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ABSTRACT

Standard formulation of morphological operators is tratish invariant in the space and in the intensity: the
same processing is considered for each point of the imageurfertt challenging topic in mathematical
morphology is the construction of adaptive operators. lavipus works, the adaptive operators are
based either on spatially variable neighbourhoods acegrth the local regularity, or on size variable
neighbourhoods according to the local intensity. This papeoduces a new framework: the structurally
adaptive mathematical morphology. More precisely, thiemale behind the present approach is to work on a
nonlinear multi-scale image decomposition, and then tp&idérinsically the size of the operator to the local
scale of the structures. The properties of the derived tperare investigated and their practical performances
are compared with respect to standard morphological opsrasing natural image examples.

Keywords: adaptive filters, levelling, mathematical maiogy, morphological scale-space, structure
decomposition.

INTRODUCTION morphological operators, such as the opening and the
closing, are obtained as products of dilation/erosion.
Mathematical morphology is a well-known Forinstance, starting from the adjunction p@d, &, },
nonlinear image processing methodology based on the opening and closing of a grey-level image f
application of lattice theory to spatial structur&e(ra according to the structuring functiol are the

1988 Heijmans and Rons&990. LetE be a subset of mappings.# (E, ) — Z#(E,7) given respectively
the EuclidearRY or the discrete spacg®, considered by

as thesupport spacef the image, and let” be a set
of grey-levels, corresponding to tispace of valuesf £Y(x) = [ (en( £ (X
the image. Itis assumed th&t = R = RU{—o, 400}, (1)) = &(&(1))] ().

A grey-level image is represented by a function, Po(f)(x) = [en((F))] (x) )
E - T Particularly interesting in theory and in practical
f: { X ot (1)  applications oille, 1999, the flat grey-level dilation

and erosion is obtained when the structuring function
ie., fe .Z(E,7) maps each pixek € E into a is flat and becomes &tructuring element More
grey-level valuet € 7: t = f(x). The two basic precisely, a flat structuring function of support
morphological mappingsZ (E,.7) — .Z(E,7) are subspac®is defined as
thegrey-level dilationand thegrey-level erosiomgiven

respectively b 0 xeB
pectively by o9 ={ %, Xk
& (f)(x) = sup(f(x—h)+b(h)) )
hek whereB is a Boolean set.e., BC E or B¢ Z(E),
and which defines the “shape” of the structuring element.
&o(£)(X) = inf (f(x+h)—b(h)), (3) We notice thaB® denotes the complement se®i.e.,
hek BN B®= 0 andBUB® = E). The structuring element is

where f € Z(E, 7) is the original grey-level image defined at the origim € E, then to each poirp of E
andb € .Z(E,.7) is the fixedstructuring function corresponds the translation mappiodo p, and this
The further convention for ambiguous expression igranslation map8 ontoBy, i.e., B, ={b+p:b < B}.
considered:f (x —h) +b(h) = — when f(x —h) =  Therefore, thélat dilation and erosion of a grey-level
—o0 or b(h) = —co, and thatf(x +h) —b(h) = +0 image f(x) with respect to the structuring elemeBit
when f(x + h) = 4 or b(h) = —c. The other are respectively
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ds(f)(x) =sup(f(x—h)) (5) Motivation of the new adaptive framework
heB
={f(y) | f(y) =sudf(z)],z€ By}, The intensity-adaptive operators, or level-

varying operators, studied invVachier and Meyer

and (2007 and Maragos and Vachigf2008 are typically
ea(f)(x) = inf (f(x+h)) (6) implemented using a level-set decomposition,
heB _ . followed by the processing of each level set by a
={f(y) | f(y) =inf[f(2)],z€ By}, flat operator of a size which depends on the index

.. ) ] .. of the particular level set and finally the image
whereBiis thereflectionof Bwith respectto the origin,  econstitution from the processed level sets. Hence,
le.B={-b|beB}. the adaptavility for each point depends on the absolute
Standard formulation of morphological operatorsintensity value. Two points of the image associated to
is translation invariant in the space (“horizontal” structures of similar scale but of different intensity
direction invariance) and in the grey-level intensity 5. processed differently. This work introduces a
(“vertical” direction invariance), see properties and,a\ framework of nonlinear adaptive operators:

proofs in Heijmans and Rons&990), i.e.,for a given the structurall : ;
. 7 . y adaptive mathematical morphology.
translated imagg(z) = f(x-+y) 4, itis obtained that More precisely, the rationale behind the present

