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ABSTRACT

Standard formulation of morphological operators is translation invariant in the space and in the intensity: the
same processing is considered for each point of the image. A current challenging topic in mathematical
morphology is the construction of adaptive operators. In previous works, the adaptive operators are
based either on spatially variable neighbourhoods according to the local regularity, or on size variable
neighbourhoods according to the local intensity. This paper introduces a new framework: the structurally
adaptive mathematical morphology. More precisely, the rationale behind the present approach is to work on a
nonlinear multi-scale image decomposition, and then to adapt intrinsically the size of the operator to the local
scale of the structures. The properties of the derived operators are investigated and their practical performances
are compared with respect to standard morphological operators using natural image examples.

Keywords: adaptive filters, levelling, mathematical morphology, morphological scale-space, structure
decomposition.

INTRODUCTION

Mathematical morphology is a well-known
nonlinear image processing methodology based on the
application of lattice theory to spatial structures (Serra,
1988; Heijmans and Ronse, 1990). LetE be a subset of
the EuclideanRd or the discrete spaceZd, considered
as thesupport spaceof the image, and letT be a set
of grey-levels, corresponding to thespace of valuesof
the image. It is assumed thatT = R = R∪{−∞,+∞}.
A grey-level image is represented by a function,

f :

{
E → T

x 7→ t (1)

i.e., f ∈ F (E,T ) maps each pixelx ∈ E into a
grey-level valuet ∈ T : t = f (x). The two basic
morphological mappingsF (E,T ) → F (E,T ) are
thegrey-level dilationand thegrey-level erosiongiven
respectively by

δb( f )(x) = sup
h∈E

( f (x−h)+b(h)) (2)

and
εb( f )(x) = inf

h∈E
( f (x+h)−b(h)) , (3)

where f ∈ F (E,T ) is the original grey-level image
and b ∈ F (E,T ) is the fixedstructuring function.
The further convention for ambiguous expression is
considered:f (x− h) + b(h) = −∞ when f (x− h) =
−∞ or b(h) = −∞, and that f (x + h)− b(h) = +∞
when f (x + h) = +∞ or b(h) = −∞. The other

morphological operators, such as the opening and the
closing, are obtained as products of dilation/erosion.
For instance, starting from the adjunction pair{δb,εb},
the opening and closing of a grey-level image f
according to the structuring functionb are the
mappingsF (E,T ) → F (E,T ) given respectively
by

γb( f )(x) = [δb(εb( f ))] (x) ,

ϕb( f )(x) = [εb(δb( f ))] (x) . (4)

Particularly interesting in theory and in practical
applications (Soille, 1999), the flat grey-level dilation
and erosion is obtained when the structuring function
is flat and becomes astructuring element. More
precisely, a flat structuring function of support
subspaceB is defined as

b(x) =

{
0 x ∈ B
−∞ x ∈ Bc ,

whereB is a Boolean set,i.e., B⊆ E or B ∈ P(E),
which defines the “shape” of the structuring element.
We notice thatBc denotes the complement set ofB (i.e.,
B∩Bc = /0 andB∪Bc = E). The structuring element is
defined at the origino ∈ E, then to each pointp of E
corresponds the translation mappingo to p, and this
translation mapsB ontoBp, i.e., Bp = {b+p : b ∈ B}.
Therefore, theflat dilation and erosion of a grey-level
image f(x) with respect to the structuring elementB
are respectively
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δB( f )(x) = sup
h∈B

( f (x−h)) (5)

= { f (y) | f (y) = sup[ f (z)],z∈ Bx} ,

and

εB( f )(x) = inf
h∈B

( f (x+h)) (6)

= { f (y) | f (y) = inf[ f (z)],z∈ B̌x} ,

whereB̌ is thereflectionof B with respect to the origin,
i.e., B̌ = {−b | b ∈ B}.

Standard formulation of morphological operators
is translation invariant in the space (“horizontal”
direction invariance) and in the grey-level intensity
(“vertical” direction invariance), see properties and
proofs in (Heijmans and Ronse, 1990), i.e., for a given
translated imageg(z) = f (x+y)+ r, it is obtained that
δb(g)(z) = δb( f )(x+y)+ r. But of course, this result
is true if and only if the same structuring function
b(x) is considered for each pointx of the image. A
current challenging topic in mathematical morphology
is the construction of adaptive operators; or in other
words, operators whose structuring functions become
dependent on position or on the input image itself. In
previous works, the proposed adaptive operators have
been based on two main approaches.

– On the one hand, a variability on the support space
E: spatially variable shape of structuring functions
according to i) the geometric position in the image:
perspective-adapted Morphology byBeucheret al.
(1987) and by Cuisenaire(2006), ii) the local
regularity of image values: morphological
amoebas by Lerallutet al. (2005), intrinsic
structuring elements byDebayle and Pinoli(2005)
morphological bilateral filtering by Angulo
(2011), iii) the orientation: curvilinear morpho-
hessian filter by Tankyevychet al. (2008),
locally-variant anisotropic morphological filters
by Verdu-Monederoet al. (2011).

