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ABSTRACT

This paper provides an account of the history of geometric probability and stereology from the time of Newton
to the early 20th century. It depicts the development of two parallel paths. On the one hand, the theory
of geometric probability was formed with minor attention paid to applications other than those concerning
spatial chance games. On the other hand, practical rules for the estimation of area or volume fraction and other
characteristics, easily deducible from the geometric probability theory, were proposed without knowledge of

this branch. Special attention is paid to the paper of J.-É. Barbier, published in 1860, which contained the
fundamental stereological formulas, but remained almost unnoticed by both mathematicians and practitioners.
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INTRODUCTION

The first known problem related to geometric

probability can be found in a private manuscript
of Isaac Newton (1643 –1727) previously written
between the years 1664 –1666, but not published

until the 20th century (Newton, 1967). It consists of
calculating the chance of hitting one of two unequal

areas of a circle by a ball (of negligible size):

If ye Proportion of chances for any stake bee

irrational, the interest may bee found after ye same

manner. As if ye Radij ab, ac, divide ye horizontal

circle bcd in two pts abec & abed in such proportion as

2 to
√
5. And if a ball falling perpendicularly upon ye

center a doth tumble into ye portion abec I win (a):
but if ye other portion, I win b, my hopes is worth

(2a+
√
5b)/(2+

√
5).

... if a die bee not a regular body but a

Parallelepipedon or otherwise unequall sided, it may

be found how much one cast is more easily gotten than

other. (Newton, 1967, p. 60–61)

Fig. 1. Newton’s illustration (Newton, 1967).

Newton wrote his note after reading the treatise

(Huygens, 1657) to point out that probability can

be irrational. What is even more remarkable is his

claim that chance is proportional to area fraction and

the proposal of a frequency experiment for chance

estimation. More generally, applying Newton’s idea to

the ball of negligible size falling N times on an area

C = A∪B and hitting n times the region A, and setting
a = 1, b = 0, Newton’s hope would be n/N, which
estimates the area fraction of Awith respect toC. Thus,
the first 2D stereological formula, AA = PP, was born.
In other words, Newton’s ideas immediately lead to

replacing the counting of events with their measure and

to estimating an area fraction by a point count. We can

therefore say that Newton also invented stereology.

In a published form, some ideas of geometric

probability were applied by Edmond Halley (1656 –

1742) in a paper that is generally appreciated as

having laid the foundations of a correct theory

of life annuities (Halley, 1693). Halley deduced

formulas for various annuities first analytically, and

then gave their geometric illustration. One year

earlier, John Arbuthnot (1667–1735) published the

first English work on probability (Arbuthnot, 1692),

which contained the translation of Huygens (1657)

and some other problems concerning various chance

games. Among them we can find an unsolved problem

of a completely different nature, which was solved half

a century later by means of geometric probability: In a

Parallelopipedon, whose Sides are to one another in

the Ratio of a,b,c : to find at how many Throws any

one may undertake that any given Plane, viz. ab, may
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arise.1 The problem was solved by Thomas Simpson
(1710 –1761) who considered a sphere described
round the parallelepiped and imagined a radius passing
round the boundary of the given plane. He said that the
chance of the given plane being uppermost in a single
throw was equal to the ratio of the spherical surface
bounded by the moving radius to the whole sphere
(Simpson, 1740). In this way, he reduced the problem
to finding the area of a certain portion of the surface of
a sphere and thus anticipated the measure of the bundle
of lines in space passing through a given point.

BUFFON’S PROBLEMS

Geometric probability is inseparably connected
with the name of Georges-Louis Leclerc, later Comte
de Buffon (1707–1788), who is generally regarded
to be the founder of the discipline. Fontenelle (1735,
pp. 43–35) reports about Buffon’s presentation of the
solutions of franc-carreau and needle problems at the
French Royal Academy of Sciences in 1733,2 and
some generalizations can be found in Buffon (1777).3

Recall that in the franc-carreau game, popular at the
French court, a round coin is tossed at random on a
large plane area covered by regular tiles (in the 1733
presentation, Buffon considered squares; the 1777
paper also dealt with triangles, rhombi and hexagons);
one of the players bets that the coin hits only one tile
while the other bets that it hits more of them. Finding
the odds of both players in this game is clearly similar
to the above described Newton’s problem: each player
needs the coin centre to hit a certain subset of a given
set. But the needle problem is a completely different
and new one – here an interaction of two 1D sets in 2D
is examined: 4

In a room, the floor of which is simply divided by

parallel joints, a rod is thrown in the air, and one of

the players bets that the rod will not cross any of the

lines while the other bets that it will cross several of

them. The odds for these two players are required. We

can play this game on a board with a sewing needle or

a pin without a head. (Buffon, 1777, pp. 100–101)

Denote by l the rod (needle) length and by d > l

the distance of unbounded parallels. Using integral

calculus, Buffon obtained the odds
(

1− 2l
πd

)

:
(

2l
πd

)

and
used them to calculate the ratio l/d ensuring a fair
game for players betting on hits or misses; obviously,
the odds are equal for l/d = π/4. Buffon (1777) also
considered a generalization where the rod was thrown
down on a square grid, but he gave an incorrect result.

The needle problem deserves several comments
concerning its relation to stereology. The determined
odds correspond to the hitting probability

P =
2l

πd
. (1)

Noting that 1/d is the length intensity LA of the
system of parallels T , and estimating P by the relative
frequency N/n, where n is the number of randomly
thrown needles L of total length L = nl, and N the
number of successful hits L ↑ T , Buffon’s result can
be rewritten as

L =
π

2
· N
LA

, (2)

which is the equation for estimating the length of a
curve (Steinhaus, 1930b), but in the present case it
relates to a compact random segment (fibre) set.

Besides sections, projections are also important
tools of geometric sampling and subsequent inference
(Davy and Miles, 1977). Moreover, by the Hadwiger
characterization theorem (Hadwiger, 1957), the set
of all possible mean projection measures together
with the Lebesgue measure and Euler-Poincaré
characteristics form the basis for the (m + 1)-
dimensional vector space of all convex-continuous
motion invariant valuations defined on the convex ring
in Rm (Klain and Rota, 1997). By the Cauchy-Crofton
formula (Eq. 7) for convex bodies in 2D the relation
L = πw holds between the length of the perimeter L
and the mean projection (also called the mean width)
w. Consequently, the hitting probability (Eq. 13) can be
written as P = w/d, which is just the way the formula
was derived for the needle, namely by calculating its
mean projection into the normal of parallels L (note
that the perimeter of a 1D segment embedded in R2

equals twice its length). Hence if such a relation was
valid in general for convex figures, it would be possible
to estimate the mean width w or the perimeter L of
arbitrary figures by their repeated throwing on the test

1Quotation from (Simpson, 1740, p. 67); the original formulation in Arbuthnot (1692) was in Latin. Arbuthnot wrote that he left the

Solution to those who think it merits their pains (Todhunter, 1865, p. 53).
2The franc-carreau with square tiles was already described in the letter written by Gabriel Cramer to James Stirling on February 22,

1732, published in (Tweedie, 1922, pp. 122–128). Cramer remarked that its solution for a round coin was not difficult, but for a square

one, he was not able to solve it. On the other hand, Buffon wrote the first letter to Cramer in 1727 and in 1731 he visited him in Geneva.
3The first pages of many of works discussed in this paper, including Buffon (1777), are reproduced in Miles and Serra (1978).
4Similarly to Cramer, Buffon mentioned already in the 1733 presentation that the franc-carreau problem would be more complicated if

the round coin was replaced e.g., by a square one (or a Spanish pistol). Since he did not know how to solve it, he considered only a wand;

to simplify the problem further, he started with parallels and only in the later paper he tried to generalize the solution to the square grid.

