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ABSTRACT

Computing an array of all pairs of geodesic distances betlee pixels of an image is time consuming. In
the sequel, we introduce new methods exploiting the redurydaf geodesic propagations and compare them
to an existing one. We show that our method in which the sopodet of geodesic propagations is chosen
according to its minimum number of distances to the othentgpimproves the previous method up to 32 %
and the naive method up to 50 % in terms of reduction of the ruroboperations.

Keywords: all pairs of geodesic distances, fast marchiegggsic propagation.

INTRODUCTION computation of all pairs of geodesic distances for
a graph of all the pixels of an imag®ébhanet al.,
An array of all pairs of geodesic distances, betweeR2007).

nodes of a graph, is very useful for several applications Y h . £ all pairs of desi
such as clustering by kernel methods or graph-base owever, the computation of all pairs of geodesic
Istance in an image is time consuming. In fact,

segmentation or data analysis. However, computin _ _ _ A
e naive approach consists in repeatiNgtimes

this array of distances is time consuming. That is th . O
reason why two new methods, that fill in a fast Waythe algorithm to compute the geodesic distance from

the distances array, are presented and compared in tf&ch of theN pixels to all others. Computing the
paper. geodesic distance from one pixel to all others is called

_ a geodesic propagation. The pixel at the origin of a
~ Our methods are available on general graphs. Igropagation is called the source point and the array
this paper we present them on images of which th@ontaining all pairs of geodesic distances is named
pixels are considered as the nodes of the graph and thes distances array. Therefore, the naive approach is
links between the neighbors corresponds to the edges complexityO(N x M), with M the complexity of a
of the graph. geodesic propagation. Several algorithms for geodesic
In image processing, it is interesting to use thePropagations are available: the most famous is the Fast

geodesic distance between pixels in place of anothdflarching Algorithm introduced bySethian (1996
distance. The array of all pairs of geodesics distancek?99 and of complexityO(Nlog(N)). This algorithm
allows to segment an image in geodesically connectegPnsists in computing geodesic distances in a
regions {e, geodesic balls,Noyeletal, 20078. continuous domain, using a first order approximation,
All pairs of geodesic distances are also useful orf0 obtain the distance in the discrete domain. Another
defining adaptive neighborhoods of filters used folgorithm was developed bSoille (1997 for binary
edge-preserving smoothing3értelli and Manjunath images and for grey level imagesSdille, 1992.
2007 Lerallutet al, 2007 Grazzini and Soille2009. In order to compare our results, we will use the
Nonlinear dimensionality reduction techniques areSoille’s algorithm of “geodesic time functionSgille,
mostly based on multidimensional scaling on al994 2003. Recent implementations of Soille’s
Gram matrix of distances between the pairs oflgorithm for binary images are ifO(Nlog(N))
variables. Particularly interesting for estimating(Coeurjollyetal, 2004. Bertellietal. (2006 have
the intrinsic geometry of a data manifold is theintroduced a method to exploit the redundancy when
Isometric feature mappinglsomap (Tenenbaum several geodesic propagations are computed. In fact,
1997 Tenenbaunetal, 2000. After defining a when we perform a geodesic propagation from one
neighborhood graph of variables, Isomap calculatepixel, all the geodesic paths from this pixel are stored
the shortest path between every pairs of verticesn a tree. Using this tree, we know all the geodesic
which is then low-dimensional embedded viadistances between any pairs of points along the
multidimensional scaling. The application of Isomapgeodesic path connecting two points. This redundancy
to hyperspectral image analysis requires thés also exploited in earlier algorithm for computing

101



NOYEL G ET AL: Fast computation of all pairs of geodesic distances

the propagation function well known in mathematicaluse the 8-neighborhood. For our study, the choice
morphology Lantugjoul and Maisonneuvd 984). of the neighborhood has no influence since we
compare several methods using for each one the same

In order to choose the source points of the geOdeSneighborhood.

propagationsBertelli et al. (2006 have proposed to
select them randomly in a spiral like order starting A path between two pointg andy is a chain of
from the edges of the image and going to the centepoints(xo,X1,...,Xi,...,X ) € E such ax = xandx =

In the sequel, we test several deterministic approaches and for alli, (x,X 1) are neighbours. Therefore, a

to select the source points and we show that a methqgehth(xg, Xy, ...,X% ) can be seen as a subgraph in which
based on the filling rate of the distances array cathe nodes corresponds to the points and the edges are
reduce the number of operations up to 32 % compareithe connections between neighbouring points.

