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ABSTRACT

Heterogeneous transformations (or reactions) may be defined as those transformations in which there
is a sharp moving boundary between the transformed and untransformed region. In materials science
such transformations are normally called nucleation and growth transformations, whereas birth-and-growth
processes is the preferred denomination in mathematics. Recently, the present authors in a series of papers
have derived new analytical expressions for nucleation and growth transformations with the help of stochastic
geometry methods. Those papers focused mainly on the role of nuclei location in space, described by point
processes, on transformation kinetics. In this work we focus on the effect that a random velocity of the moving
boundaries of the grains has in the overall kinetics. One example of a practical situation in which such a
model may be useful is that of recrystallization. Juul Jensen and Godiksen reviewed recent 3D experimental
results on recrystallization kinetics and concluded that there is compelling evidence that every grain has its own
distinct growth rate. Motivated by this practical application we present here new general kinetics expressions
for various situations of practical interest, in which a random distribution of growth velocities is assumed. In
order to do this, we make use of tools from stochastic geometry and geometric measure theory. Previously
known results follow here as particular cases. Although the motivation for this paper was recrystallization, the
expressions derived here may be applied to nucleation and growth reactions in general.

Keywords: birth-and-growth process, casual cone, formal kinetics, phase transformations, Poisson process,
random set, recrysrallization.

INTRODUCTION

Heterogeneous transformations or reactions may
be defined as those transformations in which there is
a sharp moving boundary between the transformed
and untransformed region. This definition aims at
chemical reactions in general. Specifically, it is applied
to nucleation and growth transformations in materials
science.

Notwithstanding its specific application to
materials science, the geometrical idea pertaining to
the definition of heterogeneous transformations is
quite general. Indeed in mathematics this geometrical
idea is called a birth and growth process. In treating
heterogeneous transformations one normally envisages
that these transformations may be decomposed in
two stages. In the first stage, the nucleation or birth
stage, new transformed regions originate at certain
“nucleation sites”. In the second stage, the growth
stage, those nuclei, which are very small transformed
regions, grow consuming the parent untransformed
matrix. One might see the nucleation/birth as the stage
in which the interfaces between the transformed and
untransformed regions are “created”.

As expected, such a general geometrical idea
finds a wide range of application in diverse fields
of knowledge (Tomellini and Fanfoni, 2008), such
as the phase separations in multicomponent alloys
(Starink, 2004), the film growth on solid substrates
(Fanfoni and Tomellini, 2005), the kinetics of Ising
lattice-gas model (Ramos et al., 1999), and the DNA
replication (Jun and Bechhoefer, 2005). To these we
may add a recent extensive work by Aquilano et al.

(2009) on crystallization processes. In the present
paper, the practical application that we often bear
in mind is the modeling of phase transformations in
general and recrystallization in particular.

For the development of mathematical models,
nucleation and growth or birth and growth may
be considered to be operational concepts. In other
words, no specific physical mechanism is associated
with nucleation and growth. They are wholly
defined by their stochastic geometric properties.
These ideas constitute the basis of a methodology
to analyse transformation kinetics, which is often
called “formal kinetics”. Formal kinetics had its
inception in the early work by Kolmogorov (1937),
Johnson and Mehl (1939) and Avrami (1939; 1940;
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1941), henceforward referred to as “JMAK”. It is
worthy of note that JMAK papers were originally
motivated by phase transformations. Indeed, examples
of formal kinetics modeling can be found associated
with a variety of transformations, such as, austenite
to perlite transformation (Johnson and Mehl, 1939),
recrystallization (Vandermeer and Juul Jensen, 2001),
abnormal grain growth in BaTiO3 (Kondo et al.,
1998), martensite “spread ”(Rios and Guimaraes,
2007; 2008) and polymer crystallization
(Capasso et al., 2003; Burger et al., 2002). The early
work quoted above considered that nucleation sites
were uniform randomly located in space, or more
precisely, that nuclei were located in space according
to a homogeneous Poisson point process. They also
considered that the velocity of the moving boundaries
was constant and was the same at every point of the

moving boundaries. Based on these assumptions, two
exact analytical expressions could be obtained. In both
cases, one assumed that the new phase grows with
a spherical shape and constant velocity, G, but with
different nucleation conditions. In the first of these,
the nucleation is supposed to be site- saturated, which
means that all possible nucleation sites are exhausted at
the very beginning of the reaction. One often describes
this by saying that all nuclei are already present at
t = 0. If the number of nuclei per unit of volume is NV ,
then the volume fraction transformed, VV , is

VV (t) = 1− exp

(
−
4π

3
NVG

3t3
)

whereas for a constant nucleation rate per unit of
volume, IV ,

VV (t) = 1− exp
(
−

π

3
IVG

3t4
)

.

Subsequent work generalized both the distribution
of the nuclei in space (Rios and Villa, 2009;
Villa and Rios, 2009; 2010; 2011), and the time-
dependence of the growth velocity (Vandermeer et al.,
1991). Still, the key assumption about the velocity
made in the work of JMAK remained the same;
namely, that the velocity of the moving boundary
at a particular point in time was the same at all
points of the moving boundaries. This condition
is slightly relaxed when the growth model is
assumed to be shape-preserving, for instance the
growing regions are ellipsoids of invariant shape
(Vandermeer et al., 1991; Rios and Villa, 2009). More
general growth models admitting different velocities
for different boundary points can be obtained by
assuming space-and-time dependent velocity G =
G(t,x) (e.g., see Capasso et al., 2003; Burger et al.,
2002; Capasso and Villa, 2007b; Villa, 2008 and

references therein). In all the mentioned models the
growth velocity field is assumed to be deterministic;
such an assumption is possibly a good approximation
for certain practical cases, whereas for others the
boundary velocity may not reasonably be thought
to be neither deterministic nor to be the same for
each grain. As an example, suppose that spherical
regions nucleate at uniform randomly located nuclei.
Suppose further that their growth is controlled by the
diffusion of an alloying element in the untransformed
region. One concrete case would be the nucleation
and growth of ferrite from austenite in an iron-carbon
alloy. Ferrite has virtually no carbon and, as it grows,
carbon must diffuse away from the moving ferrite-
austenite interface. Eventually, carbon diffusion fields
in the austenite around adjacent a growing ferrite
region must overlap. This overlapping will obviously
change the velocity of the moving boundaries. Because
interparticle distance is random it is reasonable to
infer that when overlapping starts to take place
each growing ferrite region should have it is own
distinct velocity. In the situation of growing ferrite just
described, it is qualitatively reasonable and intuitive to
expect a deviation from JMAK’s velocity assumption.
Unfortunately, it is not so easy to assess whether or
not such an effect might be quantitatively important.
One of the strong reasons for this is that measuring
the boundary velocity of individually growing grains
presents a significant challenge.