Let us further remark that Buffon (1777) also considered more players betting on hitting different numbers of commissures.
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lines (or equivalently by laying on them repeatedly

an isotropic and uniform random test system L ) and

counting the fraction of successful hits.

Buffon’s problem remained unnoticed by his

contemporaries. It received considerable attention only

after Pierre-Simon de Laplace (1749 –1827) presented

– without any reference to its author – both the needle

problem and its generalization with two systems of

parallels forming a rectangular (not only squared)

grid with correct solutions. Laplace (1812) introduced

the discussion of these problems with the remark

that probability theory could also be used for curve

rectification and surface quadrature. Nevertheless,

he gave only one example, namely the estimation

of the perimeter 2π of the unit circle, based on

repeatedly throwing a narrow cylinder on a system

of parallels. Unfortunately, since Todhunter (1865),

Laplace’s result was often referred to as the application

of Buffon’s needle problem to the estimation of π (in

school mathematics, it is usually the only “application”

of the needle problem until today).

Since then, other mathematicians introduced some

generalizations. For example, Isaac Todhunter (1820 –

1884), a lecturer at St John’s College, Cambridge, who

popularized geometric probability by several exercises

in his textbook on integral calculus, considered a

cube, a rod of the length equal to the multiple of

d, and an ellipse to be thrown on the plane ruled

with equidistant parallels at a distance d (Todhunter,

1857), later also a closed curve without singular points

with the greatest diameter5 less than d (1862 edition

of the same book). With the reference to the earlier

presentation in Fontenelle (1735), Buffon’s problems

were also analysed in a historical overview (Todhunter,

1865), where a simple derivation of a correct hitting

probability for a rectangular grid was given as

well. While Laplace (1812) divided rectangles into

particular parts and for each of them he “measured” the

favourite positions of a needle, Todhunter (1865) used

a unique integral over an angle formed by the needle

and one of the parallel systems.

Gabriel Lamé (1795–1870) included Buffon’s

needle problem and its generalizations to a circle, an

ellipse and regular polygons in his lectures held at

the Sorbonne. Inspired by these lectures, Joseph-Émile

Barbier (1839–1889) published a general theorem

concerning the mean number of intersections of an

arbitrary curve with a system of parallels and, what

is remarkable, he replaced equidistant parallels by

an arbitrary system of lines or even a unique curve

of constant length per unit area, and came to the

estimator Eq. 16. Moreover, he extended his results
to 3D and formulated three more theorems that
express other contemporary fundamental stereological
formulas (Eqs. 17–19) for surface area and curve
length estimation. Unfortunately, his contribution
remained unknown for some time to Todhunter as
well as to Crofton, and its immediate stereological
applications were not appreciated until the beginning
of the 21st century – see Kalousová (2009). The section
after next will therefore describe Barbier’s contribution
in more detail.

AUGUSTIN-LOUIS CAUCHY

A.-L. Cauchy (1789–1857) did not speak about
“geometric probability”, but he derived several
theorems with interesting practical implications for
length and surface area estimation which were later
rediscovered or reformulated in the terms of geometric
probability. The lithograph (Cauchy, 1832) starts with
the theorem stating that the equality6

L =
1

4

∫ π

−π
W (θ)dθ (3)

holds for the length L of a system L of arbitrary
curves, where W (θ) denotes the length of the total
[orthogonal linear] projection of L onto a straight line
forming an angle θ with a fixed axis (each subinterval
of the projection is counted as many times as there are
points on the curve which project onto it).

Cauchy gives a brief direct demonstration and then
shows that Eq. 3 can also be derived from another
theorem stating that L can be approximated by

L≈ π

2
·Wn, (4)

where Wn denotes the mean value of the total
projection of L onto n radial lines separated by equal
angles, and the error of this approximation is smaller
than 1

2
πWn/n

2. In a detailed demonstration, Cauchy
decomposesL into infinitesimal line segments and for
any of them he investigates the projections. Increasing
n to infinity, Cauchy obtains (in our notation)

L =
π

2
·W , (5)

whereW is the mean value

W =

∫ π
−πW (θ)dθ

∫ π
−π dθ

=
1

2π

∫ π

−π
W (θ)dθ , (6)

which implies Eq. 3. In a corollary to the first theorem
Cauchy remarks that for a closed convex curve,W (θ)

5Todhunter used the term diameter in the sense of our width and greatest diameter in the sense of our diameter.
6The notation is slightly changed with respect to the following parts of this paper.
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is reduced to twice the [“usual” orthogonal linear]

projection w(θ). From today’s point of view we can

notice that Eq. 3 and Eq. 5 immediately imply the

so-called Cauchy-Crofton formula, which enables the

rectification of a closed convex curve by finding its

mean width w, i.e., the mean length of its orthogonal

projections onto an isotropic bundle of directions (see

Fig. 2): 7

L =
∫ π

0
w(θ)dθ = πw. (7)

xq

w( )q

Fig. 2. Illustration of the notation used in Eq. 7.

Cauchy continues into 3D and proposes a practical

procedure for surface area estimation: for any surface

S with surface area S, he considers its total

projections into n planes containing faces of a convex

polyhedron that lies between concentric spheres of

radii r, r(1+ε), and shows that S can be approximated

by twice the mean area A′
n of these projections,

S≈ 2A′
n, (8)

with an error less than 2A′
n ·

[

(1+ ε)2−1
]

. Increasing
n to infinity, Cauchy replaces a polyhedral face by a

differential element of a unit sphere and gets

S = 2 ·A′, (9)

where A′ is the mean value

A′ =
1

4π

∫ π

−π

∫ π

0
A′(φ ,θ)sinφ dφ dθ ; (10)

here A′(φ ,θ) denotes the area of the total projection

of the surface S into a plane, the normal of which is

given by the co-latitude φ and the longitude θ in a fixed

coordinate system (see Fig. 3).8 Eqs. 9,10 obviously

imply the formula for the surface area of S :

S =
1

2π

∫ π

−π

∫ π

0
A′(φ ,θ)sinφ dφ dθ . (11)

Cauchy also remarks that Eq. 11 can be demonstrated

directly by decomposing S into infinitesimal planar

elements. As in the case of curves, he notes that for a

closed convex surface S , the total projection A′(φ ,θ)
is reduced to twice the [“usual” orthogonal planar]
projection. Thus the well-known formula for convex
bodies,

S = 4 ·A, (12)

where A denotes the mean projected area of S

(taken over all possible orientations in space), again
immediately follows from the theorems derived by
Cauchy already in 1832.

O

x

y

z

n

f

q
dq

1

1

1

sinf
df

sinf qd

dS

Fig. 3. Illustration of the notation used in Eq. 10.

Cauchy was aware of the importance of his results
for the rectification of curves and the quadrature of
surfaces, although he gave only several examples
concerning circle, ellipse, sphere and ellipsoid.
Unfortunately, the lithograph (Cauchy, 1832) was not
easily accessible to a wide audience and even though it
was reprinted inMémoires de l’Académie des Sciences

in 1850, many authors later referred only to the
communication (Cauchy, 1841) published in Comptes

Rendus, where the theorems providing Eqs. 3,11 are
merely stated and remarks on the approximations
(Eqs. 4, 8) are missing (although there are some other
theorems concerning, e.g., the upper bound of the
length or surface area estimates). One of the earliest
exceptions was J.-É. Barbier, to whom the next section
is devoted.

