0,2π) ,

where µ determines the mean of the process, Z
is a homogeneous and factorizable Lévy basis on
[0,2π) and k is a deterministic kernel function. In
principle, any covariance model, including the p-
order covariance model, can be induced under this
modelling framework, by assuming a specific form of
the kernel function (see the next section). Under the p-
order model, it is easy to control the local and global
fluctuations of the stochastic process X . The Lévy-
based models with p-order covariance thus constitute
a flexible and tractable model class. In particular, this
model class has more structure than the non-Gaussian
models considered in Hobolth et al. (2003) and this
allows us to derive distributional results.

The composition of the remaining part of the
paper is as follows. First, a theoretical background
for stationary periodic processes with period 2π ,
based on kernel smoothing of a Lévy basis, is given.
Then, estimation of E(Q̂n − Q)2 under the general
Lévy-based model is discussed. The distribution of
the error predictor Q̂n − Q under the Lévy-based
model is derived, and it is shown how to estimate
this distribution. An example of random particles
simulated from a Lévy-based model is given together
with the distribution of the n-point area estimator of
these particles. Finally, a discussion is provided. Some
technical derivations are deferred to an appendix.

LÉVY-BASED STOCHASTIC
PROCESSES ON THE CIRCLE

This section provides an overview of stationary
periodic processes on [0,2π) based on integration
with respect to a Lévy basis. For further details on
the general theory on Lévy bases, in particular, the
integration with respect to a Lévy basis, the reader
is referred to Barndorff-Nielsen and Schmiegel (2004)
and Hellmund et al. (2008).

Let X = {X(θ) : θ ∈ [0,2π)} be a 2π periodic
stationary stochastic process on [0,2π), given by

X(θ) = µ +
∫ 2π

0
k(θ −φ)Z(dφ) , θ ∈ [0,2π) , (3)

where µ determines the mean of the process, Z is a
homogeneous and factorizable Lévy basis on [0,2π)
and k is an even periodic kernel function with period
2π and a Fourier representation

k(θ) = ξ0 +
∞

∑
s=1

ξs cos(sθ) . (4)

The model (Eq. 3) is the continuous analogue of
the following discrete model

X(θ) = µ +∑
φ

k(θ −φ)Z(φ) ,

where the sum is over an equally spaced set of
angles and the random variables Z(φ) are independent
and identically distributed, the common distribution
being infinitely divisible. The integral in Eq. 3 is
formally defined as a limit in probability (Rajput and
Rosinski, 1989). A spatio-temporal version of Eq. 3
has previously been considered in Jónsdóttir et al.
(2008).

The Lévy basis Z is extended by Z(A+ 2πm) =
Z(A) for all m∈Z and all Borel sets A∈B([0,2π)). A
Lévy basis has the property that Z(A1), . . . ,Z(An) are
independent when A1, . . . ,An ∈B([0,2π)) are disjoint
and Z(A) is infinitely divisible for any A ∈B([0,2π)).
The assumption of homogeneity implies that all the
finite-dimensional distributions of Z are translation
invariant.

If Z is Gaussian, the integral in Eq. 3 exists if k is
L2-integrable with respect to the Lebesgue measure on
[0,2π). When Z is a so-called Lévy jump basis (e.g.,
Gamma or inverse Gaussian Lévy basis), the integral
exists if k is integrable with respect to the Lebesgue
measure on [0,2π) and if

∫
R|r|V (dr) < ∞, where V

is the Lévy measure associated with Z. These results
follow from Hellmund et al. (2008, Lemma 1).
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An important entity associated with a Lévy basis
is its spot variable Z′ which is infinitely divisible.
Without loss of generality we will in what follows
assume that the spot variable Z′ is centered, Z′ =
W −E(W ), where W is an infinitely divisible random
variable.

The following theorem characterizes the
distribution of the stochastic variable X(θ).