(9)(z) = &(f)(x+Yy)+r. But of course, this result _ : )
is true if and only if the same structuring function @PProach is to work on a nonlinear multi-scale
b(x) is considered for each point of the image. A mage decomposition based on a morphological

current challenging topic in mathematical morphologyfamily of operators called levellingsMeyer, 1998

is the construction of adaptive operators; or in otheMeyer and Maragos2000. Then, the size of the
words, operators whose structuring functions becomstructuring functionb(x) at point x is intrinsically
dependent on position or on the input image itself. Irmdapted to the local scale of the structures. In other
previous works, the proposed adaptive operators hawgords, two regions of the image appearing in a similar
been based on two main approaches. scale will undergo a nonlinear processing of similar

— Onthe one hand, a variability on the support spaceSize” independently of the absolute intensities. The
E: spatially variable shape of structuring functionsvalue of the processed image will be obtained by the
according to i) the geometric position in the image:reconstitution of the processed scales. We notice also
perspective-adapted Morphology Bgucheret al.  that our approach is not limited to flat morphological
(1987 and by Cuisenaire(2009, ii) the local operators. The properties of the derived operators
regularity of image values: morphological are investigated and their practical performances are
amoebas by Lerallutetal. (2003, intrinsic  compared with respect to standard morphological
structuring elements bpebayle and Pinoli2003  gserators using natural image examples. The paper
morphological - bilateral filtering by Angulo is an extended and improved version of the conference

(2011, iii) the orientation: curvilinear morpho- i
hessian filter by Tankyevychetal. (2008, paper fngulo and Velasco-Forer@010.

locally-variant anisotropic morphological filters o
by Verdu-Monederet al. (2011). Paper organisation
— On the other hand, a variability on the value . .
space.”7: variable size of structﬁring functions . The rest of the paper 1S or_ganlsed as follows. In the
according to the local intensity or contrast: viscousf,_'rSt part of Methogls Section |s.presented Fhe struc'FuraI
watershed by Vachier and Meyer (2005 and Image model, using a pyramid of levellings, which

viscous Openingslclosings Mchier and Meyer is the basic ingredient for the present adaptablllty
(2007, together with a PDE formulation framework. Then, the second part of Methods Section

by Maragos and VachigP008). introduces the structurally adaptive pseudo-dilation
and pseudo-erosion and other associated operators,

For a recent overview on the state-the-art on udi o the studv of the algebrai "
adaptive morphology, the interested reader is invited1¢'1dINg iSO the study of the algebraiC properties

to papers by Maragos and Vachier(2009 and ©f these new operators. Results Section discusses
by Verdu-Monederetal. (2011). Another recent Vvarious examples which illustrate the behavior of the
study by Roerdink (2009 is very interesting for structurally adaptive operators for typical applications
understanding the theoretical limitations of input-of mathematical morphology. Finally, Section on
adaptive morphological operators. conclusions and perspectives closes the paper.
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METHODS Furthermore, morphological openings/closings deal
selectively with the grey-level structures according to

STRUCTURAL IMAGE MODEL USING their support size but they also “distort” the contours

A PYRAMID OF LEVELLINGS (level sets) of the image objects. In mathematical
morphology, the powerful geodesic operato&eifa

The classical tool from mathematical morphology1988 Soille, 1999 (or connected filters) are perfectly
for multi-scale image decomposition is based on thable to deal with the objects, without distorting their
granulometric analysisSgerra 1982 Maragos 1989.  contours.

A granulometry is the study of the size distribution of .
g y y For all these reasons, we have considered for

ghe present structurally adaptive operators a multi-
[ = {}a}n=0 that depends on a positive parameter scale framework which, on the one hand, decomposes

(which expresses a size factor) such aspi)f )(x) = simultaneously bright and dark structures (by means
f(x); i) f(x) < g(x) = ya(F)(X) < Yh(g)(X),¥n > 0 of alternate sequential filters); and on the other hand,
vi.ge Z(E, 7). il Yn(?)(x) <_f(xn) Yn>0 \vfe Uuses geodesic operators (in particular, the levelling
Z(E, 7); and iv) y verifies the granulorﬁetric semi- operator) to extract precisely the grey-level objects.
group absorption lawi:e. Let us consider in detail this methodology.