to Bertelli et al. (200§ method. The geodesic distancegeq(Xo,X ), Or geodesic

After discussing some prerequisites about thdéime, between two points of a grapky and x, is
definition of a graph on an image, the geodesiclefined as the minimum distance, or time, between
distances and the exploitation of redundancy betweethese two points, inf{t (X0, X )}. The geodesic path
geodesic propagations, we introduce several method®geois one of the paths linking these two points with
of computation of all pairs of distances and wethe minimum distance?geq(Xo,Xi) = (Xo, - .., X ):

compare them. PgedX0,X) = (X0, --,X) 3
such as dged(Xo,X) = ing{tg(Xo,XO}
PREREQUISITES
Q If the edges of the graph are weighted by the
An image f is a discrete function defined on the distance between the nodésg, X ), the geodesic path
finite domainE C N2, with N the set of positive is one of the sequences of nodes with the minimum
integers. The values of a gray level image belongs teeight.
7 C R. For a color imageife., with 3 channels) the
values are in73 = .7 x .7 x .7 and for a multivariate
image ofL channels the values are ir". In what
follows, we consider7 C R*. The whole results
presented in the current paper are directly extendab
to color or multivariate images (Noyelt al. 2007a - Pseudo-metrit.1:
2007, (Noyel 2099. . L 060) = 1100 = T06) . @)
An image is represented on a grid on which the
neighborhood relations can be defined. Therefore, an Pseudo-metric sum of grey levels:
image is seen as a non oriented gr&hk- {Vs, Eg _ e
in which the vertice®/ correspond to the (;{oordin;tes A (% %) = T04) + f(x) )
of pixels, Vg € Z x Z, and the edgestc € Z, give  _ pseudo-metric mean of grey levels (similar to the
the neighborhood relations between the pixels. Then, previous pseudo-metric):
the notion of neighborhood of a pixgl in the grid
is introduced as the set of pixels which are directly A-(x, ) = f(x)+f(x) ©6)
connected to it: A 2 '

The corresponding distances along a path=

V, d ighb
"p.a€Ve,  pandqare neighbors (X0, - -, ) are the sum of the pseudo-metric along this
And (pa q) € EG ) (1) path{@

where the ordered paip,q) is the edge which joins |

the pointsp and g. We assume that a pixel is not to (X0, %) :';d(xi—l,xi)- (7)
its own neighbor and the neighboring relations ar =
symmetrical. The neighborhood of pix@, Ng(p),
defined a subset &f; of any size, such as:

Vp,geVe, Ng(p)={d€Vs, (p,q) €Ec}. (2)

To generate a geodesic distance, several measures
of dissimilarities can be considered between two
neighbors pixels of position; andx; and of positive
ey valuesf (x;) and f (x;/):

eI'he geodesic distance is defined as the distance along
the geodesic path. It is also the minimum of distances
over all paths connecting two poirtg andx;:

|
dgeo(X0,X) = Z{d(m_l,xi)lxi_l,xi € Pgeo}
i=

=inf{tz(x0.x)} - 8)

Usually in image processing, the following
neighborhoods are defined: 4-neighborhood, 8-
neighborhood or 6-neighborhood. In the sequel, we
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In this paper, we only use the pseudo-metric In order to compute the distances between the
sum of grey levelsd, which presents the advantagepoints along the geodesic patBertelli et al. (2006
(compared tal.,) not to be null when two pixels have proposed to build a geodesic tree which has three kinds
the same strictly positive value (ff(xj)) = f(x/) >0  of nodes:
thend (x,%/) = 2f (X)) > 0). The distance associated

to the pseudo-metric sum of grey levels is defined as:1. the root, which is the source point for a geodesic
propagation. Its distance is null and it has no

[ .
parents;
dg+eo(X07X|) = Zd-i-(xi—lvxi)
i= 2. the nodes, which are points having both parents
| and children;
= Zf(m-le(m) ) . o .
i= 3. the leaves, which are points without children.
-1
— f(x0)+f(xl)+zzlf(xi). Sta_lrting fron_1 the leaves to the_ nodes (or_ the
i= opposite), the distances between points belonging to

the same geodesic path are easily computed.

