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ABSTRACT

Periodic spatial grids can be used for unbiased estimation of length and surface area of objects by counting
or measuring intersections of the objects with the grids. The estimators are theoretically based on discrete
approximation of well established integral geometric formulas. The variance of the estimates depends on
properties of both the grid and the measured objects. Main results of the theory of variance of the isotropic
uniform random (IUR) volume estimation by spatial grids, especially a formula relating the variance of the
volume estimator with the object surface area and the grid constant, are recapitulated. To identify main features
of length and surface area IUR estimates the variance due to rotation and simple asymptotic formulas for the
residual variance of estimates of selected model objects is calculated. Surface area estimates by multiple grids
of parallel lines in 3D and of the variance of length estimates by periodic grids of planes or spheres in d-
dimensional space are studied.

Keywords: stereology, variance, 3D.

INTRODUCTION

Basic geometrical characteristics of 2D or 3D
objects can be estimated by counting or measuring
intersections of the objects with randomized periodic
patterns of manifolds (Barbier, 1860; Santaló,
1976; Cruz-Orive, 1997). Estimation of geometrical
characteristics by measuring the objects intersections
with the randomized probes can be regarded as a
generalization of the classical topic of stereology
– estimation of the characteristics measuring lower
dimensional randomized sections of the objects. The
formulas for unbiased estimators using intersections
with randomized spatial grids follow from well
established general formulas of integral geometry
(Baddeley and Vedel-Jensen, 2005). On the other
hand the variance of the estimates may depend on
properties of both the grid and the measured objects in
a complicated way.

The variance of volume estimation by measuring
intersection of the object with arbitrary periodic grid in
random position is already well understood. A useful
approximate formula (Eq. 1) for the variance using
only simple characteristic of the measured object is
available. The formula for variance of d−dimensional
volume estimate by point lattice was proved in
(Hlawka, 1950) for strictly convex sets with 6d−times
differentiable support function, the proof for convex
sets or sets with C1.5 smooth boundary can be found
in (Janáček, 2008) and it can be easily generalized to
an arbitrary periodic grid. The volume of a bounded

object K in d−dimensional space can be estimated
by a point counting method using regular point lattice
T= AZ

d in R
d , where Z is the set of integers and A is a

regular matrix. The number of points of the randomly
shifted point lattice inside the object multiplied by the
specific volume of the point is an unbiased estimate
of the volume. Under mild regularity conditions on
the object K the variance of the estimator with the
randomly rotated lattice scaled by the factor u > 0 is

CTH
d−1 (∂K)Φ

(
u−1

)
ud+1

(Janáček, 2008), where CT is a constant of the lattice,
Hd−1 (∂K) is the surface measure of the object, Φ ≥ 0
is a function which ergodic average tends to 1:

lim
x→+∞

1

x

ˆ x

0

Φ(t) dt = 1 .

The constant of the lattice can be expressed as

CT =
(
2π2dκd

)−1
∑

ξ 6=0

ξ∈T∗ |ξ |−d−1
where T

∗ = A−1
Z
d

and κd is the volume of the unit ball in R
d . The

value of the coefficient is approximately 0.072837 for
the quadratic lattice and 0.071701 for the hexagonal
lattice normalized to unit intensity in plane, 0.066649
for the cubic lattice, 0.064350 for the normalized body
centered cubic lattice and 0.064390 for the normalized
face centered cubic lattice in space.

The result can be easily generalized from the
counting measure of lattice T to an arbitrary T−
periodic measure µ with constant of the measureCµ =(
2π2dκd

)−1
∑

ξ 6=0

ξ∈T∗
∣∣µ̃ξ

∣∣2 |ξ |−d−1
where µ̃ξ are Fourier
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coefficients of the measure (Janáček, 2006). Software

package pgs for calculation of coefficients of various

grids is available (Kiêu and Mora, 2006).

For the purpose of the variance estimation the

function Φ oscillating around 1 is neglected and the

variance can be expressed approximately:

Var(estV ) ∼=CSH
d−1 (∂K)N

− d+1
d

V (1)

where NV = |A|−1
is the grid points intensity and the

lattice S is the homothetic copy of the point lattice

T with unit intensity. Similar simple approximations

for estimators of length or surface area are not

yet known. The aim of this paper is to study the

behavior of variance of selected estimators of length

or surface area, design of the expressions for the

estimators variance similar to Eq. 1 and evaluation of

the coefficients in the expressions.

The length of a fibre-like structure in R
d can be

measured with a randomly rotated and shifted (IUR)

periodic grid of surfaces. The surface area of objects

in R
d can be estimated by counting intersections with

a grid of lines. The variances of the estimators can be

decomposed into the variance due to the orientation of

the grid and to the residual component of variance:

Var(estQ) =

Varg∈SOd
(E(estQ|g))+Eg∈SOd

(Var(estQ|g)) ,

whereQ is either length (L) or surface area (S) and SOd

is the group of rotations in R
d .

The variances of length or surface area estimates in

R
d using spatial grids due to orientation are calculated

in the same way as the variance of the surface area

estimators using combined projection, treated in the

following section.

VARIANCE OF SURFACE AREA

ESTIMATE IN R
d USING TOTAL

PROJECTION

Crofton formula relates the suface area of a convex

body to the mean area of its isotropic projection.