Nonlinear scale-space based on viscous

YnVm = YmVh = Ymaxnm) > vn,m=>0. .
levellings

Moreover, a granulometry by closings (or anti-
granulometry) can be defined as a family of

increasing closingsP = {¢n}n>0- In practice, the . AT
most useful granulometri/ g?r?::l_ anti-granulometry ard® generally a rough simplification of the reference

those associated to morphological flat openinggnage)’. d_enoted_/\(f,_m)({()., is a morpholc_)gi_cal
and closings:ye, () = &, (&g, (f)) and ¢, (f) = geodesic filter which simplifies textures and eliminates

small details of the reference image according to

£, (0B, (f)) respectively, wher®; = B is a isotropic _
structuring element of unit size (unitary discrete disk){N€ marked structures, but preserving the contours

and B, is the homothetic structuring element of sizeOf remaning ob!ects. In praptmg, 'the Ievelllng' IS
n, with n= 1,2, --. The granulometric analysis of an obtained by iteration of geodesic dilations and erosions

imagef with respect to a finit€ consists in computing until idempotence. More precisely, a straightforward

the pyramid of opened images and then in calculating'90rithm is as followsNleyer, 1998
the image residue between two successive openings: ;
J pening A(f,m)(x) = A (f(x),m(x)) , ™

A (F)(%) = ¥, (1) (%) — v (F) (%) -

The pyramid of residues of openingg;™(f)(x)}N. i i
leads to a decomposition of brightgstlru(thJ(re)s}lihlto A (f,m) :/\Hl(f’m) ’
scales. We recall that the subgraph of the opened ima%vehere the-iteration is

by B; is equivalent to the union of the translations of
the structuring when it fits the subgraph of the original
image Serral1982), or in other terms, image structures
in the foregroundi(e., bright ones) that cannot contain with the initial step
Bi+are removed by the opening. Therefore, the residue
P extracts the structures removed betw®&gn, and 1 -

Bli. By duality, the image decomposition inkbscales AT(E,m) = (FAa(m) v B (m) . ©)
of dark structures is obtained from the pyramid of
residues of closing$p, (f)(x)}N.,, where

The levelling Meyer, 1998 of the reference image
f(x) according to the marker imaga(x) (this latter

such that the idempotence has been readted,

N (f,m) = (faa (N2H(F,m)) v B (N~L(F,m)) ,
(8)

Levellings of different nature are obtained according
to the pair of transformationéa,3) used in Eq.8
and9. More precisely, two of the most interesting ones

o (H)(X) = ¥, () (%) — ¥, (N (X) - are Meyer, 1998
In summary, using morphological openings and _ — g
closings, it is obtained a pair of nonlinear scale-space Standard Ievelllng{ B = gBl :
image decompositiori.e., '
+ N .o N _ viscous levellingd &~ %, 8;
F) = o (N )}z o (D) ()} - B = 8,98,
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Fig. 1 shows a comparison of standard levelling vs. The levelling can be considered as the activity
viscous levelling using three different marker imagessupremum between an opening by reconstruction and
We observe that even the structures which have been closing by reconstructionMeyer, 1998, leading
removed from the marker can be reconstructed (byo a brigh/dark symmetric operator. Lef stand for
strict geodesic propagation) by standard levellingthe image complement (or negative) o€ .% (E, .7),

On the contrary, viscous levelling produces ai.e., Cf(x) = —f(x) if 7 =R andCf(X) = tmax—
reconstruction more faithful to the simplification f(x) if .7 = [0,tmay. We have for the levelling
degree driven by the marker. Consequently, by itshe following propertyCA (Cf,Cm) = A (f,m), which
skilful properties on structure regularisation, wemeans that(f,g) — A(f,g) is always a self-dual
consider here theiscous levellings the fundamental mapping. In addition, ifm derives from f by a
operator for our structural decomposition. self-dual operationj.e., m= m(f) with Cm(Cf) =
m(f) then levellingf — A (f,m(f)) is self-dual. We
notice that this important relation is distinct from
that of invariance under complemem(Cf) = m(f)
which does not imply self-duality fof — A (f,m(f)).
Hence, to obtain aelf-dual and symmetric processing
of brigh/dark structuresa self-dual family of marker
images is required. Classical examples of self-dual
filters are the convolution with Gaussian kernels
or the (weighted) median filters. In particular, the

nonlinear scale spaces associated to levellings where
the markers are Gaussian filters have been studied
by Meyer and Marago&000. In addition, this kind of
marker was also used is¢fouet al,, 2005 to extract
the texture layer of an image as the residue of the

(b1)my = AASE, (f (b2) my = AASK, (f (b3) mg = AASH,( corresponding Ievelling.

