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ABSTRACT

Surveillance of a seaport can be achieved by different means: radar, sonar, cameras, radio communications
and so on. Such a surveillance aims, on the one hand, to manage cargo and tanker traffic, and, on the other
hand, to prevent terrorist attacks in sensitive areas. In this paper an application to video-surveillance of a
seaport entrance is presented, and more particularly, the different steps enabling to classify mobile shapes.
This classification is based on a parameter measuring the similarity degree between the shape under study and
a set of reference shapes. The classification result describes the considered mobile in terms of shape and speed,
as speed is determined by target tracking.
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INTRODUCTION

Video-surveillance is of increasing importance in

our every-day life. For example, crime prevention

and prevalence have been initialized during the

1970s and 1980s by experiments aiming to increase

security in banks. The United Kingdom is one of

the European countries which is the most under

surveillance, and London more specifically is the best-

surveyed town. Video-surveillance has been extended

to streets, parking lots, airports (Yi and Marshall,

2000; Besada et al., 2005) and finally to every location

dealing with crowds or traffic (Reulke et al., 2007).

Being faced with such an amount of video data induces

to find automised processing procedures in order to get

intelligent cameras. Human behavior is now analyzed

in order to determine if people are behaving peculiarly.

More particularly human motion analysis is of a great

help to distinguish normal behaviors from others

(peculiar, even threatening) (Moeslung and Granum,

2001; Wang and Suter, 2006). It can also be combined

with face recognition for people identification

(Kale and Roychowdhury, 2004; Zhou and Bhanu,

2008). However this behavior analysis has been

extended to any moving object in order to detect

intrusions in sensitive areas.

In the case of seaport surveillance (Zhu et al.,

2010) different features can be clues to behavior

analysis. For example, a tanker with a too high speed

must be suspected. As well a non-identified small

boat approaching rapidly the coast must be intercepted

before something could be thrown overboard or before

somebody could go ashore. That is why every mobile
must be classified in terms of shape and speed in order
to primarily analyze its behavior.

Fig. 1. Seaport entrance.

In this paper targets are first detected on the sea
surface before being classified. Shape classification of
3D objects from video images raises the problem of
bias induced by 2D projection. Actually the pattern
recognition step must integrate some parameters
such as the camera axis and position, the object
trajectory if it moves, and so on. In this way, several
transformations must be carried out on images in
order to correct the mobile silhouette before the
classification step. These corrections can be achieved
in 2D or in 3D and followed by a projection.

Several data inputs must be known to supplement
the videos: camera position and axis, mobile course,
and so on. By combining this supplementary data the
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transformations are defined and then applied to the

mobile in order to get a profile as close as possible

to the real one. Once the profile is computed the

classification step begins by a contour detection and

vectorization in order to deal only with vector objects.

Then the profile under study is compared to several

reference profiles in order to determine the closest one

in terms of shape and size. Finally, examples are given

in order to illustrate the whole process.

APPLICATION CONTEXT

The surveillance system is set at the entrance of a

trading seaport (Fig. 1). Shipping traffic includes cargo

vessels and tankers as well as pleasure or fishing boats.

A pylon (Fig. 2) supports the optronic sensor systems

described below and is located at the end of the dike

(Fig. 3). The whole system also includes a radar and a

sonar.

Fig. 2. Pylon and optronic sensors.

The software system includes a module carrying

out shape classification from infrared and daylight

videos sent by two different sensor systems (Fig. 4).

On the one hand, the surveillance system is composed

of six fixed cameras (three for infrared and three for

videos in visible wavelengths) each with a field of view

of about 20◦, providing a panoramic field of view of

about 60◦, of the seaport entrance in order to detect

object presence on the sea, and more particularly those

of moving objects. On the other hand, the tracking

system includes two servo-controlled cameras (one for

infrared and one for videos in visible range) with a

narrower angle (about 5◦). This second system is able
to focus on particular objects and can track them not
only in the area under survey but also outside it, as
the tracking system can rotate through 360◦. Shape
classification is achieved at different levels (level 1:
coarse classification, level 2: accurate classification,
level 3: identification) and aims to determine what kind
of mobile is captured on videos in order to extract
features such as ship category (tanker, speedboat and
so on), ship state (for example: sailing dinghy with
shortened sail or not), etc. These features are then
simultaneously displayed on the shape classification
module monitor (Fig. 4) and sent to the Shore Center
via a local network. The whole system provides a
computer-aided tool helping the operator to make his
decision (Fig. 5: displayed information).