JOSEPH-ÉMILE BARBIER

J.-É. Barbier (1839–1889) studied at the École
Normale Supérieure, where he attended (among
others) mathematical lectures by Joseph Bertrand
(1822–1900). Moreover, he attended the mentioned
Lamé’s lectures at the Sorbonne. He started his career
in 1860 as a professor at a Lycée in Nice and

7Note that for a circle we obtain L = πd, where d is its diameter; for a square with the side a, the mean width is 4a/π .
8The figure is adapted from Czuber (1884a); Cauchy (1832) gave no illustrations.
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later he worked as an assistant astronomer at the

Observatoire de Paris. In 1865, due to developed

mental problems, he left Paris, broke all contacts

with colleagues and friends and was not heard from

again for the next fifteen years. In 1880, his former

lecturer Joseph Bertrand found him at an asylum in

Charenton-St-Maurice and encouraged him to return

to mathematical research. Two years later Barbier

won (thanks to Bertrand’s intervention) the Francoeur’

prize for an article published in Comptes Rendus

(Barbier, 1882). This enabled him to leave hospital and

to spend the rest of his life more pleasantly. During the

1880s, he published (with one exception in Comptes

Rendus) 14 communications upon various branches of

mathematics; three of them (Barbier, 1882; 1887a;b)

concerned the probability theory (estimation of π
based on binomial distribution, a ballot problem etc.)

and are referred to and discussed in the recent literature

in the context of Barbier’s relation to J. Bertrand.

From the stereological point of view, the most

important one is the paper that Barbier (1860) wrote

during his studies. It starts with the exposition of

the needle problem, attributed to Laplace, and its

generalizations due to Lamé. Then Barbier turns to a

convex disk of arbitrary shape with perimeter L that

cannot in any position in the plane intersect more than

one dividing parallel, and proves that the probability of

hitting some of the lines is

P =
L

πd
. (13)

To prove it, Barbier follows the ideas typical for

the analysis of hazards, acknowledging Bertrand’s

(Bayesian) preference for expectation over probability:

consider a convex polygon havingm sides of the length

c and a diameter less than the parallels distance d;

evidently, each of the sides has the same chance to

cross one of the parallels. Now imagine a game of m

players, in which each side belongs to one of them and

the fact that a side hits some parallel is connected with

certain prize. Before each throw, the “mathematical

expectations” of all the players are equal, say E. If
a player buys n sides, his expected value is therefore

nE, i.e., proportional to the number of sides, and it

is not changed by any deformation maintaining the

sides length and convexity of the polygon (so that its

boundary has two intersections with any line it crosses)

and keeping the diameter less than d. Thus the hitting
probability (multiplied by the award to give nE) is also

proportional to the number of sides. Approximating

any convex disk with the perimeter L and a diameter

less than d by such a deformed polygon, the hitting

probability Eq. 13 follows immediately from Lamé’s
result for regular polygons.

It is worth noting that Barbier showed that Eq. 13
can also be derived directly from the aforementioned
considerations: since the hitting probability is equal
for all convex figures with the same perimeter L and
diameter less than d, it is sufficient to consider the
simplest case, namely a circle with radius r where L =
2πr, r < d/2. Such a circle hits some of the parallels if
the distance between its centre and the parallel is less
than r. Thus the hitting probability is

P =
2r

d
=

2πr

πd
=

L

πd
.

As Barbier also remarks, a slim rod (needle) of length
l can be regarded as the limit of an ellipse with zero
minor axis and perimeter L = 2l, which immediately
implies Eq. 1.

For a non-convex disk, Barbier shows that the
hitting probability is equal to the hitting probability
of its convex hull; it is therefore sufficient to restrict
the investigations to convex figures. If the diameter of
the thrown convex figure is greater than the distance d,
Barbier considers (in our notation) its projection w(θ)
onto a straight line forming an angle θ with a fixed
direction, denotes wr(θ) = min(w(θ),d) and states:

P =
1

πd

∫ π

0
wr(θ)dθ . (14)

If the diameter does not exceed d, Barbier refers
to (Cauchy, 1832; 1841) and points out that Eq. 13
follows directly from Eq. 14 and Cauchy’s formula
(Eq. 3), where the symmetry W (θ + π) = W (θ) for
all θ ∈ [0,π] is used andW (θ) is replaced by 2w(θ).

In the next part of his paper, Barbier turns to
the computation of the number of intersections and
presents several remarkable results. First, he considers
a flexible fibre of an arbitrary length. As before, he
replaces it with a broken line of length L consisting of
n line segments of the same length l < d. Using Eq. 1,
the mean number of intersections N = nP equals 9

N =
2L

πd
, (15)

which allows the estimation of L by counting the
number of intersection points. Then, a completely
new idea appears: Barbier replaces equidistant parallel
straight lines with a system of arbitrary lines with the
only requirement of a constant length per unit area (in
the present terminology, a constant length intensity).
Analogously he proceeds in 3D and computes the
mean number of intersections of a fibre with a surface

9In Barbier’s article, the mean number of intersections is L/πd. We do not know whether it is a misprint or Barbier’s mistake;

nevertheless, Eq. 16 is correct and it follows from the correct formula.
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of a known area intensity, of a surface with a fibre

of a known length intensity and the mean intersection

length of a surface with a surface of a known area

intensity. Barbier summarizes his results into the four

following theorems (Barbier, 1860, pp. 279–280).

Theorem 1: A plane contains a flexible fibre of

length L metres in each its square metre, taking a

variable form, and let another flexible fibre of length l

metres be randomly thrown on the plane, then the mean

number of intersection points oscillates, independently

of the number of trials, around 2Ll/π.

Writing LA instead of L, we obtain the formula

Eq. 2 (with l instead of L) that can be used for the

estimation of the length l. On the other hand, the

second fibre can be regarded as a probe; denoting by

NL the number of intersections per its unit length, we

get the formula for an unbiased estimator of the length

intensity LA,

[LA] =
π

2
·NL. (16)

Theorem 2: Let us imagine an unbounded space

divided into cubes of one metre edge. Let us suppose

that every such cube contains S square metres of a

cloth (that need not be evolvable into a plane). A fibre

of length l, which passes randomly through the space,

traverses the cloth in (1/2) ·Sl points on average.

Writing SV instead of S and denoting by NL the

number of intersection points per unit length of fibre,

we obtain the well-known stereological 3D formula for

the area intensity SV ,

[SV ] = 2 ·NL. (17)

Theorem 3: Each cubic metre of an unbounded

space is traversed by a fibre of length L metres. Then a

cloth of surface area s square metres is intersected by

the fibre in (1/2) ·Ls points on average.

Writing LV instead of L and denoting by PA the

number of intersections per unit area, we obtain the

stereological 3D formula for the length intensity LV ,

[LV ] = 2 ·PA. (18)

Theorem 4: Suppose finally that each cubic metre

of a space contains S square metres of cloth. Then

the mean length of the intersection of this cloth with

another cloth of s square metres is (3π/2) ·Ss.
There is a small error in the constant again. The

correct expression is (π/4) · Ss. Writing SV instead of

S and denoting by BA the length of the intersection per

unit area, we obtain

[SV ] =
4

π
·BA. (19)

Barbier does not explain how he arrived at these

results. He only remarks that they are based on

the mean projections of lines and surfaces and he

computes these values only for a circle and a sphere.

The last part of his paper contains various remarks and

applications. For example, Barbier considers figures of

constant width and proves that the length of all curves

of the same constant width is the same, while areas of

surfaces of the same constant width can differ.

As mentioned above, Barbier’s results went

unnoticed by his contemporaries. Nobody realized

their potential practical utilization. The stereological

formulas, simply deducible from Barbier’s theorems,

were rediscovered as late as the mid-20th century

by Sarkis Andreevich Saltykov (1945; 1946; 1950),

Sergei Ivanovich Tomkeieff (1945) and others,10 and

they turned out to be part of the general multi-

dimensional theory (Miles, 1972).