Nevertheless, we propose in this study to use as
multi-scale markers thaveraged alternate sequential
filters (AASF):

ASH, ()(x) + ASH! (1)(x)

AASTE, (f)(x) = = . (1)
(C1)A(f,mp) (€2)A(f,my) (€3)A(f,mg)
where the pair of alternate sequential filters
(ASF) (Serra 1988 are given by the following
products of openings and closings
ASR (1)(x) = [P, Ve, 98, V8,8, V6, (F)] (%),
(@DA(F.me) (@2)A (T, mu) (@3)A(F. me) ASE (1)(X) = [V Pen - Vo, PBn Ve, P, ()] (X) -
(12)
Figure 1.Comparison of standarda(= dg, and 8 = The properties of ASF are well known in mathematical

gs,) and viscous levelling( = s, ¥, andﬁigBld)B) morphology Gerra 1988. In particular, they are
scale-space: First row (a), orlglnal image; second rowidempotent and they follow the semi-group absorption
(b), AASF markers; third row (c), standard levellings; 1aw. i.e.,¥n>m= 0, we have

I
fourth row (d), viscous levellings. ASHHAS%H :ASFr', “ASFr'] Al ASF' 3 ey
and consequently this property is inherited by
AASHE,. ASF are very useful for noise cancellation
and smoothing since they produces progressive

f(x) — {M(X)}iN:l — {A(f,m) (X)}iN:l, (10) simplification of image structures. This behaviour is
related with their property of compatibility with scale
which leads to a nonlinear scale-space (Meyer anthodifications i e., intuitively that means that the filter
Maragos,2000. The marker at level determines the of order k works at a scalk as a filter of order 1
degree of simplification of the corresponding levelledat a scale 1). Theoretically, ASF are not self-dual,
image; the simplification effect increases wiith but our symmetric averaged versid\Sk, leads to

A pyramid of levellings is then obtained by
associating to the image a pyramid of markess,
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an quasi self-dual operator. we have observed that We can consider that varies with the DC

in practice the difference betweehASHK,(Cf)(x) level of the image acquisition device. In the
and CAASHE, (f)(x) is always negligible. The main operators presented in this papmedoes not give
drawback ofAASHg, is the computation time, which ~ any useful information but is still necessary for
increases with the size of the scale. However, using ongoing research on adaptive self-dual operators
well-known optimized implementations of discrete (see perspectives section);

dilation/erosion for the openings/closings, the final

computation time is not nowadays a limiting point.— Thestructure componerorresponds to the mean-

The rationale behind this choice AASH,, instead of centred last levelled imageg.,
a Gaussian filter of equivalent scaigis because we
have observed empirically that the viscous levellings s(x) = A(f,my)(x) —c. (15)

associated with alternate sequential filter are more

effective for extracting the bright/dark structures of  Therefore, the images(x) represents the most
corresponding scale simplified image according to the choice of scale
N. In other words, the level-sets of the significant
objects having a “support size” bigger than the
structuring elemerBy.

— The texture componentsare obtained as the
derivative of the levelling pyramid.e.,

() =A(f.m_)(X) -A(f.m)(x),  (16)
(@2)A(f,m)

where mp(x) = f(x). Each residue image;

represents the brigh/dark objects which were
in scale imagei — 1 but have been removed
in scale imagei; that is, level-sets of objects
whose “support size” is comprised between both

(bL)rp, = f— (b2)rs = A (b3)rg = A successive scales. The intensity at each point of
A(f,mp) /\(f,m4) A(f,me) t; is the relative intensity of the object (which
is invariant to monotone increasing intensity

Figure 2.Example of laplacian pyramid on viscous ransformation on original image). In fact, the

(@L)A(f,mp) (@3)A(f,mg)

levelling scale-space (original image on Fit): first residue image between two successive levellings
row (a), pyramid of viscous levellings; second row (b), ~ ¢an be Son5|dered as a “morphological laplacian
derivative of the viscous levelling pyramid. pyramid”. In natural images, we can suppose that

the texture components are sparse images, (
only a limited number of pixels are different of
Structural image model 0) and that the complexity of the original image
We have now all the ingredients to introduce the S SPlitinto a simpler image (structure component)
following structural model image: and a scale-complexity bounded series of images
(texture components).