Juul Jensen and her group at RISØ
laboratories, e.g., Lauridsen et al. (2003), developed
a methodology, which can non-destructively measure
the growth kinetics of individual bulk grains in
situ by 3-dimensional synchrotron X-ray diffraction
(3DXRD) microscopy. Juul Jensen and coworkers
applied those techniques mainly to determine the
growth velocity of individual grains during the
recrystallization of pure aluminum. In a recent
paper, Juul Jensen and Godiksen (2008) reviewed
their experimental measures of growth velocities
of individual grains obtained by neutron and 3-
dimensional synchrotron X-ray methods. They
concluded that there is compelling evidence to support
that “every single grain has its own kinetics different
from the other grains” (Juul Jensen and Godiksen,
2008). In order to model such a situation, Juul Jensen
and Godiksen emphasize that it is necessary to assume
that there is a continuous distribution of growth
velocities (Juul Jensen et al., 2002; Godiksen et al.,
2007).

Nonetheless, in spite of this experimental evidence
very few papers deal with this problem theoretically.
Godiksen et al. (2007) approached this problem using
computer simulation. Juul Jensen et al. (2002) derived
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an analytical expression for the volume fraction
transformed for the case in which nucleation was site-
saturated.

In this paper, we obtain general analytical solutions
to the nucleation and growth model considering that
there is a probability distribution of growth velocities
of the grains. We published a preliminary version of
this work (Rios and Villa, 2011), in which we focused
on particular cases of practical interest. In this paper
we present a more detailed theoretical mathematical
treatment covering several and more general cases.
Namely, we consider the cases in which the velocity
of each grain is

– random but constant in time

– random and time-dependent

– random dependent on the spatial location of the
corresponding nucleus,

both in the case of site-saturation and in the
case of time dependent nucleation. It is worthy
of note that even though we have been motivated
by the observations of recrystallization behavior
(Juul Jensen and Godiksen, 2008) the present results
may be applied quite generally to birth-and-growth
processes. Also for this reason, throughout the paper
we provide explicit expressions for arbitrarily integer
dimension d, so that the 2D and 3D case usually
considered in materials science applications follow as
particular cases.

MATHEMATICAL BACKGROUND

AND BASIC NOTATION

Detailed mathematical background may be found
in previous work by the authors Rios and Villa (2009)
and Capasso and Villa (2007a;b); in particular we
refer to our recent paper (Villa and Rios, 2011) for
basic definitions. Here only some essential definitions
and some useful relationships will be presented to
make this paper more self contained and easier to
read. For a brief description of homogeneous and
inhomogeneous Poisson point process, the reader is
referred to Rios and Villa (2009) or for a more detailed
presentation to specific texts on stochastic geometry
(Stoyan et al., 1995).

MODELLING BIRTH-AND-GROWTH

PROCESSES

A birth-and-growth (stochastic) process is a
dynamic germ-grain model (Stoyan et al., 1995), used
to model situations in which nuclei (germs) are born

in time and are located in space randomly, and each
nucleus generates a grain evolving in time according
with a given growth law. Since, in general, nucleation
and growth are random in time and space, then the
transformed region Θt at any time t > 0 is a random
set (Stoyan et al., 1995) in R

d , that is a measurable
map from a probability space (Ω,F,P) to the space of
closed subsets in R

d ; namely

Θt : (Ω,F,P) −→ (F,σF) ,

where F denotes the class of the closed subsets in R
d ,

and σF is the σ -algebra generated by the so called Fell
topology, or hit-or-miss topology, that is the topology
generated by the set system

{FG : G ∈ G } ∪ {FC :C ∈ C } ,

where G andC are the system of the open and compact
subsets of R

d , respectively (e.g., see Matheron,
1975; Schneider and Weil, 2008). The family {Θt}t
is called birth-and-growth process. Birth-and-growth
and nucleation and growth will be used as synonyms
in this paper. Of course, different kinds of nucleation
and growth models gives rise to different kinds of
processes {Θt}t . As mentioned in the Introduction,
we shall consider two kinds of nucleation of interest
in recrystallization; the first one is that of site-

saturation, in which all nucleation sites are exhausted
at the beginning of the reaction, the second one is
that of time-dependent nucleation, in which nuclei
can be born randomly both in space and time.
Site-saturated nucleation processes and space-time
dependent nucleation processes can be modeled
by point processes and marked point processes,
respectively. We give here some basic concepts and
definitions useful for the sequel. (See also, for instance,
Rios and Villa, 2009, Sec. 2.3.) Throughout the paper
BX denotes the Borel σ -algebra of any space X .
We remind that a point process in R

d is an almost
surely locally finite sequence of points, say N =
{Xi}i, randomly located in R

d , according with a given
probability law. Equivalently, it can be seen also as a
counting measure as well, so defined

N(A) := number of the Xi’s, which belong to A,

for any A ∈ B
Rd . Therefore a point process N can be

interpreted both as a random sequence of points and as
a counting measure; this is the reason why the same
notation N is commonly used. Then, denoted by Xi the
spatial location of the j-th nucleus of a site-saturated
nucleation process, and by Θt(X j) the grain obtained
as the evolution up to time t > 0 of the nucleus X j, the
transformed region Θt at time t > 0 is

Θt =
⋃

j

Θt(X j) .
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Given a complete separable metric space K, a marked
point process in R+×K is a sequence N := {(Ti,Ki)}i
of points in R+ ×K such that the sequence {Ti}i is a
point process in R+, while each Ki ∈K is said to be the
mark associated to the point Ti.K is calledmark space.
Then, a space-time nucleation process can be modeled
by a marked point process, identifying Ti as the time of
birth of the i-th nucleus, and Xi as its spatial location in
R
d . Analogously to the site-saturation case, a counting

process N on R+×R
d can be defined as

N([s, t]×A′) := number of nuclei, which are born

in A′ during the time interval [s, t].

By denoting Θt
Tj

(X j) the grain obtained as the

evolution up to time t ≥ Tj of the nucleus born at time
Tj in X j, then the transformed region Θt at time t > 0
is given by

Θt =
⋃

Tj≤t

Θt
Tj

(X j) .

Of course a site saturated process may be seen as a
particular case of the time-dependent one by assuming
Tj ≡ 0 for any j.