Theorem 1. The stochastic variable X(θ) has the
cumulant generating function

KX(t) = logE(etX(θ))

= t(µ−2πξ0E(W ))+
∫ 2π

0
KW (tk(φ))dφ ,

(5)

where KW (t) is the cumulant generating function of W.
Moreover, the derivatives of KX(t) are given by (when
they exist)

K′X(t) = µ−2πξ0E(W )+
∫ 2π

0
K′W (tk(φ))k(φ)dφ ,

K(r)
X (t) =

∫ 2π

0
K(r)

W (tk(φ))k(φ)r dφ , r ≥ 2 , (6)

where K(r)
W (t) denotes the r’th derivative of KW (t).

Proof. The result is obtained by using that the
cumulant generating function of the integral f • Z =∫ 2π

0 f (θ)Z(dθ) of a function f with respect to a
homogeneous and factorizable Lévy basis Z is given
by

K f•Z(t) =
∫ 2π

0
KZ′(t f (θ))dθ , (7)

where Z′ is the spot variable associated with Z, cf.
Hellmund et al. (2008, Eq. 10). �

It follows that the cumulants of the stochastic variable
X(θ) are given by

κ1(X(θ)) = µ,

κr(X(θ)) = κr(W )
∫ 2π

0
k(φ)r dφ , r ≥ 2 ,

where κr(W ) denotes the r-th cumulant of the
stochastic variable W . Possible choices of the
distribution of W are the Gaussian, Gamma and inverse
Gaussian distributions. When the kernel function is
proportional to an indicator function, k(θ) = c1A(θ)
for A ∈B([0,2π)), the marginal distribution of X(θ)
will be of the same type as that of W . Otherwise, the
marginal distribution will not be as simple, but the
process X will inherent the name of the distribution of

the underlying spot variable, e.g., when W is Gamma
distributed, X is called a Gamma Lévy process,
irrespectively of the choice of the kernel function.
We will typically assume that κ2(W ) = 1, i.e., the
skewness and kurtosis of W are equal to the third
and fourth cumulant, respectively. In Table 1, we give
the cumulant generating function, third and fourth
cumulants of W for the three distributions mentioned
above. Note that as W has unit variance, the Gamma
and inverse Gaussian Lévy bases are only determined
by a single parameter η > 0. The Lévy measures V of
the Gamma and inverse Gaussian Lévy bases satisfy
the condition

∫
R |r|V (dr) < ∞ for the existence of the

integral in Eq. 3, cf. Hellmund et al. (2008, Example
3).

In principle, any covariance function can be
modelled within this set-up. This can be seen, using
the theorem below.

Theorem 2. The stochastic process X has a mean
value µ and a covariance function

c(θ) = λ0 +
∞

∑
s=1

λs cos(sθ) , θ ∈ [0,2π) ,

where

λ0 = 2πξ
2
0 κ2(W ) , λs = πξ

2
s κ2(W ) , s≥ 1 . (8)

Proof. Using that

c(θ) = Cov(X(θ),X(0))

= κ2(W )
∫ 2π

0
k(θ −φ)k(−φ)dφ ,

we easily obtain Eq. 8. �

Using Theorem 2, we can construct the candidate
kernel k that induces a given covariance function c. For
instance, if c follows the p-order model (Eq. 2), then k
is of the form specified in Eq. 4 with

ξ0 =

√
λ0

2πκ2(W )
, ξ1 = 0 ,

ξs =
1√

πκ2(W )[α +β (s2p−22p)]
, s≥ 2 .