N
f(x) =c+s(x)+ thi(x), (13) Our additive image decomposition model can

i= be considered as generalisation of the Cartoon +
Texture decomposition byMeyer (2002: f(x) =
u(x) + v(x) where u(x) is the cartoon component
(homogeneous zones of the objects) ax) is the
texture oscillation, which is usually solved using

More preC|ser, given the levelling scale-spaceyariational algorithmsAuijol et al, 2006. The terms

{A(f,m)(x)}{;, the components of the presentlmagq;an be identified asi(x) = ¢+ s(x) and v(x) =

where ¢ is the continuous componeng(x) is the
structure component, anfti(x)}, are the texture
components dtl scales.

model can be calculated as follows. sN . ti(x). The valueN of the larger structuring
—  Thecontinuous componeit obtained as the mean €lément (scale of structure equivalent) in our model
value of the last levelled imaggee., is equivalent to the “scale size” in other Cartoon
+ Texture decomposition algorithm®8yadeset al.,
c=mearA (f,my)(x)) . (14) 2010.
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two basic adaptive operators present a lack of some
algebraic properties; and consequently they are not
dilations and erosions istricto sensuTherefore, we
prefer to them structurally adaptive pseudo-dilation
and pseudo-erosion.

(a2) 3gs (f) (a3) 8y, (f)

(©)u(x) (d) v(x)

Figure 3.Comparison of our structural decomposition
(size of largest structure scale-N8) and the Cartoon

+ Texture decompositiorBuades et a).2010 (scale
sizeo = 3): (a) structure component, (b) sum of texture
components, (c) cartoon image, (d) texture image. The
Cartoon + Texture decomposition corresponds to thérigure 4. Comparison of flat structural adaptive
algorithm available online in Buades et a). 2009. pseudo-dilations (second row, b) vs. the corresponding
The original image is given on Fid. standard flat dilation (first row, a).

(bl) 882:2:4( f) (bz) SBZ:Z:B( f) (b3) 882:2:12( f)

Fig. 2 gives an example of three levels of a viscous Adaptive pseudo-dilation and
levelling pyramid and the corresponding residues .
images, used to define the texture components. We PSeudo-erosion
notice that the texture components, with respect to  Given the imagef € .Z(E,.7), structurally

the structure component, are not defined in termgecomposed into the scalés, m+k m-+2k,--- .M}

of periodicity or regularity as in the nowadays denoted compactly by{m : k : M}) according to
extended Cartoon+Texture decomposition. That can e model in Eq.13, we define the corresponding

observed in the comparative example of our structuradtyyctural adaptive dilatioras

decomposition (size of largest structure schle=

8) and the Cartoon+Texture decomposition recently N M

proposed byBuadeset al. (2010 (scale sizeo = 3) frodmem (f)=c+dy(5+ 5  &(t), (17)
given in Fig.3. The Cartoon + Texture decomposition i=m,mk,---

has been obtained using the algorithm available online ) )

in (Buadestal, 2009. Therefore, the notion of and thestructural adaptive erosioas

texture matches here exclusively with the notion of M

scale. We remark also that, in comparison with a s _ :
laplacian pyramid associated to a Gaussian scale-f = Emicm (F) = C+ &y (5)+ z & (6) . (18)
space, the main advantages of the derivative levelling
pyramid are, on the one hand, the preservation of thﬂ/herec‘ion(g)(x) andey, (g)(x) are the standard dilation
contours of extracted structures and on the other hangnd erosion of imagey(x) according to the fixed
at each scale, the size of the structures is bounded Ryatially invariant structuring functidoy (x)
the size of theAASFfilter used as marker.

i=mm+Kk,---

We have considered in this study examples using
STRUCTURALLY ADAPTIVE the two most useful families of isotropic multi-scale

structuring functions:
OPERATORS _ _ _ _
The structural image model introduced above is p&%?;'.m shape functionf width n, i.e., tn(x) =

the key element for the structurally adaptive operators
studied in this section. As we will show below, the— flat diskof radiusn, denoted byB;,.

116



Image Anal Stereol 2011;30:1 11122

For the examples given in the paper, the family of-
disks B, used in the flat operators are implemented
digitally by hexagons of radius pixels. This choice
is based on the properties of isotropy of hexagonal
grid with respect to the square one and the fact that
the hexagons are an approximation to the disk which
can be implemented using optimized algorithms. In-
any case, if the computation time is not critical, the flat
disks can be obtained by thresholding the paraboloidal
structuring functions. Figd depicts a comparison of
three flat structural adaptive pseudo-dilationsNbe
4, 8 and 12 (withm = 2 and k = 2), versusthe
corresponding standard flat dilations. We notice that
the “size” of the operator is determined by the size
of the biggest scal®#; or in other words, the size of
the scale of the structure component. The two other
parameters from the structural decomposition: i) the
size of the smallest scalm, and ii) the sampling
parameterk (or step size between two successive
scales) have a lower impact on the adaptive operator,
see for instance the example given in FEgThis effect
allows to introduce a sampling parameter- 1 in
order to reduce the number of processed discrete scales
(reduction of computation time).