Given a point process N on R
d , the measure

Λ(A) := E[N(A)] for all A ∈ B
Rd is called intensity

measure of N; whereas, if N is a marked point process
process in R+ ×K, then its intensity measure Λ is
the measure on R+ ×K defined as Λ(A) := E[N(A)]
for all A ∈ BR+×BK. In other words, if N is a site-
saturated nucleation process, then Λ(A) represents the
mean number of nuclei born in A ⊂ R

d ; whereas if
N = (Tj,X j) j is a time-dependent nucleation process,

then Λ([s, t] × A′) is the mean number of nuclei
born in A′ during a time interval [s, t]. If the
marks are independent and identically distributed, and
independent of the unmarked point process {Ti}i, then
the common probability distribution, say Q, of the
marks is called mark distribution, the process N is said
to be an independent marking of {Ti}i, and Λ is of
the type Λ(d(s,y)) = λ (ds)Q(dy). We mention that the
notion of marked point process will be useful in the
sequel for modelling also birth-and-growth processes
whose nucleation process is site-saturated and the
growth velocity of each grain is a random quantity,
which can be described as a mark associated to the
corresponding nucleus. In this paper we shall assume
Poissonian nucleation, that is N will be a (marked)
Poisson process.

In order to define a birth-and-growth process we
need to introduce also a growth model. Models of
volume growth have been studied extensively, since the
pioneering work by Kolmogorov (1937). We consider
here a simple case of the so-called normal growth

model (see also, e.g., Capasso and Villa, 2007b; Villa,
2010b and references therein); namely, we shall
consider the case in which all the grains develop with
random velocity G constant in time or time dependent,
so that for any time t all the grains have spherical shape
(this is due to the fact that G is not space-dependent).

MEAN DENSITIES ASSOCIATED TO

A BIRTH-AND-GROWTH PROCESS

Since Θt is a random set, it gives rise to a random
measure νd(Θt ∩·) in R

d for all t > 0 , having denoted
by νd the d-dimensional Lebesgue measure in R

d .
In particular, it is of interest to consider the expected

volume measure E[νd(Θt ∩ ·)] and its density (i.e.,
its Radon-Nikodym derivative), called mean volume

density of Θt and denoted by VV , provided it exists:

E[νd(Θt ∩A)] =
∫

A
VV (t,x)dx , ∀A ∈ B

Rd . (1)

It is well known and easy to prove that

VV (t,x) = P(x ∈ Θt) , for νd-a.e. x ∈ R
d . (2)

Whenever A is the region of the physical sample under
observation, the ratio

VV(t,A) :=

∫
AVV (t,x)dx

νd(A)

is also called volume fraction. Let us notice that
whenever VV is independent of x (e.g., under
assumptions of homogeneous nucleation and growth),
then VV is independent of A and VV(t) = VV (t)
(Rios and Villa, 2009; Stoyan et al., 1995, p. 342). We
also mention that other quantities of interest in real
applications are the so-called mean extended volume

density at time t, denoted by VE(t, ·), defined as the
density of the mean extended volume measure at time
t, E[µex

Θt ]( ·) := E[∑ j:Tj≤t νd(Θt
Tj

(X j)∩ ·)] on R
d , that

is

E[µex
Θt ](A) =

∫

A
VE(t,x)dx, ∀A ∈ B

Rd , (3)

and the mean surface density SV (t, ·) and the mean

extended surface density SE(t, ·) at time t, defined
as the density of the mean surface measure at time
t, E[µ∂Θt ]( ·) := E[H d−1(∂Θ∩ ·)] and of the mean

extended surface measure at time t, E[µex
∂Θt ]( ·) :=

E[∑ j:Tj≤t H
d−1(∂Θt

Tj
(X j) ∩ ·)], respectively, where

H d−1 is the (d− 1)-dimensional Hausdorff measure.
In other words, the mean extended volume and surface
measures represent the mean of the sum of the volume
measures and of the surface measures of the grains
which are born and grown until time t, supposed free

to grow, ignoring overlapping (Rios and Villa, 2009;
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Villa, 2008). It is clear that to find out formulas for the
mean volume density VV (and so for VV and the other
quantities we mentioned above, as a consequence) is
of particular interest in real applications.

CAUSAL CONE

The causal cone notion plays, together with Eq. 2,
a fundamental role in evaluating the mean volume
density VV (t,x) of Θt at a point x. We recall the
following definition (Kolmogorov, 1937):

Definition 1 (Causal cone) If N is a nucleation

process on a suitable space X , then the causal cone

C (t,x) of a point x at time t is the subset ofX in which

at least one nucleation event has to take place in order

to cover the point x at time t.

Explicit expressions for the causal cone will be
provided throughout the paper in relation with the
different kinds of birth-and-growth processes we are
going to consider. In order to give a first more intuitive
notion of the causal cone, let us consider the very
particular case of site-saturation with constant growth
velocity of the grains G; in this case, a point x will be
transformed at time t if at least one nucleus is born in
the ball with radius R=Gt centred in x, therefore such
a ball is the causal cone C (t,x) of the point x at time t
in this case.

PARTICULAR CASE: DETERMINISTIC

SPACE-INDEPENDENT VELOCITY

We briefly recall the well known results for the
mean densities of a birth-and-growth process Θt with
normal growth model in the case in which the velocity
of each grain is assumed to be deterministic and space-
independent. Throughout the paper Br(x) denotes the
ball centred in x with radius r. So, let N be the
nucleation process with intensity measure Λ, and G =
G(t) be the growth velocity of each grain at any time
t; then it is clear that at any time t each grain has
spherical shape, namely

Θt(X j) = BR(t)(X j) , R(t) =
∫ t

0
G(τ)dτ ,

in the site-saturated nucleation case, and

Θt
Tj

(X j) = BR(Tj,t)(X j) , R(Tj, t) =
∫ t

Tj

G(τ)dτ ,

in the time-dependent nucleation case. As a
consequence, by Eq. 2 and the definition of the causal
cone, it follows that

VV (t,x) = P(N(C (t,x)) > 0) ,

where

C (t,x) := {y ∈ R
d : x ∈ BR(t)(y)} = BR(t)(x)

in the site-saturated case, and

C (t,x) := {(s,y) ∈ [0, t]× R
d : x ∈ BR(s,t)(y)}

= {(s,y) ∈ [0, t]× R
d : y ∈ BR(s,t)(x)}

in the time-dependent case (Rios and Villa, 2009, Sec
2.4).