– On the other hand, a variability on the value
spaceT : variable size of structuring functions
according to the local intensity or contrast: viscous
watershed by Vachier and Meyer (2005) and
viscous openings/closings byVachier and Meyer
(2007), together with a PDE formulation
by Maragos and Vachier(2008).

For a recent overview on the state-the-art on
adaptive morphology, the interested reader is invited
to papers by Maragos and Vachier(2009) and
by Verdu-Monederoet al. (2011). Another recent
study by Roerdink (2009) is very interesting for
understanding the theoretical limitations of input-
adaptive morphological operators.

Motivation of the new adaptive framework

The intensity-adaptive operators, or level-
varying operators, studied inVachier and Meyer
(2007) andMaragos and Vachier(2008) are typically
implemented using a level-set decomposition,
followed by the processing of each level set by a
flat operator of a size which depends on the index
of the particular level set and finally the image
reconstitution from the processed level sets. Hence,
the adaptavility for each point depends on the absolute
intensity value. Two points of the image associated to
structures of similar scale but of different intensity
are processed differently. This work introduces a
new framework of nonlinear adaptive operators:
the structurally adaptive mathematical morphology.
More precisely, the rationale behind the present
approach is to work on a nonlinear multi-scale
image decomposition based on a morphological
family of operators called levellings (Meyer, 1998;
Meyer and Maragos, 2000). Then, the size of the
structuring functionb(x) at point x is intrinsically
adapted to the local scale of the structures. In other
words, two regions of the image appearing in a similar
scale will undergo a nonlinear processing of similar
“size” independently of the absolute intensities. The
value of the processed image will be obtained by the
reconstitution of the processed scales. We notice also
that our approach is not limited to flat morphological
operators. The properties of the derived operators
are investigated and their practical performances are
compared with respect to standard morphological
operators using natural image examples. The paper
is an extended and improved version of the conference
paper (Angulo and Velasco-Forero, 2010).

Paper organisation

The rest of the paper is organised as follows. In the
first part of Methods Section is presented the structural
image model, using a pyramid of levellings, which
is the basic ingredient for the present adaptability
framework. Then, the second part of Methods Section
introduces the structurally adaptive pseudo-dilation
and pseudo-erosion and other associated operators,
including also the study of the algebraic properties
of these new operators. Results Section discusses
various examples which illustrate the behavior of the
structurally adaptive operators for typical applications
of mathematical morphology. Finally, Section on
conclusions and perspectives closes the paper.
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METHODS

STRUCTURAL IMAGE MODEL USING
A PYRAMID OF LEVELLINGS

The classical tool from mathematical morphology
for multi-scale image decomposition is based on the
granulometric analysis (Serra, 1982; Maragos, 1989).
A granulometry is the study of the size distribution of
the objects of an image (Serra, 1982). Formally, for the
discrete case, a granulometry is a family of openings
Γ = {γn}n≥0 that depends on a positive parametern
(which expresses a size factor) such as: i)γ0( f )(x) =
f (x); ii) f (x) ≤ g(x) ⇒ γn( f )(x) ≤ γn(g)(x),∀n ≥ 0,
∀ f ,g ∈ F (E,T ); iii) γn( f )(x) ≤ f (x),∀n ≥ 0, ∀ f ∈
F (E,T ); and iv) γn verifies the granulometric semi-
group absorption law;i.e.,

γnγm = γmγn = γmax(n,m) , ∀n,m≥ 0 .

Moreover, a granulometry by closings (or anti-
granulometry) can be defined as a family of
increasing closingsΦ = {ϕn}n≥0. In practice, the
most useful granulometry and anti-granulometry are
those associated to morphological flat openings
and closings:γBn( f ) = δBn(εBn( f )) and ϕBn( f ) =
εBn(δBn( f )) respectively, whereB1 = B is a isotropic
structuring element of unit size (unitary discrete disk),
and Bn is the homothetic structuring element of size
n, with n = 1,2, · · · . The granulometric analysis of an
imagef with respect to a finiteΓ consists in computing
the pyramid of opened images and then in calculating
the image residue between two successive openings:

ρ+
i ( f )(x) = γBi−1( f )(x)− γBi ( f )(x) .

The pyramid of residues of openings{ρ+
i ( f )(x)}N

i=1
leads to a decomposition of bright structures intoN
scales. We recall that the subgraph of the opened image
by Bi is equivalent to the union of the translations of
the structuring when it fits the subgraph of the original
image (Serra, 1982), or in other terms, image structures
in the foreground (i.e.,bright ones) that cannot contain
Bi are removed by the opening. Therefore, the residue
ρ+

i extracts the structures removed betweenBi−1 and
Bi . By duality, the image decomposition intoN scales
of dark structures is obtained from the pyramid of
residues of closings{ρ−

i ( f )(x)}N
i=1, where

ρ−
i ( f )(x) = γBi ( f )(x)− γBi−1( f )(x) .