Fig. 3. Seaport entrance and video-surveillance system

location.

Fig. 4. Surveillance systems: sensor systems, shape

classification system and shore center.

The main goal of this study is to secure a seaport
by providing a video surveillance in order to protect it
from terrorist attacks. The attacks under consideration
are restricted to attacks coming from the sea and from
objects moving at the surface.
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Fig. 5. Classification results displayed on the module monitor.

Fig. 6. Full process outline.

Mobiles to be identified range from swimmers to

tankers, including windsurfers, jet skis, speedboats,

sailing boats and other kinds of ships. In this way,

the mobiles to be detected can be of various kinds

regarding their shapes, dimensions or speeds. The

main features of these mobiles concern shape, size

speed and trajectory. The analysis of the video stream

will consists of three different stages: detection and

tracking, trajectory analysis and mobile identification.

The trajectory analysis will allow to determine if the

mobile is threatening for the seaport and the mobile

identification will be based on pattern recognition and

shape classification from geometrical features.

ALGORITHM DESCRIPTION

Fig. 6 describes the full process from detection to

decision whereas Fig. 7 focuses on the classification

process.

Fig. 7. Classification process outline.
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SILHOUETTE DETECTION

The first step in the image processing stage is

to detect moving objects on multispectral videos

(Manolakis et al., 2003; Robert-Inacio et al., 2007).

A background image for both visible and infrared

videos is periodically refreshed while acquiring

videos (Karimi-Ashtiani and Kuo, 2006; Yu et al.,

2008). Each new image is then compared to this

background image in order to extract moving objects.

The detection is carried out when the same object

is captured on several consecutive images. Thus,

waves and ripples can be rightfully identified as

noise. In order to compare the current image with

the background image the two images are divided

into several square areas where data is gathered by

averaging.

a

b

c

Fig. 8. Silhouette primary detection: a) original image,

b) coarse detection, c) accurate detection.

Then the intersection of the two coarsely

sampled images is computed and moving objects

are represented by the complementary set of this

intersection. In this way a silhouette of each moving

object is given by a binary image.

The silhouette detection can be more or less

accurate depending on the square area size. This size

must be chosen large enough at first in order not

to detect too much noise. Afterwards, the silhouette

contour can be refined by iterating the detection

process at lower scales only on bordering squares (Fig.

8).

Detection is carried out in two stages. The

primary detection is based on motion detection. It

is achieved only on infrared videos whereas the

secondary detection also uses videos in visible range

in order to refine results of primary detection.

Motion detection

Targets are localized by motion detection. Target

detection is achieved by considering a background

image periodically refreshed throughout the process

(Hall et al., 2005). The time interval between two

background images is set to 3 minutes but can be

chosen by the operator. The video stream is set to 10

frames per second, in this way mobiles are detected

by difference between the image under study and the

background image.

a

b

c

Fig. 9. Secondary detection: a) image in visible range,

b) infrared image, c) object segmentation.
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This method allows to take into account persistent
changes in the background. For example, if a new ship
arrives and stands in the camera frame for a long time
(anchoring), its shape is integrated to the background
after a given time.

In order to determine if a part of the image has been
modified, the image under study (Fig. 9) is divided
into several arbitrary elementary areas in which an
average value is computed. Then, the average value is
compared to the corresponding one on the background
image. If the difference of the two average values is
greater than an error tolerance value the elementary
area is assimilated to a target. Colored squares in
Fig. 10a correspond to modified elementary areas.
Afterwards elementary areas are gathered according
to their location. In other words if two or more
elementary areas are neighbors, they are considered as
a unique target (Fig. 10b).

Nevertheless, a major problem to solve is wave
motion. Actually, even if the sea is calm, wave motion
induces the detection of several irrelevant targets when
using a camera acquiring color data. In order to
avoid this drawback infrared data is used as the water
temperature does not vary significantly between the
top and the bottom of a given wave.

Fig. 10. Target detection process: a) primary target

detection, b) elementary area gathering.