This choice of kernel will for a Gaussian Lévy basis
give a well-defined integral in Eq. 3 if p > 1/2, while
for a Gamma or an inverse Gaussian basis the integral
is well-defined if p > 1.
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Table 1. Examples of the distribution of W, together with the corresponding cumulant generating function, and
the third and fourth cumulants.

distribution Gaussian Gamma Inverse Gaussian
W N(0,1) Γ(η ,

√
η) IG(η3,η)

KW (t) t2/2 −η log(1− t/
√

η) η4(1−
√

1−2t/η2)
κ3(W ) 0 2/

√
η 3/η2

κ4(W ) 0 6/η 15/η4

ESTIMATING E(Q̂n – Q)2 UNDER
THE LÉVY-BASED MODEL

In Hobolth and Jensen (2002), the focus was on the
prediction error E(Q̂n−Q)2. If the covariance function
of X has the following Fourier expansion

c(θ) = λ0 +
∞

∑
s=1

λs cos(sθ) , θ ∈ [0,2π) ,

then it was shown in Hobolth and Jensen (2002) that

E(Q̂n−Q)2 =
∞

∑
k=1

λnk , (9)

where λnk is the Fourier coefficient of order n · k in
the Fourier expansion of the covariance function of
X . Note that in Hobolth and Jensen (2002), circular
systematic sampling on [0,1) instead of [0,2π) is
considered, so Eq. 9 represents an adjusted version of
Hobolth and Jensen (2002, Eq. 8).

In Hobolth et al. (2003), a procedure for estimating
the prediction error under a Gaussian p-order model
was developed, based on a Fourier expansion of X

X(θ)
d
= A0 +

∞

∑
s=1

(As cos(sθ)+Bs sin(sθ)) ,

θ ∈ [0,2π) ,

where d
= means equality in distribution and

A0 =
1

2π

∫ 2π

0
X(θ)dθ ,

As =
1
π

∫ 2π

0
X(θ)cos(sθ)dθ ,

Bs =
1
π

∫ 2π

0
X(θ)sin(sθ)dθ .

When X is a periodic stationary Gaussian process,
the Fourier coefficients of X become independent and
normally distributed, As∼ Bs∼N(0,λs). As suggested
in Hobolth et al. (2003), the parameters α and β

in the p-order model can then be estimated using
maximum likelihood estimation based on the first S
Fourier coefficients,

L0,S(α,β ) =
S

∏
s=2

1
2πλs(α,β )

exp
(
− (a2

s +b2
s )

2λs(α,β )

)
,

(10)
where λs(α,β ), s = 2, . . . ,S, satisfy (2) and as and bs,
s = 2, . . . ,S, denote discretized Fourier coefficients of
X .

In this section, we will show that this procedure
can be used under the general Lévy-based model. The
following theorem gives the distribution of the Fourier
coefficients and their relations under the general Lévy-
based model. In the Gaussian case, the theorem can be
found e.g., in Dufour and Roy (1976).
Theorem 3. The stationary Lévy-based stochastic
process X can be written in terms of its Fourier
coefficients as

X(θ) = A0 +
∞

∑
s=1

(As cos(sθ)+Bs sin(sθ)) ,

θ ∈ [0,2π) ,

where A0 = µ +ξ0Z([0,2π)),

As = ξs

∫ 2π

0
cos(sφ)Z(dφ)

Bs = ξs

∫ 2π

0
sin(sφ)Z(dφ) . (11)

Moreover, the Fourier coefficients are pairwise
uncorrelated and the Fourier coefficients of order s
have the same distribution which is characterized by
the cumulant generating function KAs(t) = KBs(t) =
KU(tξs), where

KU(t) =
∫ 2π

0
KW (t cos(θ))dθ .

Proof. Writing the kernel function in terms of its
Fourier representation and then calculate the Fourier
coefficients of X gives Eq. 11. The Fourier coefficients
are uncorrelated as for all r,s≥ 1,

Cov(As,Br) = κ2(W )
∫ 2π

0
cos(sφ)sin(rφ)dφ = 0 ,
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and