In summary, using morphological openings and
closings, it is obtained a pair of nonlinear scale-space
image decomposition,i.e.,

f (x) 7→
{
{ρ+

i ( f )(x)}N
i=1; {ρ−

i ( f )(x)}N
i=1

}
.

Furthermore, morphological openings/closings deal
selectively with the grey-level structures according to
their support size but they also “distort” the contours
(level sets) of the image objects. In mathematical
morphology, the powerful geodesic operators (Serra,
1988; Soille, 1999) (or connected filters) are perfectly
able to deal with the objects, without distorting their
contours.

For all these reasons, we have considered for
the present structurally adaptive operators a multi-
scale framework which, on the one hand, decomposes
simultaneously bright and dark structures (by means
of alternate sequential filters); and on the other hand,
uses geodesic operators (in particular, the levelling
operator) to extract precisely the grey-level objects.
Let us consider in detail this methodology.

Nonlinear scale-space based on viscous
levellings

The levelling (Meyer, 1998) of the reference image
f (x) according to the marker imagem(x) (this latter
is generally a rough simplification of the reference
image), denotedλ ( f ,m)(x), is a morphological
geodesic filter which simplifies textures and eliminates
small details of the reference image according to
the marked structures, but preserving the contours
of remaining objects. In practice, the levelling is
obtained by iteration of geodesic dilations and erosions
until idempotence. More precisely, a straightforward
algorithm is as follows (Meyer, 1998):

λ ( f ,m)(x) = Λi ( f (x),m(x)) , (7)

such that the idempotence has been reached,i.e.,

Λi ( f ,m) = Λi+1( f ,m) ,

where thei-iteration is

Λi ( f ,m) =
(

f ∧α
(
Λi−1( f ,m)

))
∨β

(
Λi−1( f ,m)

)
,

(8)
with the initial step

Λ1( f ,m) = ( f ∧α (m))∨β (m) . (9)

Levellings of different nature are obtained according
to the pair of transformations(α,β ) used in Eq.8
and9. More precisely, two of the most interesting ones
are (Meyer, 1998)

– standard levelling:

{
α = δB1

β = εB1

,

– viscous levelling:

{
α = δB1γB1

β = εB1ϕB1

.
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Fig. 1 shows a comparison of standard levelling vs.
viscous levelling using three different marker images.
We observe that even the structures which have been
removed from the marker can be reconstructed (by
strict geodesic propagation) by standard levelling.
On the contrary, viscous levelling produces a
reconstruction more faithful to the simplification
degree driven by the marker. Consequently, by its
skilful properties on structure regularisation, we
consider here theviscous levellingas the fundamental
operator for our structural decomposition.

(a) f

(b1)m2 = AASFB2( f ) (b2)m4 = AASFB4( f ) (b3)m8 = AASFB8( f )

(c1) λ ( f ,m2) (c2) λ ( f ,m4) (c3) λ ( f ,m8)

(d1) λ ( f ,m2) (d2) λ ( f ,m4) (d3) λ ( f ,m8)

Figure 1.Comparison of standard (α ≡ δB1 and β ≡
εB1) and viscous levelling (α ≡ δB1γB1 andβ ≡ εB1ϕB1)
scale-space: First row (a), original image; second row
(b), AASF markers; third row (c), standard levellings;
fourth row (d), viscous levellings.

A pyramid of levellings is then obtained by
associating to the image a pyramid of markers,i.e.,

f (x) 7→ {mi(x)}N
i=1 7→ {λ ( f ,mi)(x)}N

i=1 , (10)

which leads to a nonlinear scale-space (Meyer and
Maragos,2000). The marker at leveli determines the
degree of simplification of the corresponding levelled
image; the simplification effect increases withi.

The levelling can be considered as the activity
supremum between an opening by reconstruction and
a closing by reconstruction (Meyer, 1998), leading
to a brigh/dark symmetric operator. Let∁ f stand for
the image complement (or negative) off ∈ F (E,T ),
i.e., ∁ f (x) = − f (x) if T = R and ∁ f (x) = tmax−
f (x) if T = [0, tmax]. We have for the levelling
the following property:∁λ (∁ f ,∁m) = λ ( f ,m), which
means that( f ,g) 7→ λ ( f ,g) is always a self-dual
mapping. In addition, ifm derives from f by a
self-dual operation,i.e., m= m( f ) with ∁m(∁ f ) =
m( f ) then levelling f 7→ λ ( f ,m( f )) is self-dual. We
notice that this important relation is distinct from
that of invariance under complementm(∁ f ) = m( f )
which does not imply self-duality forf 7→ λ ( f ,m( f )).
Hence, to obtain aself-dual and symmetric processing
of brigh/dark structures, a self-dual family of marker
images is required. Classical examples of self-dual
filters are the convolution with Gaussian kernels
or the (weighted) median filters. In particular, the
nonlinear scale spaces associated to levellings where
the markers are Gaussian filters have been studied
byMeyer and Maragos(2000). In addition, this kind of
marker was also used in (Sofouet al., 2005) to extract
the texture layer of an image as the residue of the
corresponding levelling.