Target tracking is achieved in two steps. For a
given image, the first step consists in comparing
detected targets to those of the previous image. Then if
their location is coherent in terms of speed, the targets
are not rejected as a false alarm. Note that the rejection
is effective after several images.

Afterwards, the following step consists in

elaborating the history of the target position along

the sequence (Fig. 11). This step is preliminary to the

trajectory determination and analysis. Such an analysis

should provide a helpful tool to decide if a target is

threatening or not. For example, if a target is very fast

and sailing directly towards the seaport, the trajectory

analysis should classify it as a probable attack and

the operator must be warned in order to confirm the

diagnosis.

But there remain problems to solve, such as target

tracking with multiple targets overlapping each others

or targets disappearing from the image and reappearing

a short time after.

Silhouette refining

The silhouette refining stage is achieved by

combining infrared and visible videos. For example

the stem wave and the wake wave are included in

the object detection on infrared images. But this part

can be easily separated from the real object shape by

considering that the waves appear in white, and so as

a homogeneous region in terms of color, on images

in visible wavelengths, and as a region of different

value on infrared images. Actually, waves are of darker

values if the object is hot or lighter if it is cold,

depending on the weather. The secondary detection is

then carried out on both visible and infrared images,

by using a watershed algorithm (Beucher and Meyer,

1993; Soille, 1999) restricted to the area corresponding

to the moving object in infrared. Fig. 9 shows the

image in visible range (a), the corresponding infrared

image (b) and the object segmentation (c). In Fig.

9c the boat outline extracted from the IR image is

drawn in black, the wave outline extracted from the

image in visible wavelengths is drawn in red and

finally the resulting boat outline is drawn in yellow.

A superposition of the three outlines is also shown.

As well, images in visible wavelengths will be further

used in order to classify naval vessels as they usually

appear in gray tones.

CONTOUR EXTRACTION

From the binary image previously computed to

get the silhouette, contours are extracted by detecting

inner bordering points and then contours are vectorized

on the one hand to arrange bordering points clockwise

and on the other hand to deal with less data.

Furthermore, geometrical transformations are more

accurate when carried out on vectorized objects.

For example, a homothetic contour can be exactly

computed even if the scale ratio is not an integer.

125



ROBERT-INACIO F ET AL: Ship classification

a

b

c

Fig. 11. Acquisition sequences for a) IR data (mid time), b) IR data (full time), c) color data (full time).
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PROFILE CORRECTION

In this application several object features must be

taken into account. For example the object course is

combined to the camera axis at each instant t (in other

words, for each image of the current video) in order to

compute the angle between the camera axis and the

object direction (Fig. 12). Such data (object course,

object speed, object position) are computed during the

tracking stage and camera axis is provided by sensor

(XML message). In this way, a rotation is applied in

3D to the object in order to get its profile (Fig. 13).

Fig. 12. Boat angle according to the ship course and

the camera axis.

Obviously, such a transformation is biased as it is

not possible to get hidden information from 2D videos.

Hidden parts are then reconstructed by interpolation.

In other words, a geometric transformation combining

3D rotation and projection is applied to the binary

silhouette. This is not a significant drawback as shape

classification only deals with binary data.

Fig. 13. Rotation in 3D.

Secondly, speedboats require a supplementary

correction. The higher the speed of the boat, the more

the bow rises. A rotation in 2D can correct this error

and the stern part is reconstructed while the bow part

disappears (Fig. 14). The boat angle is computed by

using the method of least squares. Lowest points of

the silhouette are considered as input data. This gives

features of the least square fitting line and the angle

between this line and the horizontal line is the 2D

rotation angle (boat angle).

Fig. 14. Boat angle according to the ship course and

the camera axis (rotation in 2D).

SHAPE CLASSIFICATION

Different methods can be used in order to

achieve ship silhouette classification: k nearest

neighbor (Luo and Folleco, 2006), shape-driven level-

set segmentation (Tao et al., 2009), etc. In our case,

shape classification is based on a similarity parameter

(Robert, 1998) that is a generalization of the circularity

parameter defined by the well-known formula, for any

compact set X of R
2, as follows:

Pc(X) =
r

R
, (1)

where r is the radius of the inscribed disk into X and R

the one of the circumscribed disk to X (Fig. 15).

Fig. 15. Estimation of the circularity degree of a convex

set X.
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We can note that this circularity parameter is equal

to 1, when X is a disk, as the inscribed disk merges

with the circumscribed disk and so r = R.