Cov(As,Ar) = κ2(W )
∫ 2π

0
cos(sφ)cos(rφ)dφ = 0 ,

Cov(Bs,Br) = κ2(W )
∫ 2π

0
sin(sφ)sin(rφ)dφ = 0 ,

for all r,s≥ 1,r 6= s. The cumulant generating function
of As is given by

KAs(t) =
∫ 2π

0
KZ′(tξs cos(sφ))dφ

=
1
s

∫ 2πs

0
KZ′(tξs cos(φ))dφ = KU(ξst) ,

and a similar argument shows that KBs(t) = KU(ξst).
�

The cumulant generating function of As and Bs
yield simple expressions for their cumulants, which are
given by

κ1(A0) = µ , κr(A0) = 2πξ0κr(W ) , r ≥ 2 ,

and

κr(As) = κr(Bs) = 2πξ
r
s
(r−1)!!

r!!
κr(W )1(r even) ,

for s ≥ 1 and r ≥ 1. Here and in the following, we let
for a positive integer n,

n!! =
{

2 ·4 · · ·n , if n even,
1 ·3 · · ·n , if n uneven.

This means that As and Bs have mean, variance,
skewness and kurtosis of the following form:

κ1(As) = 0 , κ2(As) = πξ
2
s κ2(W ) ,

γ1(As) = 0 , γ2(As) =
3

4π
γ2(W ) ,

where γ2(W ) is the kurtosis of W . Moreover, the
normalized Fourier coefficients of order s = 1,2, . . . ,
obtained by Ãs = As/ξs and B̃s = Bs/ξs, will all have
the same distribution characterized by the cumulant
generating function KU(t).

From Theorems 2 and 3, it follows that for a non-
Gaussian Lévy basis Z the Fourier coefficients will
be uncorrelated with variance λs(α,β ). Furthermore,
the distribution of the Fourier coefficients in the non-
Gaussian and Gaussian model only differs in even
cumulants of order four and higher. Therefore, Eq. 10
can be regarded as a pseudo-likelihood function for
(α,β ) also in the non-Gaussian case.

Fig. 1 shows the small difference in the saddlepoint
densities of the normalized Fourier coefficients and the
Gaussian density for different values of η in the case
of a Gamma Lévy basis. Furthermore, a simulation
study indicated that the estimates of (α,β ) are robust
against deviations from Gaussianity in the underlying
distribution, but the mean square error of the estimates
increases somewhat as η decreases.
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Fig. 1. The saddlepoint density of the normalized
Fourier coefficients for η = 2 (red line), η = 4 (green
line) and η = 16 (blue line). The density in a Gaussian
model is shown for comparison (black line).

THE DISTRIBUTION OF Q̂n – Q
UNDER THE LÉVY-BASED
MODEL

In the previous section, we have seen that the
method developed in Hobolth et al. (2003) for
estimating E(Q̂n −Q)2 based on a Gaussian process
is robust against departures from the distributional
assumption. In this section, we will derive the
distribution of the error predictor Q̂n−Q which may
be markedly non-Gaussian.

Theorem 4. Under the Lévy-based model, the error
predictor is distributed as

Q̂n−Q∼ 2π

∫ 2π

0
kn(φ)Z(dφ) , (12)

where

kn(φ) =
∞

∑
s=1

ξsn cos(snφ) .
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The distribution of Q̂n − Q is characterized by its
cumulant generating function

KQ̂n−Q(t) =
∫ 2π

0
KW (2tπkn(φ))dφ .

Proof. Recall that

Q̂n =
2π

n

n−1

∑
i=0

X(Θ+
2πi
n

) , (n≥ 1) ,

where Θ is uniformly distributed in [0,2π/n). Without
loss of generality we can assume that Θ = 0 as the
distribution of Q̂n does not depend on Θ. The result
given in Eq. 12 is obtained by observing that the mean
of the kernel functions is given by

1
n

n−1

∑
j=0

k(
2π j

n
−φ) = ξ0 +

∞

∑
s=1

ξsn cos(snφ) .