(b) 881:1:8( f)

(a) 852:2:8( f)

Figure 5. Effect of scaling on the flat structurally
adaptive dilation for the same size M 8: (a) sparse
scale parametrization m 2 (smallest scale) and 2
(sampling size); (b) dense scale parametrizatioa th
(smallest scale) and% 1 (sampling size).

The structural adaptive pseudo-dilation and
pseudo-erosion are dual operators with respect to
the grey-level inversiori,e.,Vf € % (E,.7),

8m:k:M (f) = E/ém:k:M (Ef) .

However, the fundamental law which links the pair
of dilation/erosion, the adjunction property, fails
for the introduced structurally adaptive operators,
ie,Vf,ge #(E,7),

gm:k:M(f) <g&f S/ém:k:M(g)-

As recently pointed out byRoerdink (2009, this
drawback is common to any adaptive morphology
dilation/erosion where the processing at each point
depends on the input value.

Moreover, as a consequence of the lack of
adjunction property, other properties are also lost.
Typically, the structural adaptive pseudo-dilation
(pseudo-erosion) does not commute with the
supremum (infimumji.e.,Vf,ge #(E,.7),

3\m:k:M (fvg) # Sm:k:M (f)v Sm:k:M 9.

Another fundamental property of standard
morphology which fails is the increasiness. The
structural adaptive pseudo-dilation/pseudo-erosion
are generally not increasing ope@to’re,., f<

g does not alwaysinvolve that dykm (f) <
dmkm (9). In fact, the property is verified if

Vi:A(f,ASEs_, () —A(f,ASR (f)) <
A(9,ASFg_,(9)) —A(9,ASH;(9)) ,

or in other terms, the ordering must be preserved
in the derivative pyramid, which is not always the
case.

In mathematical morphology, a pair of dual

Properties of structurally adaptive
operators

Let us consider the algebraic properties of thes
two morphological operators. The proofs are no
included but are easily obtained from the standar
properties of erosion and dilation.

erosion) is extensive (anti-extensivek., Vi €
F(E,T),

~

f< dﬂ:k:M (f)

and f > &nicm (f).

Some properties, the operat@si:m
%aan be used to construct structurally adaptive gradient,

The structural adaptive pseudo-dilation (pseudo-

operators which are extensive and anti-extensive
are respectively a thickening and thinnin&efra
1982 Soille, 1999; therefore, the structurally
adaptive operators are just algebraic grey-level
thickenings/thinnings. In any case, despite the lack of

placian, toggle mapping, etc.
Adaptive pseudo-opening and
pseudo-closing

Due to the fact that the introduced structurally
adaptive operators are not formally a pair of adjunct

dilation/erosion, their prodummémkm (f) is not
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an algebraic opening. Hence, we prefer to formulate
thestructurally adaptive pseudo-openiag

f = Yiiem () =+ Wy () + Z )'b. (t), (19)
i=mm+Kk,--
and dually, thestructurally adaptive pseudo-closing)
defined by

M
f $m:k:M (f) =C+ ¢bM (S) + Z ¢bi (ti) . (20)
i=mm+Kk,--
The structural adaptive opening in Ef9 (closing
in Eq. 20) is anti-extensive (extensive) but it is not
increasing. The idempotencyy(f) = y(f), is the
property which guarantees the stability of standard
opening/closing. Even if our adaptive operators are
not strictly idempotent, their iteration is almost
stable whenAASF filters are used for the levelling (DD 1o (DY)
decomposition.

ﬂ‘

(@l)w, () (a2) vy (f (@3) ¥, (f

(bz) %2:2:10( f ) (X)

(cD)th (f)(x) (C2) T by (P (X)

Figure 7.Image detail extraction using the white
top-hat: (a) original image, (b1) standard parabolic
opening (n=10), (cl) standard parabolic white top-
hat, (b2) structural adaptive pseudo-opening£M.0,
m= 2, k= 2), (c2) corresponding structural adaptive
white top-hat.