The similarity parameter P is defined for any pair

of convex shapes (X ,Y ) by considering two scale

ratios. The first one gives the smallest homothetic set

of X containing Y , and the second one, the smallest

homothetic set of Y containing X . Thus, let us define

the following function SX(Y ):

SX : K −→ R
+

Y 7→ SX(Y ) ,
(2)

where

SX(Y ) = inf{k > 0;Y ⊂t k.X} . (3)

⊂t means ”included in, regardless of any translation”.

And then, a preliminary definition of the similarity

parameter can be:

P1(X ,Y ) =
SY (X)

SX(Y )
. (4)

Unfortunately, the parameter P1 is very sensitive to

scaling. In order to solve this problem, an appropriate

solution seems to be the introduction of a weight

defined by the ratio of the surface areas of the two sets

X and Y . The second definition follows from that:

P(X ,Y ) =
SY (X)

SX(Y )
·

µ(X)

µ(Y )
, (5)

where µ is the surface area measure.

Fig. 16. Circumscribed convex k.Y to a compact set X.

The similarity parameter has the following

properties:
(i) If X ⊂t Y then P(X ,Y ) belongs to ]0,1]
(ii) P is invariant by translation

(iii) P is invariant by scaling

(iv) If X and Y are of the same shape

regardless of a positive scale ratio,

then P(X ,Y ) = P(Y,X) = 1

(v) P(X ,Y ) = P(Y,X)−1

In conclusion, the similarity parameter P is

invariant under translation and scaling, and the closer

its value to 1, the closer in shape X and Y .

In order to implement the similarity parameter, we

must create fast algorithms determining the features of

circumscribed convex shapes. In this way, the scale

ratios required for the similarity degree estimation

will be easily evaluated. Assuming that we have at

our disposal an algorithm called CircumRatio(X ,Y ),
determining the scale ratio to apply to a convex set

X to circumscribe it to a convex set Y , the algorithm

estimating the similarity degree between two shapes is

the following:

for all pair of shapes (X ,Y ) do
k = CircumRatio(X ,Y )
k′ = CircumRatio(Y,X)
Compute the two surface areas of X and Y

Compute the similarity degree of X and Y

end for

First of all, let us consider the circumscribed disk

algorithm that allows to design the minimal disk

containing a given planar object X . The extension

of this algorithm to convex sets (Serra, 1988) is

the algorithm used to evaluate the scale ratios, and

then, the similarity parameter. Fig. 16 shows the

circumscribed convex to a compact. Some classical

algorithms exist for the convex hull computation

(Avis et al., 1997; Barber et al., 1996). They enable

to take into account the corresponding convex hull

C(X) to a compact set X instead of X itself.

Finally shape classification is achieved by

comparing the object under study to a set of reference

shapes regarding the similarity parameter. The best-

scoring reference object is the most similar one.

That means that objects under study are gathered

into families according to each reference shape.

The similarity parameter value gives a quantitative

estimation of the closeness between two shapes.

SHIP DATABASE

Several particular ship silhouettes have been

extracted from images in order to obtain the reference

set of shapes. These particular shapes are significant of

a given kind of moving object. Each reference shape

is known by its attributes: its vectorized contour, the

extremal point set of its convex hull (Fig. 17), its size

range and its orientation. The size range is necessary

to determine if the real size of the ship under study

fits or not and then if it is worth comparing this ship

to the corresponding reference shape. The orientation

tells if the bow is on the left or on the right. Obviously
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only profiles are stored as reference shapes but the

orientation must be known in order not to duplicate

shapes.

a

b

c
Fig. 17. a) Ship silhouette, b) contour and c) convex

hull and extremal points in cyan.

Table 1. Types of moving objects and classification

code.

Classification Code Moving Object Type

0 Unknown

1 Kayak

2 Jet ski

3 Inflatable boat

4 Speedboat

5 Tug

6 Sailing dinghy

7 Naval vessel

8 Cargo liner

9 Tanker

Table 1 gives the list of reference shapes

considered for the classification stage. A silhouette of

each kind of moving objects is stored in order to be

compared to the shape under study if necessary. The

shape under study is then compared to each reference

shape by using the similarity parameter. This shape

is then associated with the best-scoring one, if this

score is higher than a given threshold (usually set

to 20%). This ensures that the shape under study is

similar enough to the best-scoring reference shape.