In order to reduce the number of geodesic

propagations,Bertelliet al. (2006 have used the
following properties.

The following additional property is very useful to
compute all pairs of geodesic distances.

Property 1 Given a geodesic pattpo, p1,---,pn),the  Property 2 The longer the geodesic paths are, the
geodesic distance geb(pi, pj), between two pointsip higher numbers of pairs of geodesic distances are
et pj along the path, k j, is equal to the difference computed.

dgeol Po, Pj) — dgeal Po, Pi)-

In order to have the benefit of the properdy
Bertelli et al. (2006 have chosen as sources, of the
geodesic propagations, random points in a spiral-like
order: starting from the edges of the image and going

D) — AD) — A to the center. Indeed, the points on the edges of

%edl G, D) _ dge°§0’ ) _ dgeo:l(z,C) (10)  the image tends to have longer geodesic paths than

points located at the center. Consequently, we want to

With dgeo(C, D) = 8, dgeo(A, D) = 20, anddgeo(A,C) =  test their remark by comparing their method to some
12. others.

In Fig. 1, if C andD belong to a geodesic path
connectingA andB, the geodesic distance between
andD is equal to:

In order to make this comparison, we measure the
filling rates of the distances arrdy. For an image
containingN pixels, the distances array is a square
matrix of sizeN x N = N? elements. By symmetry, the
number of geodesic paths to compute is equal to:

(11)

) ] ) _ The number of computed pathss determined by
Fig. 1. Discrete geodesic path on a 8-neighborhood.ounting the unfilled elements of the distances abay
graph. The points C and D belong to a geodesiqn practice, it is useful to use a boolean maixy, of
path between A et B. Therefore the geodesic distancg,e N « N, with elements equal to 1 if the distance
between C and D is also known. between the pixel located by the line number and the

pixel located by the column number is computed, and 0

Using the propertyl, when the geodesic distance otherwise. By convention in the algorithm, we impose

between two points of the image is computed, thdo each element of the diagonal of the boolean matrix
distances between all pairs of points along thdo be equal to oneYi : Dym(i,i) = 1, because the

associated geodesic path are known. Consequently, tHestance from one pixel to itself is equal to zero. Due
distances array is filled faster using this redundancy. to the symmetric properties of arr&;, the number of
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computed paths is equal to: In order to use homogeneous measures for all
methods, the Soille’s algorithnEoille, 2003, called

1 N N “geodesic time function” is used, with a discrete
a=3 ({2 > Dmi(k]) | —trace(Dm) neighborhood of size 8 3 pixels. In fact, we do not
k=11=1 need an Euclidean geodesic algorithm to make this
1 N N comparison study. The Euclidean version is described
=51\ 2 2 Pml(kl) | =N . (12)  in (Soille, 1992 and improved in Coeurjollyet al,
k=11=1 2009.
Consequently, the filling rate of the distances array SPIRAL METHOD
is defined by: . . .
a Bertelli et al. (2006 affirms that the source points
T= A (13)  of the geodesic propagations, with the longest paths,

are in general situated on the borders of the image.
As these points are useful to reduce the number of
operations, the source points are chosen in a random

The proportion of paths to compute for a given pixel
is named the filling rate of the point, and is defined

by: way on concentric spiral turns of image pixels. A
ZN Drnr(K, 1) — Dinric(i, 1) concentric spiral turn is a frame, of one pixel width,
T(x) = Lh=1=mie S mrk’» in which the top left corner is at position (1,1) or (2,2)

N-1 or (3,3) or etc. The figur@ gives an example. While

_ i1 Dimrk(K, i) — 1
N—-1 '

not all the pixels of the spiral turns have been selected,
we draw one pixel, among them, in a uniform random

_ _ way ; otherwise we switch to the next spiral turn.
When all the distances from one point to the others

are computed, this point is said to be “filled’e.,
1(x) = 1.

(14)

INTRODUCTION OF NEW .
METHODS FOR FAST

COMPUTATION OF ALL PAIRS OF

GEODESIC DISTANCES Fig. 3. The spiral turns of an imag® x 9 pixels.

In the current section, we initially present
Bertellietal. (2006 method, named the “spiral
method”, and then we introduce two new methods
before making comparisons : 1) a geodesic extrema
method and 2) a method based on the filling rate of all Table 1.Algorithm: Spiral method
distances pairs array. The empirical comparisons are
made on three different images of size>285 pixels:

“bumps”, “hairpin bend”, “random” (Fig2).