ENGLISH FOUNDATIONS

Besides the contributions of Isaac Todhunter

(1857; 1865), various problems concerning geometric

probability (also called local probability) were

published and discussed in the Educational Times and

Mathematical Questions11 since the 1860s. One of the

most famous was the four-point problem proposed by

James Joseph Sylvester (1814–1897), then a professor

of mathematics at the Royal Military Academy at

Woolwich. It concerned the probability that four points

taken at random in an infinite plane or in a bounded

10For a detailed bibliography see Baddeley and Jensen (2005).
11The journal Educational Times was launched in 1847 by the College of Preceptors in London, the national body whose aim was

to supervise standards of teaching and teacher training in the public service. For its main audience – teachers and students – it ran

a section Mathematical Questions where various problems were formulated with the encouragement to readers to send solutions for

subsequent publication; this department attracted a great attention even of mathematicians and it developed in such an extent that in 1864

an offshoot journal Mathematical Questions with their Solutions from the Educational Times (hereafter Math. Questions) was founded,

which contained many additional solutions and other papers. For more details, see (Grattan-Guinness, 1992).
12Sylvester (1864b) attributed this result to Arthur Cayley; nevertheless, they later considered the argument used for the unbounded

area erroneous and inclined to believe that the question did not admit a determinate solution – see Sylvester’s note to Problem 1832 in

Educational Times 18(1865), p. 166, and the abstract of his communication On a Special Class of Questions on the Theory of Probabilities

published in the Report of the 35th Meeting of the British Association for the Advancement of Science 35(1865), pp. 8–9.
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convex area form a re-entrant quadrilateral (Sylvester,

1864a). For an unbounded area, Sylvester (1864a;b)12

came to the value 1/4. Surprisingly, the “proofs”

of several other and substantially different values

were later published in the fifth volume of Math.

Questions in 1866: 1/3 (J. M. Wilson, p. 81), 1/2
(G. C. de Morgan, pp. 109) or 1/2 decreased by some

indeterminate value (C. M. Ingleby, pp. 81–82, 108–

109). The problem was completely solved by Blaschke

(1917) more than 30 years later.13 But already in the

1860s, it aroused a vivid discussion on the concepts

“random points,” “random lines” and “randomness”

in general which showed the necessity of building

solid foundations of geometric probability, stimulated

its further development and significantly exceeded the

framework of a didactically oriented journal.14

Let us at least mention the contribution of the

astronomer Hugh Godfray (1866) who claimed that

the discordance arose from different conceptions of a

“random point” (e.g., the chance of its falling within

any given area is proportional to this area, or it is

the intersection of two random lines). Moreover, to

illustrate the insufficiency of the definition of the word

“random” for geometric objects, he anticipated the

famous paradox formulated by Bertrand (1889) and

gave three different answers to the question of what

a chord in a circle drawn at random meant: first, a

chord joining any two points of the circumference, all

combinations being equally probable; second, any line

with a distance from the centre less than the radius, all

such distances being equally probable; and third, any

line joining two points of the circle, all lengths less

than the diameter being equally probable. Godfray said

that it could easily be shown that the average lengths

of such chords were different, greatest in the second

case, shortest in the third one. Then he continued

with the probability of intersection of two random

chords and gave the values 1/3, 1/2 and (3π−8)/(4π)
for the first, second and third case, respectively. He

also recalled the paper by the actuary Wesley Stoker

Barker Woolhouse (1866) who had investigated the

probabilities of various amounts of intersections for n

random chords and advocated the first approach. In a

note to (Godfray, 1866),15 Woolhouse claimed that the

latter two cases were quite artificial and that the only

legitimate and acceptable conception, consistent with

our notions of the meaning of a random chord, was

the first one. In the next volume of Math. Questions,

Godfray (1867) continued with the discussion of the

concept of a “random line” and for three different
approaches he derived three different probabilities that
the length of a line drawn at random from the focus of
an ellipse to its perimeter was greater than the semi-
major axis. As before, the paper aroused a critique by
Woolhouse (1867), according to whom the only fitting
conception regarded the chance of the line falling
within a given angle with the vertex in the focus to be
proportional to the size of this angle.

Woolhouse’s note is followed by the paper of
another contributor to Math. Questions, William
Morgan Crofton (1826–1915), an instructor and, from
1870, Sylvester’s successor in the professorship at
Woolwich. Crofton (1867a) gives detailed reasons for
the assertion that the only acceptable definition of a
“random point” takes the chance of its falling within
any given area proportional to this area. For random
lines, he considers the equation (see Fig. 4)

xcosθ + ysinθ = p, (20)

where p and θ are constants taken at random.

0

r

q

p

x

y

p cos q

p sin q

Fig. 4. Illustration of the notation used in Eq. 20.

Crofton argues that this is the only case where
each line has the same chance of being selected,
contrary to, e.g., the representation by the equation
y = kx + q (compare the axis of x and y). He also
returns to the discussion of a random chord in a circle
and remarks that the problem lies in the expression
“drawing a chord”. Provided it means to draw a line
taken at random from the random lines that meet the
circle, it corresponds to the second case. If it means
a random line drawn from a random point on the
circumference or a line joining two random points
on the circumference, it is the first case. Crofton
concludes his note with the following words: The

points we are here discussing seem to be the first

principles of a new and extensive subject, which offers

great difficulties, and calls for much thought and study.

At this point, we can speak about the beginning of
the systematic development of geometric probability
which is no longer a mere tool for solutions of

13For a bounded area, the solution depends on its shape and has a connection with the rectilinear crossing number of graphs (the

minimum number of intersections in any drawing of a graph on n vertices that has straight line segment edges. For a detailed review and

the recent state see (Scheinerman and Wilf, 1994) or (Pfiefer, 1989). Let us add that another Sylvester’s contribution was the extension of

Buffon’s needle problem solved by Crofton for two rigidly connected figures to an arbitrarily long chain of such figures (Sylvester, 1890).
14This discussion as well as particular contributions is referred to in the monograph (Czuber, 1884b).
15Math. Questions 6(1866), p. 81.
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various puzzles and games. Crofton (1868) elaborated

the topic further and proved several theorems from

the future integral geometry.16 Several years later

he wrote an extensive final chapter On Mean Value

and Probability for the second edition of the book

of Benjamin Williamson (1877), professor of natural

philosophy at the Trinity College, Dublin. It is also

worth mentioning Crofton’s contribution to the ninth
edition of Encyclopaedia Britannica (Crofton, 1885):

Its last part titled On local probability begins rather

surprisingly with the problem of a variable space S

of mean area S included in a space A of area A; the

probability that a random point x∈A hits this variable

space S is p = S/A. This result just repeats Newton’s
and Buffon’s findings, but the assumption of a variable

set was substantially ahead of his time.

For lines in a plane of the form Eq. 20, Crofton

introduces the measure by the integral
∫ ∫

dpdθ in

appropriate limits. He then recalls his previous result,
namely that given a convex curve L of length L, the
measure of all lines F hitting L is17

∫ ∫

F↑L
dpdθ = L . (21)

This equation, today called the Crofton formula, can
be generalized to higher dimensions and establishes

the relation between the measure of an object M(X )
and the measure of its sections M̃(X ∩F ) by flats F

(points, lines, planes etc.). Its immediate consequence

is another relation given by Crofton (1885):

C =

∫ ∫

F↑L Cdpdθ
∫ ∫

F↑L dpdθ
=

πA

L
=

A

w
, (22)

where C is the mean chord length of a convex region

of area A bounded by a curve L of length L, and w is

the mean width of L – recall Eq. 7. Also important is

the 2D Crofton-Hostinský formula for the third power

of chord lengths

∫ ∫

F↑L
C3dpdθ = 3A2, (23)

from which the estimator LC3/3 of the squared

area A2 immediately follows. Formulae of this type

are extremely useful in the stereological analysis of

particle aggregates (Miles, 1983).