If the best score is less than the threshold value,

then the classification code is set to unknown. The

reference shape database can be extended to more ship

kinds. However a too large database can bring about

an increasing computation time, preventing real-time

processing.

EXPERIMENTAL RESULTS

Experimental results are presented on static images

on the one hand, and on videos on the other hand. The

processing is the same as images are extracted from

videos for the characterization step.

EXPERIMENTAL RESULTS ON IMAGES

RS1 RS2

RS3 RS4

RS5 RS6

Fig. 18. Original images of reference shapes.

RS1 RS2

RS3 RS4

RS5 RS6

Fig. 19. Reference shapes.

129



ROBERT-INACIO F ET AL: Ship classification

RS1 RS2

RS3 RS4

RS5 RS6

Fig. 20. Convex hulls of shapes of Fig. 19.

Table 2. Reference shapes RS.

RS Moving Object

1 Speedboat (big)

2 Tanker

3 Speedboat (small)

4 Cargo liner

5 Inflatable boat

6 Kayak

The previously described similarity parameter is

suitable for this application as it is really efficient for

classifying objects of same orientation (Robert, 1998).

And when the two rotation corrections are achieved all

ships are seen from the side. The only supplementary

feature that is required is the orientation knowledge.

If the orientation of the shape under study does not

match that of the reference shape an axial symmetry

map must be applied to the reference shape using to a

vertical axis.

Shapes are extracted from images of Fig. 18.

Table 3 gives the similarity parameter values when

comparing shapes of Fig. 19 to each others. Shapes are

described in Table 2 and Fig. 20 shows their convex

hulls.

Table 3. Similarity parameter values for shapes of Fig.

19.

SP RS1 RS2 RS3 RS4 RS5 RS6

RS1 1.00 0.24 0.49 0.11 0.05 0.38

RS2 0.24 1.00 0.47 0.45 0.19 0.63
RS3 0.49 0.47 1.00 0.22 0.09 0.39

RS4 0.11 0.45 0.22 1.00 0.44 0.28

RS5 0.05 0.19 0.09 0.44 1.00 0.12
RS6 0.38 0.63 0.39 0.28 0.12 1.00

EXPERIMENTAL RESULTS ON VIDEOS

Sensors acquire video data either in a static mode

or in a servo-controlled mode. In the first case, the

camera axis and the zoom ratio are the same for the

whole video, whereas they can evolve in the second

case. These two values depend on the tracking stage

results and are provided to the classification module

by XML messages.

Fig. 21. In blue, speedboat trajectory for video of Fig.

23.

Fig. 21 gives an example of mobile trajectory. Fig.

22 shows images extracted from a video acquired in the

static mode. Fig. 23 represents a set of images obtained

from a video acquired in the servo-controlled mode. In

this case, the camera can zoom in or out and the camera

points to the mobile in order to keep it approximately at

the image center. The camera moves by saccades and

its axis is refreshed when the mobile is about to exit

the area under survey of the current sensor. The two

videos are sampled at one frame every five seconds but

processing is achieved at a frequency of five frames per

second.

On the video of Fig. 22, the inflatable boat moves

back and forth on images 1 to 15 and then it follows a

curved trajectory to exit the sensor field (images 16 to

20).

On the video of Fig. 23, the speedboat moves away

from shore (Fig. 21). The camera axis and the zoom

factor are the same for images 1 to 3. They are updated

13 times: for images 4, 5 to 6, 7 to 9, 10, 11, 12, 13, 14

to 15, 16, 17, 18, 19, and 20.
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Table 4. Results for video of Fig. 22.

Image Classification code Classification score

1 3 0.92

2 3 0.91

3 3 0.90

4 3 0.92

5 3 0.89

6 3 0.91

7 3 0.91

8 3 0.90

9 3 0.91

10 3 0.90

11 3 0.91

12 3 0.91

13 3 0.90

14 3 0.92

15 3 0.90

16 3 0.91

17 3 0.57

18 0 0.12

19 3 0.44

20 – –

Table 5. Results for video of Fig. 23.