1. GivenD the distances array of sidéx N
2: while D is not filleddo
3:  Select the most exterior spiral turn not yet
filled
4:  DetermineSthe list of pixels of the spiral turn
not yet filled
while Sis not emptydo
Select a source poistrandomly inS
Compute the geodesic tree fr@an
Fill the distances arralp
Remove the points ddwhich are filled
Image “bumps” Image “hairpin bend” Image “random” 10:  end while
11: end while

Fig. 2. Images of size25 x 25 pixels “bumps”,
“hairpin bend” and “random” whose grey levels are
between 1 and 255.

104



Image Anal Stereol 2011;30:10109

For each image, the filling rate is plotted versugshat the value of three pixels gives the best results in
the number of propagations (fig). The number of order to fill the array of distances. This value of three
propagations which are necessary to fill the distancgsixels is certainly related to the image size, because,
array by the spiral method and the naive method argenerally, the farther the source points of the geodesic
also given in this figure. The relative difference of thepropagations are the faster the array of all pairs of
number of propagations of the spiral method comparegeodesic distances is filled.
to the number of propagations of the naive method
is written A (naive). We notice th_at the spiral methoql Table 2.Algorithm: Spiral method with repulsion
reduces the number of propagations by a factor ranging
between 13.4 % and 25.6 %, as compared to the naive—— - -
one. Consequently, it is very useful to exploit the 1: GivenD the distances array of si2éx N

: : - . 2. Givenh the repulsion distancé: < 3 pixels
redundancy in the propagations by building a geode5|c3: while D is not filled do

tree. 4:  Select the most exterior spiral turn not yet
s, Filling rate R Filling rate f|||ed
3 i 5. DetermineSthe list of pixels of the spiral turn
el = not yet filled
2 £ 6: while Sis notemptydo
= = 7: Select a source poistrandomly inS
Nk ravemepod || — 8: Remove in the lisBthe two left points of
T i R T e and the two right points afif they are still in
Number of propagations Number of propagations S
(a) “bumps” (b) “hairpin bend” 9: Compute the geodesic tree fran
Ay (naive) = 25.6 % Ar(naive) =134 % 10: Fill the arrayD
Filling rate 11: Remove the points dwhich are filled
8/ 12:  end while
13: end while

Filling rate (%)
20 40 60 80 100

Fig. 5 shows that the relative differences in the

- Naive method
-+ Spiral method

9

0 100 200 300 400 500 630 number of propagations necessary to fill the distances
Humber of propagatons array are larger than 15 % for images “bumps”
(c) “random” and “hairpin bend” and than 5.3 % for the image

Ar(naive) = 16.2 % “random”. Therefore, the spiral method with the

Fig. 4. Comparison of the filing ratest of the repulsion distance is faster than the spiral method to

distances array, between the naive method (in greer)! the distances array.

and the spiral method (in blue) for the images
“bumps”, “hairpin bend” and “random”. The relative GEODESIC EXTREMA METHOD

differencesAr(naive) of the number of propagations As the longest geodesic paths are those which
of the spiral method compared to the number ofjj the most the distance array, we look for the
propagations of the naive method are given on th%)eodesic extrema of the image. To compute the
bottom line. geodesic extrema of the image, we use two geodesic
propagations:
SPIRAL METHOD WITH REPULSION a first propagation starts from the edges of the

Two neighbours points have a high probability ~—image. Then we select one of the poimtsvith
to have similar geodesic trees. Consequently, a first the longest distance from the edges. This point is
improvement of the spiral method is to introduced a  called the geodesic centroid ;

repulsion distance between the points drawn randomly g second propagation from the geodesic centroid

in a spiral like-order (algorithm of tablg). Several gives the farthest points from the centrdii@,, the
tests have shown us that a repulsion distance of three geodesic extrema of the image.