Nevertheless, we propose in this study to use as
multi-scale markers theaveraged alternate sequential
filters (AASF):

AASFBn( f )(x) =
ASFI

Bn
( f )(x)+ASFII

Bn
( f )(x)

2
, (11)

where the pair of alternate sequential filters
(ASF) (Serra, 1988) are given by the following
products of openings and closings




ASFI
Bn

( f )(x) = [ϕBnγBn · · ·ϕB2γB2ϕB1γB1( f )] (x) ,

ASFII
Bn

( f )(x) = [γBnϕBn · · ·γB2ϕBnγB1ϕB1( f )] (x) .
(12)

The properties of ASF are well known in mathematical
morphology (Serra, 1988). In particular, they are
idempotent and they follow the semi-group absorption
law, i.e.,∀n≥ m≥ 0, we have

ASFI ,II
n ASFI ,II

m = ASFI ,II
n ASFI ,II

n = ASFI ,II
n=max(n,m)

,

and consequently this property is inherited by
AASFBn. ASF are very useful for noise cancellation
and smoothing since they produces progressive
simplification of image structures. This behaviour is
related with their property of compatibility with scale
modifications (i.e., intuitively that means that the filter
of order k works at a scalek as a filter of order 1
at a scale 1). Theoretically, ASF are not self-dual,
but our symmetric averaged versionAASFBn leads to
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an quasi self-dual operator: we have observed that
in practice the difference betweenAASFBn(∁ f )(x)
and ∁AASFBn( f )(x) is always negligible. The main
drawback ofAASFBn is the computation time, which
increases with the sizen of the scale. However, using
well-known optimized implementations of discrete
dilation/erosion for the openings/closings, the final
computation time is not nowadays a limiting point.
The rationale behind this choice ofAASFBn, instead of
a Gaussian filter of equivalent scalen, is because we
have observed empirically that the viscous levellings
associated with alternate sequential filter are more
effective for extracting the bright/dark structures of
corresponding scalen.

(a1)λ ( f ,m2) (a2)λ ( f ,m4) (a3)λ ( f ,m8)

(b1) r2 = f− (b2) r4 = λ ( f ,m2)− (b3) r8 = λ ( f ,m4)−

λ ( f ,m2) λ ( f ,m4) λ ( f ,m8)

Figure 2.Example of laplacian pyramid on viscous
levelling scale-space (original image on Fig.1): first
row (a), pyramid of viscous levellings; second row (b),
derivative of the viscous levelling pyramid.

Structural image model

We have now all the ingredients to introduce the
following structural model image:

f (x) ≡ c+s(x)+
N

∑
i=1

ti(x) , (13)

where c is the continuous component,s(x) is the
structure component, and{ti(x)}N

i=1 are the texture
components atN scales.

More precisely, given the levelling scale-space
{λ ( f ,mi)(x)}N

i=1, the components of the present image
model can be calculated as follows.

– Thecontinuous componentis obtained as the mean
value of the last levelled image,i.e.,

c = mean(λ ( f ,mN)(x)) . (14)

We can consider thatc varies with the DC
level of the image acquisition device. In the
operators presented in this paperc does not give
any useful information but is still necessary for
ongoing research on adaptive self-dual operators
(see perspectives section);

– Thestructure componentcorresponds to the mean-
centred last levelled image,i.e.,

s(x) = λ ( f ,mN)(x)−c . (15)

Therefore, the images(x) represents the most
simplified image according to the choice of scale
N. In other words, the level-sets of the significant
objects having a “support size” bigger than the
structuring elementBN.

– The texture componentsare obtained as the
derivative of the levelling pyramid,i.e.,

ti(x) = λ ( f ,mi−1)(x)−λ ( f ,mi)(x) , (16)

where m0(x) = f (x). Each residue imageti
represents the brigh/dark objects which were
in scale imagei − 1 but have been removed
in scale imagei; that is, level-sets of objects
whose “support size” is comprised between both
successive scales. The intensity at each point of
ti is the relative intensity of the object (which
is invariant to monotone increasing intensity
transformation on original image). In fact, the
residue image between two successive levellings
can be considered as a “morphological laplacian
pyramid”. In natural images, we can suppose that
the texture components are sparse images (i.e.,
only a limited number of pixels are different of
0) and that the complexity of the original image
is split into a simpler image (structure component)
and a scale-complexity bounded series of images
(texture components).