Fig. 1. A geometric interpretation of the causal cone

C (t,x) of a point x ∈ R
d at time t, in the time-

dependent nucleation case, assuming G constant. The

vertical and horizontal axis represent the spaceR
d and

the time, respectively. Note that for any s ∈ [0, t], the
section of the causal cone is the set of points in R

d

where a nucleation event has to take place in order to

cover the point x at time t; so, in this case, it is the ball

centred in x with radius G(t− s).

Moreover, we recall that (Villa, 2008)

VE(t,x) = Λ(C (t,x)) , (4)

and that

G(t) =
1

SV (t,x)

∂VV (t,x)

∂ t
=

1

SE(t,x)

∂VE(t,x)

∂ t
, (5)

finally, under Poissonian assumption on the nucleation
process it holds (Schneider and Weil, 2008, Eq. 11.12,
and references therein),

VV (t,x) = 1− e−VE (t,x), (6)

and

SV (t,x) = (1−VV (t,x))SE(t,x) . (7)
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RANDOM VELOCITY IN THE SITE-

SATURATED CASE

In this section we consider the case in which all
nucleation sites are exhausted at the beginning of the
reaction (site-saturation) and the growth velocity of
the grains is random; in particular we consider three
different cases of interest:

1. the velocity Gi associated to the grain with nucleus
Xi is constant during the reaction, but random;

2. the velocity Gi associated to the grain with nucleus
Xi is random and time dependent;

3. the velocity Gi associated to the grain with nucleus
Xi is constant during the reaction, but random with
probability distribution dependent on the specific
location of the nucleus.

In all of the three above mentioned cases, we assume
that the point process {X j} j describing the spatial
location of the nuclei is an inhomogeneous Poisson
point process in R

d with intensity λ (x). Our aim is to
find out general results for the mean densities of the
transformed region Θt , reobtaining the known above
mentioned results (Eqs. 4, 5, 6 and 7) when the velocity
is not random, as particular case.

RANDOM CONSTANT VELOCITY

Assumptions: each grain develops with random
velocity constant in time during the reaction; different
grains may have different velocity. The velocity Gi

associated to the grain with nucleus Xi has a probability
distribution Q, independent on the spatial location of
the nucleus, such that E[Gd] < ∞.

Therefore we may consider the velocity associated
to the nucleus Xi as a mark of the point Xi, and model
such a birth-and-growth process by a marked Poisson
point process N = {Xi,Gi}i in R

d with pairwise
independent marks in R+, with mark distribution Q.
Thus the intensity measure Λ of the nucleation process
N is of the type

Λ(d(x,ξ )) = λ (x)dxQ(dξ ) , (8)

while the transformed region Θt at time t is given by

Θt =
⋃

(Xi,Gi)∈Φ

BGit(Xi) .

We start to prove that Eq. 4 and Eq. 6 hold also in
this setting. Let us notice that, by definition, the causal
cone C (t,x) of a point x ∈ R

d at time t will be now the
set of all the pairs (y,ξ ) ∈ R

d ×R+, such that a grain
born at point y that grows with velocity ξ covers the

point x at time t; it is worthy of note that in contrast
with the causal cone shown in Fig. 1, the visualization
of such a causal cone is difficult.

The results stated in the next theorem can be easily
derived by the well known theory for inhomogeneous
Boolean models with spherical grains (Fallert, 1996;
Schneider and Weil, 2008); we give here a sketch of
the proof for a non-expert reader’s convenience.

Theorem 2 Under the above assumptions, Eqs. 4 and

6 hold with

C (t,x) = {(y,ξ ) ∈ R
d ×R+ : y ∈ Bξ t(x)} . (9)

Sketch of the proof. By definition

C (t,x) := {(y,ξ ) ∈ R
d ×R+ : x ∈ Bξ t(y)} = Eq. 9,

and so, being N a Poisson process, it follows that

VV (t,x) = 1− exp{−Λ(C (t,x))}

= 1− exp
{
−

∫

R+

∫

Bξ t(x)
λ (y)dyQ(dξ )

}
.

(10)

By the definition (Eq. 3) of VE , and by the application
of the Campbell’s formula (Baddeley et al., 2007),

∫

A
VE(t,x)dx =

∫

R+

∫

Rd
νd(Bξ t(y)∩A))λ (y)dyQ(dξ )

for any A ∈ B
Rd . By applying Fubini’s theorem and a

suitable change of variable, we get

∫

A
VE(t,x)dx

=
∫

R+

∫

Rd
λ (y)

(∫

Rd
1Bξ t(y)

(x)1A(x)dx
)
dyQ(dξ )

Eq. 10
=

∫

A
Λ(C (t,x))dx

for any A ∈ B
Rd , and so the assertion. ¤

Similarly, we may find out an explicit formula for
the mean extended surface density SE .

Theorem 3 Under the above assumptions, it follows

that

SE(t,x) =
∫

R+

∫

∂Bξ t(z)
λ (y)H d−1(dy)Q(dξ ) . (11)
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Proof. By proceeding along the same lines of the
previous theorem, by the definition of SE , and by the
application of the Campbell’s formula, the following
chain of equalities holds for any A ∈ B

Rd :

∫

A
SE(t,x)dx

:= E[ ∑
(Xi,Gi)∈N

H
d−1(∂BGit(Xi)∩A)]

=
∫

R+

∫

Rd
H

d−1(∂Bξ t(y)∩A))λ (y)dyQ(dξ )

=
∫

R+

∫

Rd
λ (y)

(∫

Rd
1∂Bξ t(y)

(x)1A(x)H
d−1(dx)

)
dyQ(dξ )

=
∫

R+

∫

Rd

∫

Rd
λ (z− s)

1∂Bξ t(0)
(s)1A(z)H

d−1(ds)dzQ(dξ )

=
∫

A

(∫

R+

∫

∂Bξ t(z)
λ (w)H d−1(dw)Q(dξ )

)
dz

and so the assertion. ¤

We want now to provide a result about the overall

velocity G := 1
SV (t,x)

∂
∂ tVV (t,x) of the process; we

expect to reobtain G = G > 0 in the particular case
in which G is deterministic, according with Eq. 5.

We recall that a function f : R
d → R is said to be

harmonic if it is twice continuously differentiable and
it satisfies the Laplace’s equation ∑d

i=1 ∂ 2 f/∂x2i = 0.
Note that, in particular, if the nucleation process is
homogeneous in space, then λ (x)≡ λ > 0 is harmonic.