Elll)i(r?éjsrgtr:esl?om sides of a source point gives the besén the figure6, which shows the results from these

two propagations, we notice that the geodesic extrema
These tests are empirical tests. In fact, severare mainly on the edges of the image, which ascertains
repulsion distances were tried and it has been noticetie motivation to use a spiral method.
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Filling rate Filling rate

N
541

Filling rate (%)
20 40 60 80 100

Filling rate (%)
20 40 60 80 100

- Spiral method - Spiral method
repulsion 3 i repulsion 3
- Spiral method

Q -

Filling rate

0 100 200 300 400 500 600 070 100 200 S&Jsiggl rgg:)hosoﬂ “bUmpS" “hairpin bend" “random"
Number of propagations Number of propagations
(a) “bumps” (b) “hairpin bend” s
A (spiral) = 17.4% I (spiral) = 15.0% : 5
A (naive) = 38.6% A (naive) = 26.4%

7N
496 524
Geodesic distance from the edges of the image

Geodesic distance from the centroid (red point)

Filling rate (%)
20 40 60 80 100

- Spiral method
repulsion 3
- Spiral method
0 100 200 300 400 500 600
Number of propagations

Q

(c) “random”
Ay (spiral) = 5.3%
A (naive) = 20.6% . L .
Fig. 6. Geodesic distance from the edges of the image

Fig. 5. Comparison of the filing ratest of the (second line) and from the centroid in red (third line)
distances array, between the spiral method withor several images.

repulsion (in red) and the spiral method (in blue) for

the images “bumps”, “hairpin bend” and “random”.

The relative differenced; (spiral) (resp.A (naive) of

the number of propagations of the spiral method with

repulsion compared to the number of propagations of

the spiral (resp. naive) method are given on the bottomn
lines.

Table 3.Algorithm: Geodesic extrema method

Then the pixels are sorted by geodesic distance
from the centroid into the list of geodesic extreft. ~ 1: GivenD the distances array of si2éx N
This list is used to choose the source points of the 2: Compute the geodesic centraid
geodesic propagations. If several points have the sam@: Compute the decreasing list of geodesic extrema
geodesic distance from the centroid, then the lessfilled Ext whose first elemenExt[1] is the greatest

is selected (algorithm of tab). geodesic extrema not yet filled

4: Initialise to zero, the list, of sizé&|, of the filling
rate of pointsr.
5. while D is not filleddo

The filling rates of the spiral method and the
geodesic extrema method versus the number of
propagations are plotted for each image (ify. We

notice that the filling rates of the geodesic extrema 6 B < {x € Ext/dgeo(X, C) = dgeo EXt[1],C)}
method are at the beginning inferior or similar to these 7: S—X

of the spiral method. However, at the end the filling 8: Compute the geodesic tree fran

rates of the geodesic extrema method are better than o Fill the distances arrap

these of the spiral method. In fact, we are looking 4. Remove the points of the lixtwhich are
for an approach filling totally the distances array in filled

the fastest way. As the number of propagations of the . -
. . . Update the list of filling rates

geodesic extrema method necessary to fill the distances d whil

array are lower than in the spiral method, the geodesi&z' endwhile

extrema method fills faster the distances array than the

spiral method.
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Filling rate (%)
20 40 60 8 100

Filling rate

7N
437 465

/

!
/
!

i
i
/ - Extrema method

- Spiral method

0

Filling rate

Filling rate (%)
0 20 40 6 g 100

Table 4.Algorithm: Method based on the filling rate
of the distances array.

? - Extrema method

-+ Spiral method

0 100 200 300 400 500 600
Number of propagations

(a) “bumps”
Ay (spiral) = 6.0%
Ar(naive) = 30.1%

0 100 200 300 400 500 600
Number of propagations

(b) “hairpin bend”
Ay (spiral) = 5.2%
A (naive) = 17.9%

1: GivenD the distances array of sid¢x N

2. Compute the decreasing list of geodesic extrema
Ext

3: Initialise to zero, the list, of siz&|, of the filling
rate of pointsr.

4: while D is not filled do

Filling rate 5 B~ {argmirl(eE T[X]}
g = 6: if Card{B} > 1then
_8 e 7: S« argmin g Ext[X]
Es— 8: else
2o 9: s — argmin,g T[x
10:  endif
o LS 11:  Compute the geodesic tree fram
® Numberof propagations - 12:  Fill the distances arrap
(c) “random” 13:  Remove the points of the ligxt which are
A (spiral) = 3.4% filled
O (naive) = 19.0% 14:  Update the list of filling rates
15: end while

Fig. 7. Comparison of the filling ratest of the
distances array, between the geodesic extrema method
(in red) and the spiral method (in blue) for the images
“bumps”, “hairpin bend” and “random”. The relative
differences), (spiral) (resp.Ar(naive)) of the number
of propagations of the the geodesic extrema methoﬁj
compared to the number of propagations of the spira
(resp. naive) method are on the bottom lines.