Our additive image decomposition model can
be considered as generalisation of the Cartoon +
Texture decomposition byMeyer (2002): f (x) =
u(x) + v(x) where u(x) is the cartoon component
(homogeneous zones of the objects) andv(x) is the
texture oscillation, which is usually solved using
variational algorithms (Aujol et al., 2006). The terms
can be identified asu(x) = c + s(x) and v(x) =
∑N

i=1 ti(x). The value N of the larger structuring
element (scale of structure equivalent) in our model
is equivalent to the “scale size” in other Cartoon
+ Texture decomposition algorithms (Buadeset al.,
2010).
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(a)c+s(x) (b) ∑N
i=1 ti(x)

(c) u(x) (d) v(x)

Figure 3.Comparison of our structural decomposition
(size of largest structure scale N= 8) and the Cartoon
+ Texture decomposition (Buades et al., 2010) (scale
sizeσ = 3): (a) structure component, (b) sum of texture
components, (c) cartoon image, (d) texture image. The
Cartoon + Texture decomposition corresponds to the
algorithm available online in (Buades et al., 2009).
The original image is given on Fig.1.

Fig. 2 gives an example of three levels of a viscous
levelling pyramid and the corresponding residues
images, used to define the texture components. We
notice that the texture components, with respect to
the structure component, are not defined in terms
of periodicity or regularity as in the nowadays
extended Cartoon+Texture decomposition. That can be
observed in the comparative example of our structural
decomposition (size of largest structure scaleN =
8) and the Cartoon+Texture decomposition recently
proposed byBuadeset al. (2010) (scale sizeσ = 3)
given in Fig.3. The Cartoon + Texture decomposition
has been obtained using the algorithm available online
in (Buadeset al., 2009). Therefore, the notion of
texture matches here exclusively with the notion of
scale. We remark also that, in comparison with a
laplacian pyramid associated to a Gaussian scale-
space, the main advantages of the derivative levelling
pyramid are, on the one hand, the preservation of the
contours of extracted structures and on the other hand,
at each scale, the size of the structures is bounded by
the size of theAASFfilter used as marker.

STRUCTURALLY ADAPTIVE
OPERATORS

The structural image model introduced above is
the key element for the structurally adaptive operators
studied in this section. As we will show below, the

two basic adaptive operators present a lack of some
algebraic properties; and consequently they are not
dilations and erosions instricto sensu. Therefore, we
prefer to them structurally adaptive pseudo-dilation
and pseudo-erosion.

(a1)δB4( f ) (a2)δB8( f ) (a3)δB12( f )

(b1) δ̂B2:2:4( f ) (b2) δ̂B2:2:8( f ) (b3) δ̂B2:2:12( f )

Figure 4. Comparison of flat structural adaptive
pseudo-dilations (second row, b) vs. the corresponding
standard flat dilation (first row, a).

Adaptive pseudo-dilation and
pseudo-erosion

Given the image f ∈ F (E,T ), structurally
decomposed into the scales{m,m+k,m+2k, · · · ,M}
(denoted compactly by{m : k : M}) according to
the model in Eq.13, we define the corresponding
structural adaptive dilationas

f 7→ δ̂m:k:M ( f ) = c+δbM (s)+
M

∑
i=m,m+k,···

δbi (ti) , (17)

and thestructural adaptive erosionas

f 7→ ε̂m:k:M ( f ) = c+ εbM (s)+
M

∑
i=m,m+k,···

εbi (ti) , (18)

whereδbn(g)(x) andεbn(g)(x) are the standard dilation
and erosion of imageg(x) according to the fixed
spatially invariant structuring functionbn(x).

We have considered in this study examples using
the two most useful families of isotropic multi-scale
structuring functions:

– parabolic shape functionof width n, i.e., bn(x) =
−‖x‖2/2n;

– flat diskof radiusn, denoted byBn.
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For the examples given in the paper, the family of
disks Bn used in the flat operators are implemented
digitally by hexagons of radiusn pixels. This choice
is based on the properties of isotropy of hexagonal
grid with respect to the square one and the fact that
the hexagons are an approximation to the disk which
can be implemented using optimized algorithms. In
any case, if the computation time is not critical, the flat
disks can be obtained by thresholding the paraboloidal
structuring functions. Fig.4 depicts a comparison of
three flat structural adaptive pseudo-dilations forM =
4, 8 and 12 (withm = 2 and k = 2), versus the
corresponding standard flat dilations. We notice that
the “size” of the operator is determined by the size
of the biggest scaleM; or in other words, the size of
the scale of the structure component. The two other
parameters from the structural decomposition: i) the
size of the smallest scalem, and ii) the sampling
parameterk (or step size between two successive
scales) have a lower impact on the adaptive operator,
see for instance the example given in Fig.5. This effect
allows to introduce a sampling parameterk > 1 in
order to reduce the number of processed discrete scales
(reduction of computation time).

(a) δ̂B2:2:8( f ) (b) δ̂B1:1:8( f )

Figure 5. Effect of scaling on the flat structurally
adaptive dilation for the same size M= 8: (a) sparse
scale parametrization m= 2 (smallest scale) and k= 2
(sampling size); (b) dense scale parametrization m= 1
(smallest scale) and k= 1 (sampling size).