Crofton (1868) did not investigate the chord
lengths yet, but in a remark to Eq. 21 we can
find another important stereological result, namely
the Cauchy-Crofton formula Eq. 7.18 From other
problems considered by Crofton (1868), let us at least
mention the generalization of Buffon’s problem to a
“needle” consisting of two rigidly connected figures
of diameters not exceeding the distance between
parallel lines, later extended by Sylvester (1890) to an
arbitrarily long chain of such figures.

Only the 2D problems are solved by Crofton, but
once formulated they allow for a generalization to
higher dimensions. Crofton can therefore be credited
for laying the foundations of geometric probability
and for undertaking the first systematic attempt to
relate measures of intersections of bodies to their
properties. As for the generalization to 3D, Crofton
himself outlined it at the end of his 1868 paper; in
full detail, it was done by Czuber (1884a;b), whose
book Crofton (1885) appreciated in the concluding
remark: We have now done enough to give the reader

some idea of the subject of local probability. We refer

him for further information to the very interesting

work just published by Emanuel Czuber of Prague,

Geometrische Wahrscheinlichkeiten und Mittelwerte,

Leipsic 1884 . . . (Crofton, 1885, p. 788)

EMANUEL CZUBER

The above-mentioned “very interesting work”
(Czuber, 1884a) published by Emanuel Czuber (1851–
1925), at that time a secondary school teacher in
Prague, later a professor at the German Technical
University in Brno and at the Technical University in
Vienna, represented the first monograph summarizing
the state of the art of geometric probability of that
time and it played an important role in this field
for several decades. In 1902 it was translated into
French and it remained a classic until Robert Deltheil
(1890–1972), a professor at the Toulouse University,
published his book (Deltheil, 1926). The first and more
extensive part of Czuber’s monograph is devoted to
geometric probability itself and it provides not only
a detailed exposition of results achieved by French
and British predecessors, supplemented with historical
remarks and many exercises, but also new results
and generalizations. For example, Crofton (1868)

16One of them was the formula
∫ ∫

(α −sinα)dxdy= 1
2L

2−πA, where α denotes the angle between two tangents from an exterior point

(x,y) to the curve of the length L that forms the boundary of a convex region of the area A, and the integral is taken over the whole plane

outside the boundary. This result and several other relating theorems had already been briefly announced in (Crofton, 1867b). Crofton

(1868) appreciated Buffon and Laplace; without mentioning (Barbier, 1860), he remarked that no real attention was devoted to geometric

probability till English mathematicians as, e.g., Sylvester and Woolhouse entered this field of research.
17Crofton wrote limits only to single integrals; the notation F ↑ L has been added by the authors of this paper for the sake of clarity.
18Crofton (1868) gave no reference to Cauchy; the fact that Eq. 7 immediately followed from the theorem stated by Cauchy was pointed

out by Czuber (1884a), although the reference concerned only the Comptes rendus report (Cauchy, 1841).
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derived key theorems concerning sets of points and
straight lines in a plane and briefly outlined a possible
generalization to 3D; this generalization was given in
full detail by Czuber. Moreover, although the particular
results are derived in 2D and 3D, the introductory
chapter contains a definition of geometric probability
as a content ratio in Rn :

p =

∫ ∫

. . .
∫

K′ dx1dx2 . . .dxn
∫ ∫

. . .
∫

K dx1dx2 . . .dxn
, (24)

where K′ ⊆ K ⊂ Rn. Inspired by the discussion in
the Educational Times (referred to elsewhere in the
book), Czuber recalls that it is often possible to find
different solutions of problems concerning geometric
probability, and points out that this diversity arises
from different conceptions of the random sampling.
Thus he also foreshadowed Bertrand’s paradoxes.

The second part of the monograph contains the
original exposition of the determination of mean
values of geometric variables based on geometric
probability. As for stereological applications, the book
contains only one explicit remark that concerns an
experimental rectification of a closed convex curve in
2D. After the proof of the Crofton formula Eq. 21,
Czuber recalls another result contained in (Crofton,
1868), namely that the probability that a line hitting
a closed convex curve L of length L hits also a
closed convex curve ℓ of length l that lies inside L

is p = l/L. Then he remarks that this result provides
an experimental rectification of a closed convex curve:
The curve that has to be rectified is surrounded by

another closed convex curve (circle, polygon) of the

known length L, a great number s of arbitrary straight
lines intersecting L are drawn in the plane of both

curves, and those intersecting also the curve of the

unknown length l are counted; let their number be m.
The higher s, the more accurate the equality m/s= l/L
holds, which implies l = Lm/s .

(Czuber, 1884a, p. 116)

We may regret that Czuber does not explicitly
mention an analogous surface area estimation.
Nevertheless, it immediately follows from his theorem
stating that the measure of all lines hitting a closed
convex surface S is proportional by π/2 to its surface
area S. More specifically, in accordance with Crofton’s
outline, Czuber (1884a) proved:

∫ π

0

∫ π

0
A(φ ,θ)sinφ dφ dθ =

π

2
·S, (25)

where A(φ ,θ) denotes the area of the projection of
S into the plane whose normal has co-latitude φ

and longitude θ in a fixed coordinate system. In a
remark to this theorem Czuber refers to (Cauchy,
1841) where the formula Eq. 11 was stated without any
demonstration; probably unaware of the older treatise,
Czuber provides the direct proof corresponding to the
brief outline mentioned by (Cauchy, 1832) in a note to
this formula (see page 4 in this paper) and shows that
Eq. 25 can simply be deduced from Eq. 11.

Some additional original results concerning
geometric mean values in 3D are contained in the
paper (Czuber, 1884b). As an example, let us mention
the formula for the mean chord length C of a convex
region of volume V, bounded by a closed convex
surface S of surface area S :

V =
1

4
·SC. (26)

Czuber returned to geometric probability also in his
later publications, e.g., in a comprehensive treatise
(Czuber, 1899) devoted to the history of probability
theory and its applications, or in the textbook
on probability theory and its applications for life
insurance (Czuber, 1903); in the second edition of this
book published in 1908, the exposition of geometric
probability was enriched by the discussion of set
theory and its use in probability theory, as it was
systematically done by Rudolph Lämmel (1879–1962)
in his Ph.D. thesis (Lämmel, 1904).

FURTHER DEVELOPMENT

Considerable attention to geometric probability
was also paid by Joseph Bertrand. In the second
volume of (Bertrand, 1864; 1870), he devoted a
separate section to Crofton’s theorems. Among other
results, he returned to the problem of a generalized
Buffon’s needle consisting of two rigidly connected
convex figures of diameters less than the distance
of parallels solved by Crofton (1868), and he gave
its solution based on Barbier’s expectation approach.
However, more famous are the so-called Bertrand’s
paradoxes concerning a random selection from infinite
populations (Bertrand, 1889), formulated to warn
against a careless use of infinity,19 especially his
three possibilities of sampling chords in a circle
leading to three different answers to the question
about the probability that a chord chosen at random
is longer than the side a of the inscribed equilateral
triangle:20 First, one of the chord endpoints is known
(by symmetry, this knowledge should not change the
outcome) and its direction determined by the angle α

19Bertrand (1889, p. 4) wrote in the introduction: infinity is not a number, it shall not be, without explanation, introduced in the reasoning.
20Bertrand (1889, p. 4) formulated the problem as follows: A chord is drawn at random in a circle. What is the probability that it is

smaller than the side of the inscribed equilateral triangle? But the solution was formulated for chords longer than that side.
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from the tangent at the endpoint is chosen at random;

the chord is longer than a for α ∈ (π/3,2π/3), the
required probability is therefore P1 = 1/3 (note that

the same result arises from the independent choice of

chord endpoints with a uniform distribution over the

circumference). Second, the chord direction is known

and its distance from the circle centre is chosen at

random; the chord is longer than a if the distance is

less than half of the circle radius r, which leads to

P2 = 1/2. Third, the midpoint is chosen at random;

now the chord is longer than a if its midpoint lies inside

the concentric circle of the radius r/2, which gives the
probability P3 = 1/4 equal to the ratio of circle areas.