Corollary 4 Under the above assumptions, if λ is a

non-negative harmonic function in the spatial region

where the nucleation takes place, then the Eqs. 4 and

11 simplify as follows:

VE(t,x) = λ (x)bdt
d
E[Gd] , (12)

SE(t,x) = λ (x)dbdt
d−1

E[Gd−1] , (13)

where bd is the volume of the unit ball in R
d . Moreover,

∂

∂ t
VE(t,x) =

E[Gd]

E[Gd−1]
SE(t,x) . (14)

Proof. In order to obtain Eqs. 12 and 13, it is sufficient
to remind that for any harmonic function f in R

d it
holds
∫

BR(x)
f (y)dy= f (x)νd(BR(0))= f (x)bdR

d, ∀R≥ 0,

and

∫

∂BR(x)
f (y)H d−1(dy) = f (x)dbdR

d−1, ∀R≥ 0 ,

and then to apply this to the expressions for VE and SV
given in the theorems above. Eq. 14 directly follows by
Eqs. 12 and 13. ¤

For sake of simplicity, we assume in the next
theorem that the intensity λ of the point process
driving the spatial location of the nuclei is bounded and
continuous; such an assumption is usually satisfied in
real applications. We point out that the validity of Eq. 7
stated in the theorem below, may be derived by the
result proved in Schneider and Weil (2008, Theorem
11.1.3); nevertheless, the proof provided there requires
notions (e.g., specific intrinsic volumes and mixed
measures) which might be difficult to understand for
a non-expert reader. So we give here a sketch of an
alternative proof, which might be appear a bit more
intuitive.

Theorem 5 Under the above assumptions, if the

intensity λ is bounded and continuous, Eq. 7 still

holds; moreover if λ is harmonic in the spatial region

where the nucleation takes place, then it holds

∂

∂ t
VV (t,x) =

E[Gd]

E[Gd−1]
SV (t,x) . (15)

Sketch of the proof. By the general results on
the mean density of inhomogeneous Boolean models
proved in Villa (2010a) (in particular by applying
here Theorem 3.9, observing that the grains of the
transformed region Θt are balls for any t > 0, and
so the H d−1-measure of the topological boundary
of Θt equals the H d−1-measure of its the essential
boundary), we can claim that

SV (t,x) = lim
r↓0

P(x ∈ Θt
⊕r \Θt)

r
, (16)

where Θt
⊕r := {x ∈ R

d : dist(x,Θt)≤ r} is the parallel
set of Θt at distance r. Let us notice that

Θt
⊕r =

⋃

(Xi,Gi)∈N

BGit+r(Xi) ,

and denote by Dr the subset of R
d ×R+ so defined:

Dr := {(y,ξ ) ∈ R
d ×R+ : x ∈ Bξ t+r(y)} .
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We may observe that

P(x ∈ Θt
⊕r \Θt)

= P({N(Dr) > 0}∩{N(C (t,x)) = 0})

= P(N({(y,ξ ) : y ∈ Bξ t+r(x)\Bξ t(x)}) > 0)

·P(N(C (t,x)) = 0)

=
(
1− exp

{
−

∫

R+

∫

Bξ t+r(x)\Bξ t(x)
λ (y)dyQ(dξ )

})

· (1−VV (t,x)) , (17)

where the last two equations follow by the assumption
the N is a Poisson point process. By applying Villa
(2010a, Theorem 3.5b) to the measure µ(dx) :=
λ (x)dx, we get that

lim
r↓0

1

r

∫

Bξ t+r(x)\Bξ t(x)
λ (y)dy

=
∫

∂Bξ t(x)
λ (y)H d−1(dy) , (18)

by denoting now λ̄ := maxx∈Rd λ (x), we observe that

1

r

∫

Bξ t+r(x)\Bξ t(x)
λ (y)dy≤ λ̄bdd(ξ t+1)d−1, ∀r≤ 1 ,

and ∫

R+

λ̄bdd(ξ t+1)d−1Q(dξ ) < ∞ ,

being E[Gd] < ∞ by assumption. Therefore, by
applying the dominated convergence theorem, we can
exchange limit and integral in Eq. 19, and so we get

lim
r→0

1− exp
{
−

∫

R+

∫

Bξ t+r(x)\Bξ t(x)
λ (y)dyQ(dξ )

}

r

= lim
r→0

∫

R+

∫

Bξ t+r(x)\Bξ t(x)
λ (y)dyQ(dξ )

r
(19)

=
∫

R+

∫

∂Bξ t(x)
λ (y)H d−1(dy)Q(dξ )

Eq. 11
= SE(t,x) .

(20)

By Eqs. 16, 17 and 20 we obtain Eq.7. Finally, Eq.15
can be obtained as follows:

∂

∂ t
VV (t,x)

Eq. 6
= (1−VV (t,x))

∂

∂ t
VE(t,x)

Eq. 14
= (1−VV (t,x))

E[Gd]

E[Gd−1]
SE(t,x)

Eq. 7
=

E[Gd]

E[Gd−1]
SV (t,x) .

¤

Therefore, in the case the intensity λ is harmonic,
the overall velocity G is given by E[Gd]/E[Gd−1];
moreover we note that Eqs. 14 and 15 may be seen as a
generalization of Eq. 5 in the case of time-independent
velocity, because in the particular case of deterministic
velocity E[Gd]/E[Gd−1] = G.

Remark 6 By assumption, G is a nonnegative

random variable with probability distribution Q,

and so E[Gd] =
∫
R+

ξ dQ(dξ ), whereas E[Gd−1] =
∫
R+

ξ d−1Q(dξ ). Therefore, if we denote by G̃

the nonnegative random variable with probability

distribution

g(ξ )dξ :=
ξ d−1Q(dξ )∫

R+
ξ d−1Q(dξ )

,

then E[G̃] = E[Gd]/E[Gd−1], so that Eqs. 14 and 15

can be written in terms of G̃ as follows

E[G̃] =
1

SE(t,x)

∂

∂ t
VE(t,x) =

1

SV (t,x)

∂

∂ t
VV (t,x) ,

and so the overall velocity is given by G = E[G̃].

Example Let the assumptions of Theorem 2 be
satisfied, with λ harmonic in the spatial region where
the nucleation takes place. Then by 6 and 12 we
get the following explicit expressions for the mean
volume density VV (t,x) in a few cases of interest for
applications:

– if G is uniformly distributed in [0,K], then

VV (t,x) = 1− exp
{
−

λ (x)bd
d+1

Kdtd
}

– if G is Exponential with expected value c > 0 (i.e.,

Q(dξ ) = 1
c
e−ξ/cdξ ), then

VV (t,x) = 1− exp{−λ (x)bdt
dcdd!}

– if G is a discrete random variable with P(G =
Gi) = pi, pi ∈ [0,1], ∑i pi = 1, then

VV (t,x) = 1− exp
{
−λ (x)bdt

d ∑
i

Gd
i pi

}
.