As for the geodesic extrema method, we compare
e filling rates of the method based on the filling rate
of the distances array and the spiral method versus
the number of propagations (fi§). We notice that
the method based on the filling rate Bf reduces
of 32.3 % the number of propagations of the spiral

In order to get an exact comparison it is necessar{i€thod on the image “bumps” and 18.7 % on the
to generate two propagations, corresponding to thihage “hairpin bend”. Consequently this method fills
determination of the geodesic extrema, to the numbé@Ster the distances array than the spiral method. Even
of propagations necessary to fill the distances arraj°' the image ‘random”the method based on the filling
Even, with this modification, the extrema method fills'at€ of D still improves the spiral method of 2.7 %.
the distances array faster than the spiral method (tHdOWever it is not very common to compute all pairs

relative difference\, (spiral) are between 3.4 % and of geodesic distances on a strong unstructured image
6 %). such as the “random” one.

By comparison to the naive approach, the method
based on the filling rate db reduces the number of
propagations by a 49.6 % rate (resp. 29.6 %) on the
image “bumps” (resp. “hairpin bend”).

METHOD BASED ON THE FILLING
RATE OF THE DISTANCES ARRAY

In place of selecting the source points from their  As for the previous method, in order to get an exact
distance from the geodesic centroid propagation, weomparison, it is necessary to add two propagations,
select first the less filled points. To this aim, after eaclvorresponding to the determination of the geodesic
geodesic propagation the filling rate is computed foextrema, to the number of propagations necessary to
each point. Then the less filled point is selected as fill the distances array. Even, with this modification,
source of the propagation. If several points are amonthe number of propagations necessary to fill the
the less filled, then the greatest geodesic extrema distances array is still lower for the method based on
chosen among these points (algorithm of taf)le the filling rate ofD.
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Filling rate (%)
20 40 60 80 100

9

Filling rate

Filling rate (%)
20 40 60 80 100

N
541

- Filling rate - Filling rate
method method
- Spiral method o - Spiral method
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Number of propagations Number of propagations
(a) “bumps” (b) “hairpin bend”

A (spiral) = 32.3%
A (naive) = 49.6%

A (spiral) = 18.7%
A (naive) = 29.6%
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on the filling rate of D reduces the number of
operations between 19 % and 32 %, as compared to
the spiral approach and between 30 % and 50 %, as
compared to the naive method, on standard images.
Even on “random” image the improvements is of
3 % (resp. 18 %) compared to the spiral (resp. naive)
method.

Consequently, the filling rate of the distances array,
combined with the geodesic extrema when several

points have the minimum filling rate, seems to be the
best criterion to fill efficiently the distances array.

Filling rate

20 40 60 80 100

Filling rate (%)

CONCLUSION

- Filling rate
method

9

- Spiral method
0 100 200 300 400 500 600
Number of propagations

From a comparison between different approaches,
it turns out that a method based on the optimization
of the filling rate of the distances array is the most
efficient to compute the geodesic distances between all
Rairs of pixels in an image.

(c) “random”
A (spiral) = 2.7%
Ar(naive) = 18.4%

Fig. 8. Comparison of the filling ratest of the
distances array, between the method based o
the filling rate of the distances array (in red)
and the spiral method (in blue) for the images
“bumps”, “hairpin bend” and “random”. The relative

Besides, in the current paper, we have shown our
results on grey images. They can be directly extended
. . : to hyperspectral images using appropriate pseudo-
diff D I A f th b . .

ffterences; (spiral) (resp.: (naive) of the number Jnetrics (Noyel et al, 20073. This can be a useful step

of propagations of the method based on the filling rat )
compared to the number of propagations of the spirafor a subsequent clustering by kernel methods or data
reduction approaches on multivariate images.

(resp. naive) method are given on the bottom lines.