Bertrand (1889, p. 5) then concludes: Among these

three answers, which one is right? None of the three

is incorrect, none is correct, the question is ill-posed.

We have already mentioned a similar problem

formulated by Godfray (1866) and the answer

of Woolhouse and Crofton (see p. 7). Bertrand’s

questions provoked another discussion on the

foundations of geometric probability. Henri Poincaré

(1854–1912), a professor at the Sorbonne, treated this

topic in (Poincaré, 1896); he introduced the concept

of probability density, derived its form for the first

two cases considered by Bertrand and stated that

the problem followed from the fact that they were

different. In accord with his conventionalism, Poincaré

claims that in general we do not know the nature of

the density function, which can be arbitrary, and we

must set it at the beginning of our considerations

by a meaningful convention. Then he investigates

a generalized needle problem. He says that the

probability that a given plane figure F satisfies certain

conditions concerning its position is proportional to the

integral
∫ ∫ ∫

dxdydω, where (x,y) are the Cartesian

coordinates of a fixed point M of F and ω is the

angle between the x-axis and a straight line passing

through M and rigidly attached to F , since – as he

shows – this integral is invariant under rotations and

translations. If this convention is adopted and a random

chord is regarded as a segment of one of the parallels

with the distance d ≤ 2r on which the given circle with

the radius r is thrown, then the chord is longer than the

side of the inscribed equilateral triangle when the line

hits also a concentric circle with the radius r/2; since
the probability of this event is equal to the ratio of

perimeters of the two circles, we obtain P2 = 1/2.

The paradox was later discussed by Czuber (1903;

from the second edition published in 1908) who

presented three more possibilities,21 calculated the

corresponding probabilities and pointed out that only

the second Bertrand’s alternative with P2 = 1/2
corresponded to the concept of randomly chosen

straight line as it had been introduced by Crofton.

Similarly Borel (1909) asserted that the majority

of conceivable natural procedures led to P2. We

have already seen that this solution also corresponds

to the motion invariant sampling scheme, which

is now generally accepted in geometric probability;

nevertheless, this does not answer completely the

philosophical background of the problem. Marinoff

(1994) argues that Bertrand’s answers can be construed

as replies to three different questions: the random

chord is either generated by a procedure on the

circumference of the circle, by a procedure outside the

circle, or by a procedure inside the circle (compare

again Woolhouse, 1866). He criticises the former

literature for the little recognition of the distinction

between them and demonstrates that clearly stated

variations lead to different, but theoretically and

empirically self-consistent solutions. Further, see Plato

(1994); Sheynin (1994; 2003), and a study paying

attention to Bertrand’s teaching and probabilistic

thinking (Bru, 2006).

Let us note that independently of Poincaré, the

motion invariance requirement was formulated by

Élie Cartan (1869 –1951), at that time a lecturer

at the University at Montpellier, later a professor

at the University of Nancy and at the Sorbonne.

Cartan (1896) studied multiple integrals over systems

of lines in the plane and systems of lines and

planes in space and introduced measures of such

systems independent (as he proved) of translation and

rotation, corresponding to those proposed by Crofton

and Czuber, including Eq. 21 and other relations.

Nevertheless, there is not a word about geometric

probability and its proponents as Cartan was solely

dealing with the theory of integrals. In the framework

of geometric probability, this topic was investigated

by Georg Pólya (1887–1985), a lecturer and later a

professor at ETH Zürich. The aim of his paper (Pólya,

1917) was to show (without a reference to Cartan or

Poincaré) that the measures of sets of lines and planes

on which Crofton and Czuber based the geometric

probability theory, were the only legitimate ones, and

the reason was again the motion invariance.

At the beginning of the 20th century, interesting

contributions to geometric probability were presented

by Bohuslav Hostinský (1884–1951), a private

associate professor at Charles University in Prague,

later a full professor at Masaryk University in Brno.

Hostinský (1917; 1920) criticized the traditional

21One endpoint of the chord is given on the circumference, then another point is chosen inside the circle; two endpoints are independently

chosen with uniform distribution over the circle circumference, which is shown to be equivalent with the first possibility with P1 = 1/3;
two points are independently chosen inside the circle.
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solution of Buffon’s needle problem for being based on

an unrealistic assumption that parallels were drawn on

an unbounded board and the probability that the needle

midpoint hit a region of a given area was proportional

to this area and independent of the position of the

region. Hostinský argued that no real experiment could

satisfy such an assumption and replaced it by a more

realistic one: parallels are drawn on a square table

board and the experiment requires the needle to fall

on it; now the probability that the needle midpoint

hits a square of a given area near the edge of the

table is lower than the probability that it hits a

square of the same area near the middle. To solve

this problem, Hostinský generalizes the method of

arbitrary functions introduced by Poincaré (1896)22

and supposes that the probability that the needle

midpoint falls into a region M inside a square C (the

table) is proportional to the integral over M of the

form
∫ ∫

ϕ(x,y)dxdy, where ϕ(x,y) is an arbitrary

function with continuous partial derivatives in C such

that for some constant K, the inequalities |ϕ ′
x(x,y)| <

K, |ϕ ′
y(x,y)| < K hold. In a limiting case where the

number of parallels increases to infinity, Hostinský’s

solution corresponds to the original result of Buffon.

Hostinský discussed the French variant of this paper

(Hostinský, 1920) in his correspondence with Maurice

Fréchet, which could have awoken Fréchet’s interest

in probability theory (Havlová et al., 2005). Fréchet

supplemented Hostinský’s ideas in Fréchet (1921);

see also Fréchet and Halbwachs (1924). Five years

later Hostinský published a French booklet (Hostinský,

1925), in which he extended the contributions of

Crofton (1868) and Czuber (1884a;b) for surfaces in

space. Besides other results he proved the analogy

of the Crofton-Hostinský formula mentioned above,

which is probably the reason why Hostinský’s name

has been associated with the name of Crofton in this

connection. For a given closed convex surface S of

surface area S and interior volumeV Hostinský proved

that the mean value of the fourth power of the chord

lengthC is

C4 =
12

π
· V

2

S
. (27)

In the next year, he published the first (and for a long

time the sole) Czech book on geometric probability

(Hostinský, 1926). Here he proceeds from sets of

points over sets of lines in the plane up to sets of

lines and planes in space and studies their interactions

with curves and surfaces; measures of particular sets

are explicitly introduced on the basis of the concept

of invariance under translation and rotation. Hostinský

also discusses the above-mentioned Bertrand’s chord

paradox and claims that a reasonable calculation of

probability can be carried out only with the respect to

experimental conditions under which the choice of a

random chord is made. He argues that each possibility

is legitimate and each of them corresponds to another

experiment. Hostinský’s discussion of the influence

of experimental realizations on solutions to various

problems includes also the generalization of Poincaré’s

method of arbitrary functions mentioned above.