The expression for the cumulant generating function of
Q̂n−Q is a consequence of Eq. 7. �

As the cumulant generating function of Q̂n −Q
has a simple form, its cumulants are easily available.
In particular, it enables us to obtain a saddlepoint
approximation of its density. An alternative is to use
Theorem 4 for simulating the distribution of Q̂n−Q.

Example. Let us consider a Lévy-based model (Eq. 3)
for X with a Gamma Lévy basis Z and k chosen such
that the covariance function of X follows a p-order
model. Under this model the Fourier coefficients As,
and Bs, s≥ 1, of X(θ) have mean, variance, skewness
and kurtosis,

κ1(As) = 0 , κ2(As) = πξ
2
s = λs(α,β ) ,

γ1(As) = 0 , γ2(As) =
9

2πη
.

This model may, for instance, be used to model
the squared radial function of random star-shaped
planar particles containing the origin. Fig. 2 shows
examples of particles simulated from such a model,
using different values of η . The value of p, α and
β was p = 2, logα = 6 and logβ = −3. We used
η = 2,4,16; a low value of η corresponds to an
underlying distribution with a heavy tail. The value of
η controls the frequency and size of the irregularities
of the boundary of the particles. Small values of η will
produce particles with few large fluctuations on the
particle boundary and less smaller fluctuations. Higher
values of η will produce particles with more frequently
occurring moderate fluctuations across the boundary.

Fig. 3 shows the corresponding saddlepoint
densities of the estimated area of the particles for two
different values of n. �

η = 2 η = 4 η = 16

Fig. 2. Realizations of particles obtained by assuming
that the squared radial function is given by a Gamma
Lévy process with a p-order covariance function. The
values of p, α and β were p = 2, logα = 6 and
logβ = −3. Each column corresponds to realizations
for a fixed value of η (η = 2,4,16).

2.5 3.0 3.5 4.0

0
1

2
3

4

Fig. 3. The saddlepoint density of the n-point area
estimate for n = 5 (stippled) and n = 10 (full line).
The different colours represent densities for the three
particles considered: η = 2 (red lines), η = 4 (green
lines) and η = 16 (blue lines). Densities for a
Gaussian model is shown for comparison (black lines).
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In applications, it is needed to estimate the
parameter η of the underlying Lévy basis Z, i.e.,
the parameter of the distribution of W . For a given
kernel function k, we have a simple expression for the
cumulant generating function of X and its derivatives
(when they exist), cf. Theorem 1. We suggest
estimating the parameter η determining the Lévy basis
by considering the saddlepoint approximation of the
density of X(θ). For more details on saddlepoint
approximations, cf. Jensen (1995). The first order
saddlepoint approximation of the density is given by

f̃ (x) =
1√

2πK′′X(t̂(x))
eKX (t̂(x))−t̂(x)x,

where t̂(x) is the solution to the saddlepoint equation

K′X(t) = x .

Note that the saddlepoint equation is non-linear when
Z is non-Gaussian, but can be solved numerically,
using a Newton method for a given kernel function k. A
better approximation of the density of X(θ) is obtained
by multiplying the density with the correction factor

c(t̂(x)) = 1+
K(4)

X (t̂(x))
8K′′X(t̂(x))2 −

5
24

(
K(3)

X (t̂(x))
K′′X(t̂(x))3/2

)2

.

Given an estimation of the kernel function k we can
establish a pseudo-likelihood function based on the
observations of the stochastic process X given by

L(η) =
n

∏
i=1

f̃ (x(θi)) .

Here, f̃ (x(θi)) is calculated using the approximated
kernel function

k̂S(θ) =
S

∑
s=2

ξ̂s cos(sθ) ,

where ξ̂s =

√
λs(α̂, β̂ )/π is obtained using the

estimates of (α,β ). Note that we need to normalize
the densities f̃ (xi) for each value of η , when
maximizing the likelihood function L(η). If the
estimated likelihood function is an increasing function
of η , this suggests that the underlying Lévy basis is
Gaussian.