Explicit expressions for the other mean densities
SV , VE and SE can be obtained similarly.
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RANDOM TIME-DEPENDENT VELOCITY

Assumptions: each grain develops with random
time-dependent velocity during the reaction, of the
type:

G(t) = G0g(t,α) , (21)

where G0 is a non-negative random variable and g is
a non-negative function depending on time and on a
random vector parameter α in R

n. We assume that G0

and α are independent on the spatial location of the
nucleus of the associated grain, with joint probability
distribution Q(d(ξ ,a)) on R+×R

n.

Even in this case, different grains may have
different velocity, and we may model such a birth-
and-growth process by a marked Poisson point process
N = {Xi,(Gi,αi)}i in R

d with independent marking in
R+×R

n, with mark distribution Q. Then, the intensity
measure Λ of the nucleation process N is of the type

Λ(d(y,ξ ,a)) = λ (y)dyQ(d(ξ ,a)) (22)

while the transformed region Θt at time t is given by

Θt =
⋃

(Xi,(Gi,αi))∈N

BRi(t)(Xi) ,

with Ri(t) := Gi

∫ t
0 g(τ,αi)dτ .

By observing that the causal cone is now given by

C (t,x) := {(y,ξ ,a) ∈ R
d ×R+×R

n : x ∈ BR(t)(y)}

with R(t) := ξ
∫ t
0 g(τ,a)dτ , and by proceeding along

the same lines of the previous section, it can be proved
that Eqs.6, 4 and 7 still hold with

Λ(C (t,x)) =
∫

R+×Rn

∫

BR(t)(x)
λ (y)dyQ(d(ξ ,a)) ,

and SE is now given by

SE(t,x)=
∫

R+×Rn

∫

∂BR(t)(x)
λ (y)H d−1(dy)Q(d(ξ ,a)) ,

(provided, of course, that the above integrals exists
finite).

Corollary 7 If λ is a non-negative harmonic function

in the spatial region where the nucleation takes place,

and if G0 and α are independent with probability

distribution Q1 and Q2, respectively, then the above

equations simplify as follows:

VE(t,x) = Λ(C (t,x))

= λ (x)bdE[Gd
0]E

[(∫ t

0
g(τ,α)dτ

)d]
, (23)

SE(t,x) = λ (x)dbdE[Gd−1
0 ]E

[(∫ t

0
g(τ,α)dτ

)d−1]
.

Example By the above general results, we
can now reobtain as particular cases some known
expressions for the mean densities considered in
literature in facing certain problems of applicative
interest. For instance, in the analytical work by
Juul Jensen et al. (2002) and in the computer
simulations in Godiksen et al. (2007), the 3D case is
considered, with λ (x) = λ constant and G(t) of the
type Eq. 21 with

g(t,α) = (1−α)t−α ,

and so the radius of the grain at time t with
nucleus Xi is given by Ri(t) = Git

1−αi . In particular
Godiksen et al. (2007) simulate two cases: in the first
one they assume α = 0 (such a case coincides with
the random constant velocity case discussed in the
previous section); in the second one they assume
deterministic G0 ≡ 1 and α random with distribution
uniform in [0,1] or with distribution Beta(a,b). Of
course, we can handle and generalise these cases
easily; in particular, assuming also G0 random and λ
non-constant harmonic function, Eq. 23 becomes in the
3D case:

VE(t,x) =
4

3
πλ (x)E[G3

0]E[t3(1−α)] ,

so that we get

VV (t,x) = 1− exp
{
−λ (x)

4

3
πE[G3

0]
∫ 1

0
t3(1−z)dz

}
,

(24)
when α ∼U [0,1], and

VV (t,x) = 1− exp
{
−λ (x)

4

3
πE[G3

0]

∫ 1

0
t3−3y Γ(a+b)

Γ(a)Γ(b)
ya−1(1− y)b−1dy

}
, (25)

when α ∼ Beta(a,b). (See also Rios and Villa, 2011
for a more exhaustive discussion about this.)

RANDOM CONSTANT POSITION-

DEPENDENT VELOCITY

Assumptions: each grain develops with random
velocity constant in time during the reaction, whose
probability distribution depends on the spatial position
of the corresponding nucleus.

We may model the nucleation process by a position
dependent marked Poisson point process with intensity

Λ(d(x,ξ )) = λ (x)dxQ(x,dξ ) .
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Fig. 2. The straight line without any symbols on it

corresponds to the KJMA kinetics for a constant, non-

random velocity. The symbols correspond to Godiksen

et al. simulated data and the solid lines correspond

to the theoretical result and were calculated using a

uniform distribution, Eq. 24: (•) and using a Beta

distribution, Eq. 25: (¤), for different values of a and

b. There is, as expected, excellent agreement between

simulation and analytical solution.

Note that now Q(y,dξ ) represents the probability
distribution of G given that the associated nucleus is
born in y. Of course, the case discussed in the previous
section “Random constant velocity” can be seen now
as a particular case. By proceeding along the same
lines as before, Eqs. 6, 4 and 7 still hold now with the
causal cone given by

C (t,x) : {(y,ξ ) ∈ R
d ×R+ : x ∈ Bξ t(y)}

= {(y,ξ ) ∈ R
d ×R+ : ξ ≥ dist(y,x)/t} ,

and so

VE(t,x) = Λ(C (t,x)) =
∫

Rd

(∫ ∞

dist(y,x)/t
Q(y,dξ )

)
λ (y)dy . (26)

As we can see, such a case could be more difficult
to handle because the evaluation of the integral above
might be quite hard.

Example Let us consider the case Q(y,dξ ) :=
1
y1
1[0,y1](ξ )dξ , i.e., G(y) ∼U [0,y1]; then

VV (t,x)
Eq. 26
=

1− exp
{
−

∫

{y∈Rd :
dist(y,x)

t ≤y1}

y1−dist(y,x)/t

y1
λ (y)dy

}
.

Particular case: position-dependent

deterministic velocity

Let us assume that each grain grows with constant
velocity, depending on the spatial location of the
corresponding nucleus, i.e., the velocity Gi associated
to a grain with nucleus in Xi ∈ R

d is equal to f (Xi),
where f is a given function from R

d to R+. It follows
that the transformed region Θt at time t is the union of
balls with random centres of the type:

Θt =
⋃

Xi∈N

B f (Xi)t(Xi) ,

where N is a Poisson nucleation process in R
d with

intensity λ .