(bl) %2:2:4( f) (bz) %2:2:8( f ) (b3),y\b2:2:12( f )

Figure 6.Comparison of parabolic structural adaptive The first case study, depicted in Figcorresponds

pseudo-openings (second row, b) vs. the corresponding 5 coronary network acquired by contrast-enhanced

standard parabolic openings (first row, a). radiography. Besides the vessels, the image presents

a strong and irregular background (which includes

As we can observe in the example given in Fdg. other structures such as the ribs). In order to extract

the adaptive openingp,,, removes bright objects the vessels, the classical top-h&e(ra 1982 is

smaller than the size of the structuring function butparticularly useful:

with respect to the standard openipg, the notion of

“smaller than” depends on the scale of decomposition — —~

of the object. The product of operatdfgm (f) and oo () = = Vo () (21)

®mim (f) can be then used to define other more ) o ]
complex operators. i.e., residue between the original imade and the

openingh,.,. (f). The size of the isotropic opening
should be bigger than the diameter of the thickest
APPLICATIONS AND RESULTS vessels. For the particular example, we consider a
parabolic structuring function of widtim = 10. As
Let us illustrate the performance of the presenwe can observe, the standard opening produces a
operators by means of four typical applications ofrough regularisation by removing all the peaks smaller
mathematical morphology. than byp whereas the structurally adaptive opening
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removes also the peaks at different scales but preserves
better the secondary structures; hence, the comparison
of the standardhgm(f) against the adaptive top-hat

th by-0-10( F) ShOws that the second one presents a better
extraction of thin vessels as well as less texture and
irregularities.

The second application, given in Fi@®, deals
with an example of image denoising and detail @ f(x)
simplification. The mosaic image is quite textured and
noisy and the aim is to filter it out in order to obtain a
more regular image where the main contours are well
preserved. This goal can be achieved by means of the
morphological centre operatd8¢rra 1988,

G (1) = [TV o (DA G ()] A
o (VG (D), (b1) 2, (1)) (52) G, (1)

defined in terms of two products of openings and
closings of a chosen size:

/Z\t;tn:k:M ( f) = $bm:k:M %m:k:M (/ﬁbmzk:M ( f) ’ (22)
Zt;n:k:M ( f) = %mzk:M $bm:k:M %m:k:M ( f) . (23)

We compare in particular the denoising effect using
a flat structuring element of siz&dl = 4 and a - -
parabolic structuring function of similar width. As (€1) ZBy4.4(F)(X) (€2) doy.1.4(F) (%)
we can observe in the images, the adaptive flat

or parabolic versions of the operatogs,.,,(f) Figure 8. 1Image filtering/denoising  using

and {p,,.,(f) outperforms clearly the effects of the norphological center: (a) original image, (bl)
standard oneg(,(f) and ¢y, (f); vielding a more {4t centre operator (disk of size=a4), (b2) parabolic
efficient denoising/simplification image, especially the;gntre operator (paraboloid of width & 4), (cl)
parabolic case, with an excellent contour preservatiogiy,ctural adaptive flat centre (M- 4, m= 1, k = 1),
of remaining structures. (c2) structural adaptive parabolic centre (M 4,

In order to compare quantitatively the behavior ofn= 1, k=1).
standard vs. adaptive morphological centre, we have o
evaluated in an experiment the quantitative assessment 1ne next problem concerns an aerial image of
of noisy images. Fig9 summarizes the results of this @n airport, including objects of different size, but
experiment: starting from an image corrupted withnot well contrasted, see Fid0. The morphological
four different levels of Gaussian noise and with fourlaplacian (or nonlinear laplace filter as introduced
different levels of impulsive noise (“salt and pepper’by van Vlietetal. (1989) is defined in terms of
noise) , we have filtered out the eight images usinglilation and the erosion as
standard parabolic centi®, and structural adaptive
parabolic centre, ., and then, we have computed Ip,  (f)= <60m:k:M(f) - f) — (f = B (1))
the PSNR value with respect to the original image. For h N
all the noise levels, the value of PSNR is better for the = Qe (F) + & (F) — 2F . (24)
structurally adaptive case than for the standard one. We
note also that the “size” of the filter 4 is not particularly A simple but efficient image contrast enhancement is

appropriate for low Gaussian noise levels or for highpptained by subtracting the laplacian image from the
impulsive noise levels, but even in such a case thgyiginal one:

trade-off between denoising and image preservation is
better for the adaptive version of the morphological
center.

foo £ =f—1Ipy,.,(f). (25)
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(@) F(x)

(c1) (c2) (c3) (c4)
Pr=2.5% Pr=5% Pr=7.5% Pr=125%

(f1) (f2) (f3)