Properties of structurally adaptive
operators

Let us consider the algebraic properties of these
two morphological operators. The proofs are not
included but are easily obtained from the standard
properties of erosion and dilation.

– The structural adaptive pseudo-dilation (pseudo-
erosion) is extensive (anti-extensive),i.e., ∀ f ∈
F (E,T ),

f ≤ δ̂m:k:M ( f ) and f ≥ ε̂m:k:M ( f ) .

– The structural adaptive pseudo-dilation and
pseudo-erosion are dual operators with respect to
the grey-level inversion,i.e.,∀ f ∈ F (E,T ),

δ̂m:k:M ( f ) = ∁ε̂m:k:M
(
∁ f

)
.

– However, the fundamental law which links the pair
of dilation/erosion, the adjunction property, fails
for the introduced structurally adaptive operators,
i.e.,∀ f ,g∈ F (E,T ),

δ̂m:k:M( f ) ≤ g < f ≤ ε̂m:k:M(g) .

As recently pointed out byRoerdink(2009), this
drawback is common to any adaptive morphology
dilation/erosion where the processing at each point
depends on the input value.

– Moreover, as a consequence of the lack of
adjunction property, other properties are also lost.
Typically, the structural adaptive pseudo-dilation
(pseudo-erosion) does not commute with the
supremum (infimum),i.e.,∀ f ,g∈ F (E,T ),

δ̂m:k:M ( f ∨g) 6= δ̂m:k:M ( f )∨ δ̂m:k:M (g) .

– Another fundamental property of standard
morphology which fails is the increasiness. The
structural adaptive pseudo-dilation/pseudo-erosion
are generally not increasing operators,i.e., f ≤
g does not alwaysinvolve that δ̂m:k:M ( f ) ≤

δ̂m:k:M (g). In fact, the property is verified if

∀i : λ ( f ,ASFBi−1( f ))−λ ( f ,ASFBi ( f )) ≤

λ (g,ASFBi−1(g))−λ (g,ASFBi (g)) ,

or in other terms, the ordering must be preserved
in the derivative pyramid, which is not always the
case.

In mathematical morphology, a pair of dual
operators which are extensive and anti-extensive
are respectively a thickening and thinning (Serra,
1982; Soille, 1999); therefore, the structurally
adaptive operators are just algebraic grey-level
thickenings/thinnings. In any case, despite the lack of
some properties, the operatorsδ̂m:k:M ( f ) andε̂m:k:M ( f )
can be used to construct structurally adaptive gradient,
laplacian, toggle mapping, etc.

Adaptive pseudo-opening and
pseudo-closing

Due to the fact that the introduced structurally
adaptive operators are not formally a pair of adjunct
dilation/erosion, their product̂δm:k:M ε̂m:k:M ( f ) is not
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an algebraic opening. Hence, we prefer to formulate
thestructurally adaptive pseudo-openingas

f 7→ γ̂m:k:M ( f ) = c+ γbM (s)+
M

∑
i=m,m+k,···

γbi (ti) , (19)

and dually, thestructurally adaptive pseudo-closingis
defined by

f 7→ ϕ̂m:k:M ( f ) = c+ϕbM (s)+
M

∑
i=m,m+k,···

ϕbi (ti) . (20)

The structural adaptive opening in Eq.19 (closing
in Eq. 20) is anti-extensive (extensive) but it is not
increasing. The idempotency,γγ( f ) = γ( f ), is the
property which guarantees the stability of standard
opening/closing. Even if our adaptive operators are
not strictly idempotent, their iteration is almost
stable whenAASF filters are used for the levelling
decomposition.

(a1)γb4( f ) (a2)γb8( f ) (a3)γb12( f )

(b1) γ̂b2:2:4( f ) (b2) γ̂b2:2:8( f ) (b3)̂γb2:2:12( f )

Figure 6.Comparison of parabolic structural adaptive
pseudo-openings (second row, b) vs. the corresponding
standard parabolic openings (first row, a).

As we can observe in the example given in Fig.6,
the adaptive openingγb2:2:8 removes bright objects
smaller than the size of the structuring function but,
with respect to the standard openingγb8, the notion of
“smaller than” depends on the scale of decomposition
of the object. The product of operatorsγ̂m:k:M ( f ) and
ϕ̂m:k:M ( f ) can be then used to define other more
complex operators.

APPLICATIONS AND RESULTS

Let us illustrate the performance of the present
operators by means of four typical applications of
mathematical morphology.

(a) f (x)

(b1) γb10( f )(x) (b2) γ̂b2:2:10( f )(x)

(c1) th+
b10

( f )(x) (c2) t̂h+
b2:2:10( f )(x)

Figure 7. Image detail extraction using the white
top-hat: (a) original image, (b1) standard parabolic
opening (n=10), (c1) standard parabolic white top-
hat, (b2) structural adaptive pseudo-opening (M= 10,
m= 2, k = 2), (c2) corresponding structural adaptive
white top-hat.