This model can be seen as a particular case of the
previous one, with

Q(y,dξ ) := δ f (y)(ξ )dξ ,

where δ f (y) is the Dirac delta function in f (y). Thus,
by denoting

A(x, t) = {y ∈ R
d : f (y)t ≥ dist(y,x)} ,

Eq. 26 simplifies as follows:

VE(t,x) =
∫

A(x,t)
λ (y)dy .

Since the nucleation process is Poissonian we still have
VV (t,x) = 1− exp{−VE(t,x)}.

Note that, under homogeneous nucleation with
λ (x) ≡ λ , we have VV (t,x) = 1 − exp{−λνd(A)},
so that only the volume of the set A(x, t) has
to be evaluated; explicitly, for practical purposes

in the 3D case A =
{

(y1,y2,y3) ∈ R
3 : f (y)t ≥

√
(y1− x1)2 +(y2− x2)2 +(y3− x3)2

}
.

RANDOM VELOCITY IN THE

TIME-DEPENDENT CASE

In this section we consider the case in which the
nucleation takes place randomly both in time and
space, and the growth velocity of the grains is random.

In the site-saturated case we modelled the random
velocity of a certain grain as a mark of the
corresponding nucleus, and so by modelling the
nucleation process as a marked Poisson point process.
Analogously, we shall add a further mark to the
nucleation process {Ti,Xi}, by marking the point
process {Ti}i in R+ of the birth-times of the nuclei
with marks representing the spatial location of the
nucleus and the velocity of the corresponding grains.
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It is intuitive that arguments and results are similar to
those of the previous section; difficulties in the time-
dependent case might be arise in evaluation of the
involved integrals. We shall discuss the three cases of
interest studied in the site-saturated case.

We assume that the point process {Ti}i describing
the birth time of the nuclei is an inhomogeneous
Poisson point process in R+ with intensity λ (s). We
also assume independent marking of {Ti}i, that is the
intensity measure of the marked point process is of the
type Λ(d(s,k)) = λ (s)dsQ(dk), where Q is the mark
distribution, i.e., a probability measure on the mark
space.

RANDOM CONSTANT POSITION-

DEPENDENT VELOCITY

Assumptions: each grain develops with random
velocity, constant in time during the reaction. The
velocity Gi associated to the grain born at time Ti at
point Xi is in general dependent on the spatial location
Xi. We denote by Q(d(y,ξ )) the joint probability law
of (Xi,Gi).

Therefore we may consider the spatial location
Xi and the velocity Gi associated to the birth-time Ti
as marks of Ti, and model such a birth-and-growth
process by a Poisson point process N = {(Ti,(Xi,Gi))}
in R+ with marks in R

d × R+, having intensity
measure

Λ(ds,d(y,ξ ) = λ (s)dsQ(d(y,ξ )) .

Note that Q(d(y,ξ )) represents the probability that
any nucleus is born in the infinitesimal region dy and
the growth velocity of the associated grain is in the
infinitesimal interval dξ . So, by giving a suitable joint
probabilityQwe can easily handle the case of position-
dependent velocity.

It follows that the transformed region Θt at time t
is given by

Θt =
⋃

(Ti,(Xi,Gi))∈N

BGi(t−Ti)(Xi) ,

so that the causal cone of any point x ∈ R
d at time

t ∈ R+ is now the subset of R+×R
d ×R+ so defined

C (t,x)= {(s,(y,ξ ))∈R+×R
d×R+ : y∈Bξ (t−s)(x)} .

Again we have that

VV (t,x) = 1− exp{−VE(t,x))} ,

with

VE(t,x)) = Λ(C (t,x))

=
∫ t

0
λ (s)

(∫

R+

∫

Bξ (t−s)(x)
Q(d(y,ξ ))

)
ds .

(27)

Remark 8 (Position-independent velocity) In case

Gi and Xi are independent, then the mark distribution

factorizes as Q(d(y,ξ )) = QX(dx)QG(dξ ), having

denoted by QX and QG the probability distribution

of the random location X of the nuclei and of the

velocity G, respectively, and so the intensity measure

Λ of the process is of the type Λ(ds,d(y,ξ )) =
λ (s)dsQX(dy)QG(dξ ).

In some applications it is of interest to evaluate the

mean volume density VV in the centre of the specimen;

note that in the particular case in which the nucleation

is homogenous in time (i.e., λ (s) ≡ λ > 0), the nuclei
are uniformly located in a compact window [−M,M]d

and G is bounded, say G≤ K ∈ R+, then by Eq. 27 we

get:

VE(t,0) =
λbdt

d+1

2dMd(d+1)
E[Gd] , ∀t ∈ [0,M/K] .

(28)

Example Under the above assumptions, we get
the following explicit expressions for the mean
volume density VV (t,x) in some cases of interests for
applications:

– if the velocity G and the spatial location X of
the nuclei are independent, with G ∼U(0,K) and
X ∼U([−M,M]d), then

Q(d(y,ξ )) =
1

2dMdK
1[−M,M]d (y)1[0,K](ξ )dydξ ,

and so

VV (t,x) = 1− exp
{
−

1

2dMdK

∫ t

0
λ (s)

(∫ K

0
νd(Bξ (t−s)(x)∩ [−M,M]d)dξ

)
ds

}
.

If in particular λ (x) ≡ λ > 0, then the volume
density at the origin is given by

VV (t,0) = 1− exp
{
−

λbdK
dtd+1

2dMd(d+1)2

}
,

∀t ∈ [0,M/K] .

– if the velocity G and the spatial location X of the
nuclei are independent, with X ∼ U([−M,M]d)
and G discrete random variable with P(G = Gi) =
pi, pi ∈ [0,1], ∑i pi = 1, then

Q(d(y,ξ )) =
1

2dMd
1[−M,M]d (y)dy∑

i

piδGi
(ξ )dξ ,
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and so

VV (t,x) = 1− exp
{
−

1

2dMd

∫ t

0
λ (s)

(
∑
i

νd(BGi(t−s)(x)∩ [−M,M]d)pi

)
ds

}
.

If in particular λ (s) ≡ λ > 0, and if supiGi = K,
then the volume density at the origin is given by

VV (t,0) = 1− exp
{
−

λbd
2dMd

∫ t

0
∑
i

Gd
i (t− s)d pids

}

= 1− exp
{
−

λbdt
d+1

2dMd(d+1)
E[Gd]

}

∀t ∈ [0,M/K], in accordance with Eq. 28.

RANDOM TIME-DEPENDENT VELOCITY

Assumptions: each grain develops with random
time-dependent velocity during the reaction of the type
Eq. 21.