The cumulant generating function and its
derivatives have simple analytic expressions, when
the underlying Lévy basis is a Gamma basis or Inverse
Gaussian basis. These expressions can be derived by
combining Theorem 1 and Table 1. For a Gamma Lévy

process the cumulant generating function of X(θ) and
its derivatives are given by

KX (t) = t(µ−2πξ0
√

η)−η

∫ 2π

0
log
(

1− tk(φ)
√

η

)
dφ ,

K′X (t) = µ−2πξ0
√

η +η

∫ 2π

0

k(φ)
√

η− tk(φ)
dφ ,

K(r)
X (t) = (r−1)!η

∫ 2π

0

k(φ)r

(
√

η− tk(φ))r dφ , r ≥ 2 .

For an inverse Gaussian Lévy process the cumulant
generating function of X(θ) and its derivatives are
given by

KX (t) = t(µ−2πξ0η
2)+η

4
∫ 2π

0

(
1−

√
1− 2tk(φ)

η2

)
dφ ,

K′X (t) = µ−2πξ0η
2 +η

3
∫ 2π

0

k(φ)√
η2−2tk(φ)

dφ ,

K(r)
X (t) = (2r−3)!!η3

∫ 2π

0

k(φ)r

(η2−2tk(φ))r− 1
2

dφ , r ≥ 2 .

In both cases, the saddlepoint approximation of the
density of X(θ) are easily obtainable using numerical
integration and a Newton algorithm for finding the
saddlepoint. Note that the saddlepoint approximation
of the density function for an arbitrary η can be
written in terms of the saddlepoint approximation of
the density, the cumulant generating derivatives and
saddlepoint solution for η = 1.

CONCLUSION AND
PERSPECTIVES

We have developed a Lévy-based error prediction
in circular systematic sampling. In contrast to previous
model-based methods, we consider a flexible class
of non-Gaussian measurement functions based on
kernel smoothing of a homogeneous Lévy basis. In
particular, we have derived the distribution of the
error predictor in circular systematic sampling. The
modelling framework allows us to consider in principle
any given covariance structure of the measurement
function, in particular the popular p-order covariance
model which enables controlling the local and global
fluctuations of the measurement function.

Relation to generalized p-order models. Note that
as the Lévy-based process X is strictly stationary, it can
be shown that X has a polar expansion of the form

X(θ) = µ +
√

2
∞

∑
s=0

√
Cs cos(s(θ −Ds)) ,

where the random variables

Cs =
1
2
(A2

s +B2
s ) = λsZs , Ds ∼U [0,

2π

s
] , s≥ 1 ,
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are independent, cf. the Appendix, and E(Zs) = 1.
Here, the variable Zs can be expressed as

Zs =
1

2πκ2(W )

∫ 2π

0

∫ 2π

0
cos(s(θ −φ))Z(dθ)Z(dφ) .

This shows that the Lévy-based models are closely
related to the generalized p-order models proposed
in Hobolth et al. (2003), but the Lévy-based models
have more structure that allows for derivation of
distributional results.

Modelling particles in 2D and 3D. The model
(Eq. 3) can be used directly to model the shape of
featureless two-dimensional particles by assuming that
a particle Y is a stochastic deformation of a template
particle Y0. If r0 is a radial function of a template
particle, we let the radial function of Y be of the
form R(θ) = r0(θ) +X(θ), where X is a zero mean
Lévy-based stochastic process. The strength of this
technique is two-folded. Firstly, the global and local
fluctuations of the Lévy-based stochastic process are
controlled by the variance of the Fourier coefficients
which are determined by the kernel function. Secondly,
the underlying Lévy basis determines the frequency
and size of the irregularities of the process. Finally,
the methodology presented can be extended to model
the shape of three-dimensional featureless particles, by
considering Lévy-based processes on the unit sphere
S2. Hansen et al. (2011) consider three-dimensional
Lévy particles using different covariance models. The
focus is here on the Hausdorff dimension of the
boundary of particles obtained using a Gaussian basis.