Filling rate

Filling rate
T

pr
760 541
440 513

DISCUSSION

After having presented and tested several methods
to fill the distances array, we have compared them
for the three test images “bumps”, “hairpin bend”
and “random” on the figur® and in the table. For
the images “bumps” and “hairpin bend”, the method
based on the filling rate of the distances array is
faster than the other algorithms. For the “random
image” (an extreme case presenting no texture) the
methods introduced here give similar results, since
the relative difference between the maximum number
of propagations is less than 2.7 %. Therefore, we
conclude that the method based on the filling rate
of the distances array is the best one to calculate
the array of all pairs of distances. According to their
performances, the others are ranked in the followin
order: 1) the spiral method with repulsion distance, 2

the geodesic extrema method and 3) the spiral metho[ e method based on the filling and the spiral method

of Bertelli et al. (2006. . ) . ) .
with a repulsion distance of 3 pixels for the images
Moreover, we have shown that the method basetbumps”, “hairpin bend” and “random”.

Filling rate (%)
20 40 60 80 100

Filling rate (%)
20 40 60 80 100

—— spiral

- geodesic extremal

— filling rate

—— spiral repulsion 3

0 100 300 500
Number of propagations

(b) “hairpin bend”

,‘/‘ - spiral

/ - geodesic extrema
—— filling rate

—— spiral repulsion 3
0 100 300 500
Number of propagations

(a) “bumps”

Filling rate

496 506
510 524

Filling rate (%)
20 40 60 80 100

—— spiral

- geodesic extrema

— filling rate

—=— spiral repulsion 3

0 100 ' 300 ' 500
Number of propagations

(c) “random”

ig. 9. Comparison of the filling rates, of the array of
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Table 5.Relative difference values of filling rates (a) Grazzini J, Soille P (2009). Edge-preserving smoothing
between the different methods and the naive approach, using a similarity measure in adaptive geodesic
or (b) between the different methods and the spiral neighbourhoods. Pattern Reco(10):2306-16

approach. For each image is given in bold the bes{ 5ngjoul C, Maisonneuve F (1984). Geodesic methods in
relative difference value. image analysis. Pattern Recofjfi:177-87

(a) Lerallut R, Decendire E, Meyer F (2007). Image filtering
using morphological amoebas. Image Vision Comput

. Spiral spiral geodesic  filling 25(4):395-404
Ay (naive) method  method  extrema rate
with method  method Mohan A, Sapiro G, Bosch E (2007). Spatially Coherent
repulsion Nonlinear Dimensionality Reduction and Segmentation
“Bumps’ 556 % 386%  301% 49.6% of Hyperspectral Images. IEEE Geosci Remote Sens
“Hairpin bend” 13.4%  264%  17.9% 29.6 % 4(2):206-10
“Random” 162% 206% 19.0% 18.4% Noyel G, Angulo J, Jeulin D (2007a). Morphological
segmentation of hyperspectral images. Image Anal
(b) Stereol26:101-9
spiral geodesic _filling Noyel G, Angulq J, Jeulin D (2007b). Qn distances, pat_hs
A (spiral method with  extrema rate and connections for hyperspectral image segmentation.
repulsion method  method In: Banon G et al. Proc 8th Int Symp Math Morpho
“Bumps” 17.4% 6.0% 32.3% 1:399-410.
“Hairpin bend” 15.0 % 52% 18.7 % Noyel G (2008). Filtrage, &duction de dimension,
“Random” 5.3% 34% 2.7% classification et segmentation  morphologique

hyperspectrale. PhD Thesis. Mines ParisTech, France.

The main motivation for our developments is theSethian JA (1996). A marching level set method for
Computation of all pairs of geodesic distances for monotonica”y advanCing fronts. Proc Natl Acad Sci
the pixels of an image, which is usually a graph of ~USA93:1591-5
thousands of vertices arranged spatially. Neverthelessethian JA (1999). Level Set Methods and Fast Marching
our approach is valid on more general graphs, than Methods: Evolving Interfaces in Computational
those associated to bitmap images, after determining Geometry, Fluid Mechanics, Computer Vision and
the “boundary vertices” of the graph, since then, Materials Science. Cambridge: Cambridge University
the computation of the geodesic centre (and the press.
geodesic extremities) of a graph can be obtained b
a first propagation from the “boundary vertices”. The
“boundary vertices” can be defined, for instance, as
the vertices having less neighbouring vertices than the

goille P (1991). Spatial distributions from contour
lines: an efficient methodology based on distance
transformations. J Vis Commun Image Rep

average number of connectivity in the graph. 2(2):138-50
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