0=10|0=20| 0=40| 0 =80
Cp, 24,65 | 24.18 | 20.58 | 15.36
{oq, | 25.18 | 24.30 | 22.45 | 18.40
2.5% 5% 75% | 125%
l, 26.08 | 19.02 | 14.93 | 12.22

oy | 27.59 | 24.59 | 24.45 | 23.34
(g) Values ofPSNR

Figure 10.Image enhancement using morphological
laplacian: (a) original image, (b1) standard parabolic
laplacian (paraboloid of width r=4), (b2) structural
Figure 9. Evaluation of image denoising using adaptive laplacian (M= 4, m= 1, k = 1), (cl)
morphological center: first row and fourth row, enhanced image using parabolic laplacian, (c2)
original images; second row and fifth row, parabolic enhanced image using structural adaptive laplacian .
centre (paraboloid of width & 4); third and sixth row, At the bottom are zoom-in frames of a square section
structural adaptive parabolic centre (M4, m=1, cropped from original image (a), standard enhanced
k = 1). Original image was corrupted with Gaussian image (c1) and structural adaptive enhanced image
noise in first row: first columw = 10, second column (c2).

o = 20, third columno = 40, fourth columno = 80;

and with impulsive noise (“salt and pepper” noise
which consists in randomly replacing a percentage of..
pixels with white pixels and the same percentage withPb,.,,(f) Pproduces a more balanced contrast
black pixels) in fourth row: first column P& 2.5%, enhancement than the standard olm,(f). In
second column P& 5%, third column Pr= 7.5%, particular, the small objects are enhanced in a
fourth column Pr= 125% . Table (g) provides the small neighborhood and the large in a proportional
corresponding values of PSNR. neighborhood. In the standard case, all the structures
are equally enhanced. By the way, the laplacian-based
enhancement is an example of structurally adaptive
operator which probably is better to be implemented

We observe that the structurally adaptive laplacian
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using a full scale decomposition, with= 1 andk = 1.

The last case study deals with an edge detector
which can be implemented using only a pair of
morphological erosion and dilation, and which is
useful for complex images, like the one given in
Iiig. 11 In fact, the zero crossings of the laplacian
1Py, (f): @s in the classical Marr-Hildreth model,
correspond to the edges of imageln order to select
only the most prominent edges, the zero crossing
detector is “multiplied” by the binary image obtained
with a threshold by hysteresis of the morphological
gradient Serra 1982 Soille, 1999 given by

Ebm:k:M ( f) = 8Dm:k:M ( f) - /E\bm:k:M ( f) : (26)

Besides the size parameter of the laplacian and
the gradient, the single parameter of this edge
detection model is the threshold value for the
gradient. We observe again in this example that
the structurally adaptive gradied, ., ,(f), using a
parabolic structuring function, is more appropriate
than the standard counterpart. The comparison by
simple visual assessment of edge detection is not
conclusive, but it seems that in the adaptive case the
edges of small objects are better detected.

(c1) Edges from (b1) (c2) Edges from (b2)

CONCLUSIONS AND

PERSPECTIVES Figure 11.Image edge detection (third row) using
gradient (second row) and zero-crossing of laplacian:

We have discussed an additive image modefa) original image, (bl) standard parabolic thick

associated to a nonlinear multi-scale imageyradient (n= 4), (b2) structural adaptive thick

decomposition using a family of viscous levellings.gradient (M= 4, m= 1, k= 1), (c1) edges obtained
Then, working on this decomposition, we haveas the zero-crossings of standard parabolic laplacian
introduced  structurally adaptive morphologicalon the binary mask obtained by hysteresis-based
operators, where each component of the imagehresholding of gradient (bl), (c2) edges obtained
is processed with a structuring function of sizeas the zero-crossings of structural adaptive parabolic
intrinsically adapted to the corresponding local scale.laplacian on the binary mask obtained by hysteresis-

We have shown that, in practical applications,P@sed thresholding of gradient (b2).

the proposed operators perform better than standard

ones for object extraction, image denoising, image As we have discussed, in the present image model,
enhancement, etc. This positive behaviour is justifieghe structure and texture terms are positive/negative
by the fact that, using geodesic operators fokignals and consequently, in ongoing work, we will

image decomposition, the different objects ar&ormulate adaptive self-dual erosion and opening.
almost individually processed and the “interferences’inally, sparsity properties of our image model suggest
between adjacent objects are notably reduced. us to consider it as a starting point to explore the notion

In addition, we have proved that another advantag@f sparse mathematical morphology in future research.
of the adaptability is the fact that the choice
of the “size” for the erosions/dilations and the = REFERENCES
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