Thus we can model the nucleation process by a
marked Poisson point process N = {(Ti,(Xi,Gi,αi))}
in R+ with marks in R

d × R+ × R
n, with intensity

measure

Λ(d(s,y,ξ ,a)) = λ (s)dsQ(d(y,ξ ,a)) ,

where Q is the joint probability law of (X ,G0,α), and,
in general, with G dependent on the spatial location X

of the corresponding nucleus. The growing region Θt

at time t is given by

Θt =
⋃

(Ti,(Xi,Gi,αi))∈N:Ti≤t

BR(Ti,t)(Xi) ,

with Ri(s, t) := Gi

∫ t
Ti
g(τ,αi)dτ . It is easy to see that

Eqs 4 and 6 still hold with

VE(t,x) =
∫ t

0
λ (s)

(∫

BR(s,t)(x)×R+×Rn
Q(d(y,ξ ,a))

)
ds .

Sometimes it is needed to model nucleations such
that the birth-time and the spatial location of the nuclei
are dependent; a particular case in which they are
independent of the growth velocity of the grains can
be model by choosing an intensity measure of the type

Λ(d(s,y,ξ ,a)) = λ (s,y)dsdyQG,α(d(ξ ,a) , (29)

where QG,α is the joint distribution of G0 and α . By
proceeding along the same lines of Theorem 3 and of
Theorem 5, it is not difficult to prove that, if Λ is of

the type 29 with λ bounded and continuous, then Eq. 7
holds and

SE(t,x) =
∫ t

0

∫

R+×Rn

(∫

∂BR(s,t)(x)
λ (s,y)H d−1(dy)

)
dsQG,α(d(ξ ,a) ,

where R(s, t) = ξ
∫ t
s g(τ,a)dτ . Note that the above

assertion follows by proceeding similarly to the proof
of Theorem 5, and observing that

Θt
⊕r =

⋃

(Ti,(Xi,Gi,αi))∈Φ:Ti≤t

BRi(s,t)+r(Xi) ,

and Dr given now by Dr := {(s,y,ξ ,a) ∈ [0, t]×R
d ×

R+ × R
n : y ∈ BR(s,t)+r(x)}. If moreover λ (s, ·) is

harmonic for any s ∈ R+, then,

SE(t,x) =
∫ t

0
λ (s,x)dbd

(∫

R+×Rn
(R(s, t))d−1QG,α(d(ξ ,a))

)
ds ,

and

VE(t,x) =
∫ t

0
λ (s,x)bd

(∫

R+×Rn
(R(s, t))dQG,α(d(ξ ,a))

)
ds .

Example If the spatial location X of the nuclei,G0

and α are independent, with probability distribution
QX , QG and Qα , respectively, then

Q(d(y,ξ ,a)) = QX(dy)QG(dξ )Qα(da) ,

and so

VV (t,x) = 1− exp
{
−

∫ t

0
λ (s)

(∫

R+×R+

QX(BR(s,t)(x))QG(dξ )Qα(da)
)
ds

}
.

Let us notice that if X ∼U([−M,M]d), then

QX(BR(s,t)(x)) =
1

2dMd
νd(BR(s,t)(x)∩ [−M,M]d) ,

it follows that, in the case g(t,α) = (1−α)t−α , for
x = 0 and t sufficiently small:

νd(BR(s,t)(0)∩ [−M,M]d) = νd(BR(s,t)(0))

= bdξ d(t1−a− s1−a)d . (30)

In the next example, we further specify the
previous one, by providing some explicit expressions
in a few particular cases of interest for applications.
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Example

– Let us consider the case in which the nucleation
process takes place homogeneously in time,
uniformly in a window [−M,M]d; we also assume
that the velocity of the grains does not depend
on the birth-time and spatial position of the
corresponding nucleus, and it is of the type G(t) =
G0(1−α)t−α , with α and G0 independent of each
other and uniformly distributed in [0,1] and in
[0,K], respectively. Therefore

Λ(d(s,y,ξ ,a)) =

λ

2dMdK
1[−M,M]d (y)1[0,K](ξ )1[0,1](a)dsdydξda ,

and for x = 0 and t sufficiently small we have

VV (t,0) = 1− exp
{
−

λ

2dMdK

∫ t

0

(∫ 1

0(∫ K

0
νd(BR(s,t)(0)∩ [−M,M]d)dξ

)
da

)
ds

}

Eq. 30
= 1− exp

{
−

λbdK
d

2dMd(d+1)
∫ 1

0
t(1−a)d+1

d

∑
j=0

(
d

j

)
(−1) j

(1−a)(d− j)+1
da

}
.

– It is clear that some cases of interest in
applications (e.g., G0 or α deterministic), follow
now as particular cases. Let us consider the
very simple case in which nucleation takes place
homogeneously both in time and space, andG(t) =
G0(1− α)t−α with G0 and α independent each
other. Denoted by λ the mean number of nuclei
per unit of time and unit of volume, it follows that

VV (t,x) = 1−exp
{
−λbdE[Gd

0 ]
∫ t

0
(t1−α −s1−α)dds

}
,

if G0 is random and α is deterministic, whereas

VV (t,x)= 1−exp
{
−λbdG

d
0

∫ t

0
E[(t1−α −s1−α)d ]ds

}
,

if G0 is deterministic and α is random.

SUMMARY AND CONCLUSIONS

– General expressions were derived for the
mean volume density and the mean surface
density of birth-and-growth processes with
Poisson nucleation process and spherical grains
with distinct random velocities, modelling
recrystallization processes in materials science,

both in case of site-saturation and in case of
time-dependent nucleation. To this aim, tools
from Stochastic Geometry and recent results from
Geometric Measure Theory (namely in the proof
of Theorem 5), together with the notion of causal
cone have been used.

The general case of random growth velocity of the
grains with distribution dependent on the spatial
location of the corresponding nucleus has been
also considered.

Some particular cases of practical relevance in
applications have been discussed as examples
throughout the paper, also in connection with
previous literature.

– Specifically with regard to materials science, these
results may be used to model and/or assess the
importance of a random velocity distribution in
transformations kinetics, as opposed to assume
a non-random velocity. It is particularly useful
in the cases where the velocity is known to be
different for each grain such as in recrystallization
as experimentally demonstrated by Juul Jensen and
coworkers.

– This paper provides the mathematical basis for
the development of more general expressions to
be used in practical applications. Although the
motivation was recrystallization the expressions
derived here may be applied and extended to
nucleation and growth reactions in general.
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