One year later, Hostinský’s student Josef Bat’a

(1894–1929) published a nowadays almost unknown

booklet (Bat’a, 1927) where he outlined the history of

Bertrand’s chord paradox including the contributions

of Poincaré and Czuber, derived probability densities

for all six possibilities and then reported the results of

experiments that he had ran on the basis of Hostinský’s

proposals for the original three alternatives. In one

of the experiments, Bat’a used five transparent discs

on which three concentric circles k, k′ and k′′ with
diameters 60, 30 and 15 mm were drawn, and threw

them repeatedly (altogether 10,000 times) on a large

sheet of paper with two perpendicular systems of

parallel lines having the distance 60 mm (k hits always

some of the lines). For each circle size he recorded the

number of intersections with some line at a particular

direction and the number of grid points falling inside

the circle. He estimated P2 by calculating the ratio of

the number of lines hitting k′ (resp. k′′) to those hitting
k (resp. k′), which gives [P2] = 0.502 (resp. [P2] =
0.4985). The ratio of the number of grid points falling

into k′ (resp. k′′) to those falling into k (resp. k′) then
gives the estimate [P3] = 0.2426 (resp. [P3] = 0.2502).
To estimate P1, Bat’a drew two concentric circles k, k′

on a sheet of paper and to one point of k he pinned

the centre of a transparent circular disc covering k, on
which a diameter was drawn. He spun the disc and

(after some technical improvements) found the ratio of

the number of cases when the diameter hit k′ to all hits
of k and obtained the estimate [P1] = 0.3347.

The description of the vast development in the

following decades exceeds the scope of this paper.

Let us only recall the school of Wilhelm Blaschke

(1885–1968), a professor of mathematics at the

university in Hamburg. Inspired by the lectures of

his friend Gustav Herglotz (1881–1953) on geometric

probability held in the summer semester 1933 at the

university in Göttingen, Blaschke started to lecture

on this topic in Hamburg (in the academic year

1934/35 and summer semester 1936), Bulgaria and

Romania (in Autumn 1935). Together with his students

he also started to publish a series of papers under

the generic title integral geometry, denoting by this

term the theory based on the concepts of probability,

measure, transformation groups and geometry, which

22Hostinský referred to the second and substantially revised edition of this book from 1912.
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he viewed as important as differential geometry;
this early research was summarized in the book
(Blaschke, 1935). Among Blaschke’s students and
collaborators belong such well-known personalities
as Hugo Hadwiger (1908–1981), later professor at
the university in Bern and the author of the book
(Hadwiger, 1957) (to name only one publication),
Luis Antonio Santaló (1911–2001), later professor at
the university in Buenos Aires and the author of the
famous monograph (Santaló, 1976), or Shiing-Shen
Chern (1911–2004), later professor at the universities
in Chicago and Berkeley and the author of various
papers that were republished in Cheng et al. (1996).23

SOME PRACTICAL PROCEDURES

In the 19th century, practical procedures were
proposed to describe objects scattered in the plane
and space, which intuitively and implicitly used the
approaches of geometric probability without knowing
about its existence. It seems surprising that, for
example, the simple point counting method was
discovered by geologists almost half a century after
the publication of Czuber’s monograph on geometric
probability, from which it immediately follows. The
French geologist and mineralogist Achille Ernest
Oscar Joseph Delesse (1817–1881) proposed to
estimate the volume fractions of particular minerals in
a rock from their area fractions in planar sections.24

Although the practical implementation of his area
estimation method was rather laborious, consisting
in tracing the contours of grains on an oiled paper,
colouring the regions with different colours for
particular minerals, gluing on a tin foil, cutting,
sorting by colours and weighting the particular groups
and thus obtaining the searched fractions (Delesse,
1847a;b), the idea that the volume estimation does not
necessarily require a complete 3D reconstruction of
an object was very important. Various modifications
later appeared: e.g., for fine-grained rocks where a
microscope was necessary, Henri Clifton Sorby (1856)
proposed the use of a camera lucida to draw the
exact image of the observed sample, John Joly (1903)
replaced mechanical procedure by a graphical area
estimation, and Albert Johannsen (1919) proposed the

use of a planimeter. In the domain of bioscience,
the method of volume estimation by means of
measuring areas in parallel plane sections (using a
planimeter and magnified images of sections made
at definite intervals) was developed and used by
William R. Thompson (1932) and his collaborators
from the Department of Pathology of Yale University
(Thompson et al., 1932). It is worth noting that
Thompson (1932) also described the simple counting
principle based on section pairs.

The Austrian geologist August Karl Rosiwal
(1860 –1923) solved the volume estimation problem
by examining linear sections (Rosiwal, 1898); in
the present notation, he came to the formula VV =
SS = LL. Rosiwal’s method was again very useful in
materials science and geology and it simplified the
estimation of areas in maps and plans as well. It
was further improved, e.g., by Samuel James Shand
(1916), who introduced a recording micrometer device
that not only performed the measurements but also
their addition, and by Ellis Thomson (1930), who
transferred the measurement from the microscope to
photomicrographs, lantern-slides or on the projection
of slides on the blackboard. For the lineal method
Thomson used lines forming a square grid drawn on
a slide, and for comparison, he also estimated areas
directly by counting squares covering the relevant
mineral.

With explicit reference to geometric probability,
the point counting method was introduced by the
Russian geologist, mineralogist and petrologist Andrei
Aleksandrovich Glagolev (1894 –1969): Imagine that

a great number of points are scattered uniformly

random in a rock. . . . Probability that any of these

points falls upon a grain of certain mineral is equal to

p = A/100, where A denotes the percentage contents

of this mineral in the rock. If we count a high number

of points (n) scattered in the rock and the number of

points (m) hitting a grain of the given mineral, the

ratio [m/n]will be approaching p, i.e., the true fraction
of the given mineral (Glagolev, 1933, p. 23). In the
present notation, we finally have the formula

VV = SS = LL = PP . (28)

One year later, Glagolev and Gotman (1934) described
the application of the point counting method for the

23After the studies in Beijing, Chern obtained his doctorate in Hamburg as a student of Blaschke and then he spent another year as a

post-doctoral fellow in Paris, learning geometry from Élie Cartan. One of his earliest papers deals for example with integral geometry in

Klein spaces – see (Chern, 1942).
24Delesse considers a rock sample to be placed into a coordinate system and expresses the volume of particular mineral by the integral

∫

z fi dz, where fi denotes the area of this mineral in the section by the plane parallel to the plane xy. If the composition of the rock is

uniform, the mentioned integral expresses the volume of a cylinder with the base of the area fi and height equal to the height of the

sample. Volumens of different minerals are then in the same proportions as areas of bases fi. Quite naturally, the estimator of the volume

of a solid from parallel systematic sections is named after Bonaventura Cavalieri (1598–1647), whose famous principle presented in

(Cavalieri, 1635) represents the important step towards a general definition of volume for an arbitrary solid based on the comparison of its

lower-dimensional sections with those of a reference solid (for more details on Cavalieri principle, see (Cruz-Orive, 1987)).
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exploration of copper ore at the Kounrad deposit. Here
samples were taken at one meter intervals throughout
the whole depth of a hole and a regular grid of test
points was used for their analysis (see Fig. 5).

Fig. 5. Illustration from Glagolev and Gotman (1934).

Independently of geologists, the point counting
method as a tool for the study of tissue composition
was proposed by the physiologist Harold William
Chalkley (1943).

At the beginning of the 1930’s, a practical method
for the estimation of a curve length was proposed
by Hugo Dyonizy Steinhaus (1887–1972), a professor
at the University in Lwów, later in Wrocław. In
(Steinhaus, 1930a) he proved Cauchy’s formula Eq. 3
in the form L = 1

2

∫ π
0 W (θ)dθ , using parametrization

of the curve, some trigonometry and the concept of
Riemann’s integral. The proof is followed by a remark
that it can be generalized to any rectifiable curve
by employing the concept of Lebesque integral and
that a similar relation also holds for spatial curves –
projections must only be made on all planes and the
mean length of the total projection must be multiplied
by 4/π. However, Steinhaus went even further and
proposed to use Eq. 3 as the basis of a new definition
of the curve length: we can consider an arbitrary plane
set, determine Lebesque measure of its projection onto

a straight line (where the segments covered several

times should be considered as many times) . . . and

accept the integral 1
2

∫ π
0 W (θ)dθ as the length of the

considered set.25 Similarly, Steinhaus claimed that it
was advantageous to define the surface area by Eq. 11.