Image Classification code Classification score

1 4 0.57

2 4 0.52

3 4 0.50

4 4 0.51

5 4 0.49

6 4 0.51

7 4 0.46

8 4 0.40

9 4 0.41

10 4 0.38

11 4 0.41

12 4 0.41

13 4 0.40

14 4 0.42

15 4 0.43

16 4 0.53

17 4 0.72

18 4 0.82

19 4 0.88

20 4 0.89

Table 4 gives classification results for video of

Fig. 22. While the inflatable boat is seen by profile

the classification score is around 0.90. For image 18

the classification code is set to 3 a posteriori though

the silhouette is not really significant of an inflatable

boat. Actually a history of previous values is also

used to find the new value, combined to the mobile

position evolution. The speedboat in the background is

not considered for the study as it does not move in a

sufficiently significant way.

Table 5 gives classification results for video of

Fig. 23. The classification score highly depends on the

influence of the geometric transformation enabling to

correct the 3D rotation. The highest scores are obtained

when the speedboat moves in profile.

Images of Fig. 23 are of different quality. Their

features depend on the sensor orientation relative to the

sun.

STATISTICS

The characterization module receives XML

messages from eight different sensors: three IR sensors

in static mode, three visible sensors in static mode, one

IR sensor in servo-controlled mode and one visible

sensor in servo-controlled mode. Sensors work by pair,

an IR sensor corresponding to a visible sensor. After

the characterization stage, the characterization module

sends XML messages to the shore center as soon as

the computation is achieved (Fig. 4).

Table 6. Statistics on three examples of acquisition in

a static mode.

Video length 85683 s 86323 s 78736 s

Target number 694 330 185

Output XML

message number

173144 53819 40045

Average message

number per target

249.48 163.08 216.45

Average

classification score

0.7461 0.7293 0.8505

Average message

number per second

2.02 0.62 0.51

Average message

number per target

per second

0.0029 0.0019 0.0027

Table 6 gives statistics when videos are acquired

in a static mode. In these conditions, several targets

can be tracked simultaneously. The output XML

message number represents the number of achieved

classifications, as a message is sent whenever a

characterization is completed. The message frequency

(average message numbers: per second, per target, per

target and per second) depends on shipping traffic
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Fig. 22. Images from an IR video acquired in a static mode.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Fig. 23. Images from an IR video acquired in a servo-controlled mode.
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and is not really significant of the system efficiency.

The average classification score is high and proves

that classification has been achieved in appropriate

conditions.

Table 7 gives statistics when videos are acquired

in a servo-controlled mode. In these conditions,

only one target is tracked at a time. The average

message number per second varies from 1.00 to 2.70.

This means that one to three classifications can be

completed in one second. The minimal values can

be explained by the fact that classification cannot be

achieved if images are too blurred. This can occur

when the sensor features (camera axis and zoom ratio)

are updated too often: the sensor moves and images are

blurred. This problem appears with too fast mobiles

moving too close to the sensors.

Table 7. Statistics on six examples of acquisition in a

servo-controlled mode.

Video length Output XML Average message

message number number per second

2856 s 6096 2.13

23 s 62 2.70

35 s 35 1.00

15 s 37 2.47

19 s 34 1.79

491 s 617 1.26

CONCLUSION

Seaport surveillance is a very sensitive task to

achieve as it deals with a lot of parameters such

as tanker or cargo traffic as well as small boats

such as fishing vessels or sailing boats or even

inflatable boats or jet skis. Automatic video processing

implies fast algorithms. Ours must be able to classify

moving objects in terms of shape and analyze their

behaviors in order to detect threatening mobiles. In this

paper a full classification process has been described

associating each moving object to a reference shape.

This reference shape is the best-scoring one according

to a similarity parameter comparing shapes and their

convex hulls. This parameter takes into account shapes

in their whole and is invariant in scale and translation,

but not in rotation. That is one of the reasons why

the object outlines are preprocessed in order to deal

only with profile. The other reason is that profiles

are the most significant sides for ships, and then

the most discriminant. But the whole classification

system still has to be evaluated on a large sample

of moving objects to estimate more accurately the

similarity parameter efficiency. Furthermore the video

database must be enlarged to all weather conditions

to test the segmentation algorithm performance. In

this way the classification system will be more robust.

Finally target features must be correlated with data

from other sensors such as radar (Vasile and Marino,

2005) or sonar.
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