The first case study, depicted in Fig.7, corresponds
to a coronary network acquired by contrast-enhanced
radiography. Besides the vessels, the image presents
a strong and irregular background (which includes
other structures such as the ribs). In order to extract
the vessels, the classical top-hat (Serra, 1982) is
particularly useful:

̂th+
bm:k:M( f ) = f − γ̂bm:k:M( f ) , (21)

i.e., residue between the original imagef and the
openingγ̂bm:k:M( f ). The size of the isotropic opening
should be bigger than the diameter of the thickest
vessels. For the particular example, we consider a
parabolic structuring function of widthn = 10. As
we can observe, the standard opening produces a
rough regularisation by removing all the peaks smaller
than b10 whereas the structurally adaptive opening
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removes also the peaks at different scales but preserves
better the secondary structures; hence, the comparison
of the standardth+

b10
( f ) against the adaptive top-hat

̂th+
b2:2:10( f ) shows that the second one presents a better

extraction of thin vessels as well as less texture and
irregularities.

The second application, given in Fig.8, deals
with an example of image denoising and detail
simplification. The mosaic image is quite textured and
noisy and the aim is to filter it out in order to obtain a
more regular image where the main contours are well
preserved. This goal can be achieved by means of the
morphological centre operator (Serra, 1988),

ζ̂bm:k:M( f ) =
[

f ∨ (ζ̂−
bm:k:M

( f )∧ ζ̂ +
bm:k:M

( f ))
]
∧

(ζ̂−
bm:k:M

( f )∨ ζ̂ +
bm:k:M

( f )) ,

defined in terms of two products of openings and
closings of a chosen size:

ζ̂ +
bm:k:M

( f ) = ϕ̂bm:k:M γ̂bm:k:M ϕ̂bm:k:M( f ) , (22)

ζ̂−
bm:k:M

( f ) = γ̂bm:k:M ϕ̂bm:k:M γ̂bm:k:M( f ) . (23)

We compare in particular the denoising effect using
a flat structuring element of sizeN = 4 and a
parabolic structuring function of similar width. As
we can observe in the images, the adaptive flat
or parabolic versions of the operator,̂ζB1:1:4( f )

and ζ̂b1:1:4( f ) outperforms clearly the effects of the
standard onesζB4( f ) and ζb4( f ); yielding a more
efficient denoising/simplification image, especially the
parabolic case, with an excellent contour preservation
of remaining structures.

In order to compare quantitatively the behavior of
standard vs. adaptive morphological centre, we have
evaluated in an experiment the quantitative assessment
of noisy images. Fig.9 summarizes the results of this
experiment: starting from an image corrupted with
four different levels of Gaussian noise and with four
different levels of impulsive noise (“salt and pepper”
noise) , we have filtered out the eight images using
standard parabolic centreζb4 and structural adaptive

parabolic centrêζb1:1:4, and then, we have computed
the PSNR value with respect to the original image. For
all the noise levels, the value of PSNR is better for the
structurally adaptive case than for the standard one. We
note also that the “size” of the filter 4 is not particularly
appropriate for low Gaussian noise levels or for high
impulsive noise levels, but even in such a case the
trade-off between denoising and image preservation is
better for the adaptive version of the morphological
center.

(a) f (x)

(b1) ζB4( f )(x) (b2) ζb4( f )(x)

(c1) ζ̂B1:1:4( f )(x) (c2) ζ̂b1:1:4( f )(x)

Figure 8. Image filtering/denoising using
morphological center: (a) original image, (b1)
flat centre operator (disk of size n= 4), (b2) parabolic
centre operator (paraboloid of width n= 4), (c1)
structural adaptive flat centre (M= 4, m= 1, k = 1),
(c2) structural adaptive parabolic centre (M= 4,
m= 1, k = 1).

The next problem concerns an aerial image of
an airport, including objects of different size, but
not well contrasted, see Fig.10. The morphological
laplacian (or nonlinear laplace filter as introduced
by van Vlietet al. (1989)) is defined in terms of
dilation and the erosion as

l̂ pbm:k:M
( f ) =

(
δ̂bm:k:M( f )− f

)
−

(
f − ε̂bm:k:M( f )

)

= δ̂bm:k:M( f )+ ε̂bm:k:M( f )−2 f . (24)

A simple but efficient image contrast enhancement is
obtained by subtracting the laplacian image from the
original one:

f 7→ f ′ = f − l̂ pbm:k:M
( f ) . (25)
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σ = 10 σ = 20 σ = 40 σ = 80

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Pr = 2.5% Pr = 5% Pr=7.5% Pr = 12.5%

(d1) (d2) (d3) (d4)

(e1) (e2) (e3) (e4)

(f1) (f2) (f3) (f4)