Approximations of densities. The saddlepoint
approximation was applied here to obtain an
approximation of the density of X(θ) in the
Lévy-based stochastic model. As the cumulant
generating function is easily obtainable for stochastic
convolutions of the type

X(ξ ) =
∫

f (η−ξ )Z(dη) , ξ ∈ Rn ,

where f : Rn → R and Z is a homogeneous
Lévy basis on Rn, the saddlepoint approximation
of the density is an attractive tool for studying
Lévy-based convolution models in general. For the
stochastic processes considered here, other types of
approximations of densities can also be considered
based on approximating As and Bs by differences of
variables from the same family of distributions as
W . As an example one could consider approximating
the density of the Fourier coefficients by a type II
McKay distribution (Holm and Alouini, 2004), when
the underlying Lévy basis is a Gamma Lévy basis.

Choice of kernel function. Finally, it should be
emphasized that assuming that the kernel function is

even does not affect the flexibility of the induced
covariance model. When k is not necessarily even,

k(θ) = ξ0 +
∞

∑
s=1

(ξs,1 cos(sθ)+ξs,2 sin(sθ)) ,

the covariance function of X is given by

C(θ)= 2πξ
2
0 +π

∞

∑
s=1

(ξ 2
s,1+ξ

2
s,2)cos(sθ) , θ ∈ [0,2π) .

Moreover, the Fourier coefficients of the process X
will still be uncorrelated and have the same distribution
described by the cumulant generating function

KAs(t) =
∫ 2π

0
KW (tξs,1 cosφ − tξs,2 sinφ)dφ ,

and cumulants given by

κr(As) = κr(Bs)

= 2π(ξ 2
s,1 +ξ

2
s,2)

r/2 (r−1)!!
r!!

κr(W )1(r even) .

APPENDIX: A NOTE ON POLAR
EXPANSION OF A STATIONARY
PROCESS

Consider a stationary process X = {X(θ) : θ ∈
[0,2π)} with Fourier expansion

X(θ) = A0 +
∞

∑
s=1

(As cos(sθ)+Bs sin(sθ)) ,

and Polar expansion

X(θ) = µ +
√

2
∞

∑
s=0

√
Cs cos(s(θ −Ds)) ,

where Cs =
1
2(A

2
s +B2

s ) and sDs = arctan(Bs/As), s≥ 1.
It is easily seen that

X(θ +h) = A0 +
∞

∑
s=1

(As(h)cos(sθ)+Bs(h)sin(sθ)) ,

where(
As(h)
Bs(h)

)
=

(
cos(sh) sin(sh)
−sin(sh) cos(sh)

)(
As
Bs

)
=V

(
As
Bs

)
,

and V is a rotation matrix. As for each h ∈ [0,2π),
{X(θ) : θ ∈ [0,2π)} and {X(θ +h) : θ ∈ [0,2π)} have
the same distribution,(

As
Bs

)
∼
(

As(h)
Bs(h)

)
=V

(
As
Bs

)
.
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We now have that

Es :=
(

As/
√

A2
s +B2

s
Bs/
√

A2
s +B2

s

)
∼V

(
As/
√

A2
s +B2

s
Bs/
√

A2
s +B2

s

)
=V Es ,

and consequently Es is uniformly distributed on the
unit circle, i.e., arctan(Bs/As) is uniformly distributed
on [0,2π) and Ds is uniformly distributed on [0,2π/s).
Now consider the conditional distribution of

√
2Cs =√

A2
s +B2

s given Es. As√
2Cs | Es = es ∼

√
2Cs |V Es = es ,

the conditional distribution does not depend on es and
hence

√
2Cs is independent of Es and Ds.
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