To obtain an estimate of the curve length,
Steinhaus (1930a) used the trapezoid rule for integral
approximation. Due toW (0) =W (π) he got

L =
1

2

∫ π

0
W (θ)dθ

.
=

π

12

6

∑
i=1

W

(

(i−1)π

6

)

, (29)

and described a device constructible as a part of a

microscope ocular, which recorded the movement of

a groove in a fixed perpendicular direction as its

intersection with the curve was moving along the curve

length; in this way one of the terms in the sum Eq. 29

was determined and all others were obtained by a

successive rotation of the device.26 Then Steinhaus

proposed a simplified and faster method consisting

in covering the given curve by a transparent disc on

which two perpendicular systems of parallels with

the distance 12/π were drawn, counting the number

of squares intersected by the curve as if they were

passed through by a chess rook (see Fig. 6), and thus

obtaining 12
π (W (0)+W (π/2)) . After the repetition of

the same procedure for two other positions of the disc

obtained by the rotation by π/6 and π/3, the total

number Ntotal of hit squares directly gave the length

estimate. Another view on this method is based on

the observation that the number of squares calculated

in the horizontal direction also represents the number

of intersections (for objects with a visible width as

rivers on maps, the number of “bridges”) of the curve

with the system of vertical parallels, similarly for

the other direction. Using Eq. 15 with N = Ntotal/6
and d = 12/π, we get the estimate of L as the total

number of intersections with all considered parallels;

this procedure was proposed in Steinhaus (1930b).

Fig. 6. Illustration from the paper (Steinhaus, 1931).

Steinhaus (1931) presented his method in a journal

for geography teachers; using the map of Poland scaled

1 : 5 000 000, he applied it to the estimation of the

length of the river Vistula between Warszaw and the

Baltic See (see again Fig. 6). In a complete and

25(Steinhaus, 1930a, pp. 128–129); Steinhaus used α instead of our θ .He pointed out several advantages of this definition: independence
of a parametrization, immediate recognition of the length motion invariance, no need of kinematic concepts of start and end points,

applicability to a wider range of curves.
26Steinhaus presented this method also in the session of the Polish Mathematical Society on July 3, 1929; in a remark given on October

10, 1929, he appreciated (Cauchy, 1832) – after being notified by B. Hostinský. See Ann Soc Polon Math 9(1930), pp. 192–193.
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accessible way, his length estimation method is also

described in (Steinhaus, 1950).27

Inspired by Steinhaus’ rectification approach,

Patrick Alfred Pierce Moran (1917–1988) published

the method for the estimation of the surface area

of a convex body, based on the identity Eq. 9 and

corresponding to Cauchy’s outline how to get Eq. 8 –

see Moran (1944).

At the turn of the 19th and 20th centuries, methods

for the determination of the mean grain size as a basic

characteristic of technical materials were proposed.

They were also based on an intuitive and unfortunately

incorrect understanding of the features observable in

planar sections, and form a base of various standards

and technical norms all over the world up to the present

(ASTM, 1996). This intuitive or even confusing

development of practical applications is rather curious,

because already the above-mentioned Barbier’s paper

(Barbier, 1860) contained the proposal of an inversion

of the games problem allowing for a reliable estimation

of certain object properties by counting their point

intersections with test probes.

CONCLUSION

Let us conclude this paper with the words of

Florian Cajori (1893): As compared with the vast

development of other mathematical branches; the

theory of probability has made very insignificant

progress since the time of Laplace. . . . The only

noteworthy recent addition to probability is the subject

of “local probability”, developed by several English

and a few American and French mathematicians.

This appraisal suitably characterizes the long way

made by geometric probability from the 17th to the

beginning of the 20th century. It was thus prepared

for its full development in random set theory and vast

applications in image and spatial analysis.
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Quantitätsverhältnisses der Mineralbestandtheile

gemengter Gesteine. Verhandlungen KK Geol

Reichsanstalt 5-6:143–175.

Saltykov SA (1945). Method of geometric quantitative

analysis of metals. USSR patent 72 704 [in Russian].

Saltykov SA (1946). The method of intersections in

metallography. Zavodskaja Laboratorija 12(9-10):816–

25 [in Russian].

Saltykov SA (1950). Introduction to stereometric

metallography. Yerevan: Acad Sci Armen SSR

[in Russian; 2nd and extended edition: Moscow,

Metallurgizdat, 1958].
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de quelques théorèmes sur la mesure des ensembles

de droites. In: Leja F, ed. CR du I Congrès des

Mathématiciens des Pays Slaves. Warszawa, 348–54.

Steinhaus H (1931). Lengthmeter (A grid for measuring the

length of curves) [in Polish]. Czas Geogr 9:211–5.

Steinhaus H. (1950). Mathematical snapshots. Oxford:

Oxford Univ Press.

Sylvester JJ (1864a). Problem 1491. Educ Times 17:20.

Sylvester JJ (1864b). On the real and imaginary roots of

algebraical equations. Philos T Roy Soc 154:579–666.

Sylvester JJ (1890). On a funicular solution of Buffon’s

“problem of the needle” in its most general form. Acta

Math 14:185–205.

Thompson WR (1932). The geometric properties of

microscopic configurations. I. General aspects of

projectometry. Biometrika 24:21–6.

Thompson WR, Hussey R, Matteis JT, Meredith WC,

Wilson GC, Tracy FE (1932). The geometric properties

of microscopic configurations. II. Incidence and volume

of islands of Langerhans in the pancreas of a monkey.

Biometrika 24:27–38.

Thomson E (1930). Quantitative microscopic analysis. J

Geol 38:193–222 [Russian translation: Mineral’noe

syr’e 10:1457–1469].

Todhunter I (1857). Treatise on the integral calculus and

its applications with numerous examples. Cambridge,

London: Macmillan.

Todhunter I (1865). History of the mathematical theory of

probability from the time of Pascal to that of Lagrange.

Cambridge, London: Macmillan.

Tomkeieff ST (1945). Linear intercepts, areas and volumes.

Nature 155:24.

Tweedie C (1922). James Stirling, a sketch of his life and

works along with his scientific correspondence. Oxford:

Clarendon Press.

Williamson B (1877). An elementary treatise on the integral

calculus. New York: Appleton.

Woolhouse WSB (1866). Problem 1894. Math Questions

5:110–20.

Woolhouse WSB (1867). Some additional observations on

the four-point problem. Math Questions 7:81–3.

16

http://dx.doi.org/10.1086/289777
http://dx.doi.org/10.1111/j.1365-2818.1972.tb03718.x
http://dx.doi.org/10.2307/1969305
http://dx.doi.org/10.2307/2689482
http://dx.doi.org/10.2307/2975158
http://dx.doi.org/10.1086/622346
http://dx.doi.org/10.1007/BF00374439
http://dx.doi.org/10.1080/14786445608642017
http://dx.doi.org/10.1098/rstl.1864.0017
http://dx.doi.org/10.1007/BF02413320
http://dx.doi.org/10.1038/155024a0

	Introduction
	Buffon's Problems
	Augustin-Louis Cauchy
	Joseph-Émile Barbier
	English Foundations
	Emanuel Czuber
	Further development
	Some Practical Procedures
	Conclusion
	Acknowledgements