σ = 10 σ = 20 σ = 40 σ = 80
ζb4 24.65 24.18 20.58 15.36

ζ̂b1:1:4 25.18 24.30 22.45 18.40
2.5% 5% 7.5% 12.5%

ζb4 26.08 19.02 14.93 12.22

ζ̂b1:1:4 27.59 24.59 24.45 23.34
(g) Values ofPSNR

Figure 9. Evaluation of image denoising using
morphological center: first row and fourth row,
original images; second row and fifth row, parabolic
centre (paraboloid of width n= 4); third and sixth row,
structural adaptive parabolic centre (M= 4, m= 1,
k = 1). Original image was corrupted with Gaussian
noise in first row: first columnσ = 10, second column
σ = 20, third columnσ = 40, fourth columnσ = 80;
and with impulsive noise (“salt and pepper” noise
which consists in randomly replacing a percentage of
pixels with white pixels and the same percentage with
black pixels) in fourth row: first column Pr= 2.5%,
second column Pr= 5%, third column Pr= 7.5%,
fourth column Pr= 12.5% . Table (g) provides the
corresponding values of PSNR.

(a) f (x)

(b1) l pb4( f ) (b2) l̂ pb1:1:4
( f )

(c1) f ′ (c2) f̂ ′

Figure 10.Image enhancement using morphological
laplacian: (a) original image, (b1) standard parabolic
laplacian (paraboloid of width n= 4), (b2) structural
adaptive laplacian (M= 4, m = 1, k = 1), (c1)
enhanced image using parabolic laplacian, (c2)
enhanced image using structural adaptive laplacian .
At the bottom are zoom-in frames of a square section
cropped from original image (a), standard enhanced
image (c1) and structural adaptive enhanced image
(c2).

We observe that the structurally adaptive laplacian
l̂ pb1:1:4

( f ) produces a more balanced contrast
enhancement than the standard onel pb4( f ). In
particular, the small objects are enhanced in a
small neighborhood and the large in a proportional
neighborhood. In the standard case, all the structures
are equally enhanced. By the way, the laplacian-based
enhancement is an example of structurally adaptive
operator which probably is better to be implemented
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using a full scale decomposition, withm= 1 andk= 1.

The last case study deals with an edge detector
which can be implemented using only a pair of
morphological erosion and dilation, and which is
useful for complex images, like the one given in
Fig. 11. In fact, the zero crossings of the laplacian
l̂ pbm:k:M

( f ), as in the classical Marr-Hildreth model,
correspond to the edges of imagef . In order to select
only the most prominent edges, the zero crossing
detector is “multiplied” by the binary image obtained
with a threshold by hysteresis of the morphological
gradient (Serra, 1982; Soille, 1999) given by

ξ̂bm:k:M( f ) = δ̂bm:k:M( f )− ε̂bm:k:M( f ) . (26)

Besides the size parameter of the laplacian and
the gradient, the single parameter of this edge
detection model is the threshold value for the
gradient. We observe again in this example that
the structurally adaptive gradient̂ξb1:1:4( f ), using a
parabolic structuring function, is more appropriate
than the standard counterpart. The comparison by
simple visual assessment of edge detection is not
conclusive, but it seems that in the adaptive case the
edges of small objects are better detected.

CONCLUSIONS AND
PERSPECTIVES

We have discussed an additive image model
associated to a nonlinear multi-scale image
decomposition using a family of viscous levellings.
Then, working on this decomposition, we have
introduced structurally adaptive morphological
operators, where each component of the image
is processed with a structuring function of size
intrinsically adapted to the corresponding local scale.

We have shown that, in practical applications,
the proposed operators perform better than standard
ones for object extraction, image denoising, image
enhancement, etc. This positive behaviour is justified
by the fact that, using geodesic operators for
image decomposition, the different objects are
almost individually processed and the “interferences”
between adjacent objects are notably reduced.

In addition, we have proved that another advantage
of the adaptability is the fact that the choice
of the “size” for the erosions/dilations and the
openings/closings is much less critical.

However, we have also demonstrated that the
underlying algebraic structure of the structurally
adaptive operators is less rich than the standard ones.

(a) f (x)

(b1) ξb4( f ) (b2) ξ̂b1:1:4( f )

(c1) Edges from (b1) (c2) Edges from (b2)

Figure 11. Image edge detection (third row) using
gradient (second row) and zero-crossing of laplacian:
(a) original image, (b1) standard parabolic thick
gradient (n = 4), (b2) structural adaptive thick
gradient (M= 4, m= 1, k = 1), (c1) edges obtained
as the zero-crossings of standard parabolic laplacian
on the binary mask obtained by hysteresis-based
thresholding of gradient (b1), (c2) edges obtained
as the zero-crossings of structural adaptive parabolic
laplacian on the binary mask obtained by hysteresis-
based thresholding of gradient (b2).

As we have discussed, in the present image model,
the structure and texture terms are positive/negative
signals and consequently, in ongoing work, we will
formulate adaptive self-dual erosion and opening.
Finally, sparsity properties of our image model suggest
us to consider it as a starting point to explore the notion
of sparse mathematical morphology in future research.
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