Surface area of a convex body in R
d is average area of

its projection multiplied by dκd/κd−1 where κd is the

volume of the unit ball in R
d and using this equality

we can construct an estimator of the surface area from

the object total projection area (area weighted by Euler

characteristics of projection inverse, see Serra, 1982):

estS =
dκd

κd−1

Atot

Variance of the projection area depends on the object
anisotropy, i.e., on the distribution of the angles
between the normals to the body. It is well known
that the variance of the surface area estimators can be
decreased by using average of areas of projections into
a set of directions (with fixed mutual position, e.g.,
perpendicular) instead of one direction. The decrease
of the variance is due to a negative covariances of the
projections areas (Mattfeldt et al., 1985).

The formula for coefficient of variation (CV ) of
surface estimator from multiple weighted projection
areas of a body (Janáček, 1999) is:

CV 2 =

ˆ π
2

0

ˆ π
2

0

Kd (ψ,χ)dF (ψ)dG(χ) , (2)

where F is the distribution function of angles between
normals to the object surface, G is the distribution
function of angles between projections directions and
the kernel Kd is defined as

Kd (ψ,χ) =

((
dκd

2κd−1

)2ˆ

SOd

|(gy,x)(gu,v)|dg−1

)
.

Kd (ψ,χ) can be evaluated either by direct
integration or using convolution formula and Parseval
equality for harmonic analysis on Sd−1. For details and
examples see Appendix A.

LENGTH ESTIMATION BY THE

GRID OF SURFACES

The length of a curve in R
d can be estimated from

the number of intersection of the curve with a spatial
grid of planes

estL =
dκd

2κd−1

N

SV
,

where N is the number of intersections and SV is the
surface area of the grid per unit volume. The variance
of the estimator of the length due to orientation can be
calculated by Eq. 2 substituting for F the distribution
function of angles between the tangents to the curve
and for G the distribution function of angles between
the normals to the grid surfaces. The simplest of
grids of surfaces is the grid composed of parallel
planes. The grids with different directions of normals
can be combined obtaining decreased variance due to
orientation. The variance is decreased due to negative
covariances as in the case of surface estimation
by projections. The residual component of variance,
Eg∈SOd

(Var(estL|g)), is the mean over all orientations
of variance of an estimate by equidistant point samples
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of an integral of total projection of the space curve

to a line of given orientation. The total projection of

the space curve to a line is a step function and the

variance of integral estimate of such step function is

well known (Moran, 1950). An approximation of the

residual component of variance of estimate of length L

of the object K composed of space curves by applying

grids of parallel hyperplanes in R
d then follows from

differential geometry:

Eg∈SOd
(Var(estL|g)) ∼=CL

GκABS (K)S−2
V ,

κABS (K) =

ˆ

K

|κ|ds+ π

4

(
Nends +Noddbranchings

)
,

CL
G =

1

3π

(
dκd

2κd−1

)2

,

where SV is the grid surface intensity, κ is curvature

of the curve (i.e., the reciprocal of the radius of

the osculating circle), Nends is number of endings of

curves, Noddbranchings is number of branchings where

an odd number of curves is joining together and κd is

the volume of the unit ball in R
d .

Another grid suitable for length estimation is

composed of identical spheres centered in points

forming periodic lattice T. The grid is for given

lattice type defined by two parameters, the point lattice

density and by the spheres diameter. Let us define

shape parameter ρ of the grid equal to the radius of the

spheres of the grid homothetically transformed in such

a way, that the point lattice T is transformed to the unit

lattice S. If the grid is randomly rotated the variance

due to orientation of the grid, Varg∈SOd
(E(estQ|g)),

is obviously zero.

The residual component of variance of the estimate

of length of a line segment can be approximated by the

variance of the estimate of volume of a cylinder with

a diameter equal to the diameter of the spheres in the

original grid by a point lattice T. The covariogram of

the cylinder can be approximated by a direct product of

covariogram of (d − 1) − dimensional ball and a line

segment. An approximate expression for the residual

component of variance of estimate of length L of the

object K by the grid of spheres in R
d is:

Eg∈SOd
(Var(estL|g)) ∼=CL

G(ρ)L(K)S−1
V ,

CL
G(ρ) =

d−1

κd−1

ξ 6=0

∑
ξ∈S∗

ξ−dJ2d−1
2

(2πξ ρ) ,

where J is the Bessel function of the first kind, follows

from the limit transition SV → ∞.

The function CL
G(ρ) has a local minimum close to

the half of the distance between the nearest lattice

points (Fig. 1), and so the grid of touching spheres

shall be effective for the length estimation in 3D.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Ρ0

1

2

3

4

CG Ρ
L

Fig. 1. Values of CL
G(ρ) for grid of spheres S with

centres in face centered cubic lattice.

In estimates of the curve length the grids of flat

planes yield quite different order of asymptotics than

grids of curved surfaces, due to increasing curvatures

during homothetic downscaling of the curved grids.

The variance is also controlled by different properties

of the measured object, namely by the total absolute

curvature in estimations using parallel surfaces and by

the length in estimation by application of spheres.

SURFACE AREA ESTIMATION BY

GRIDS OF STRAIGHT LINES

The surface area of an object in R
d can be

estimated from the number of intersection of the object

surface with a spatial grid of lines

estS =
dκd

2κd−1

N

LV
,

where N is the number of intersections and LV is the

length of the grid per unit volume. The grids composed

from sets of parallel lines can be used for estimation

of the surface area of spatial objects. The estimators

can be optimized by finding optimal mutual position

of the sets (Kubı́nová and Janáček, 1998). Parametric

expressions of two simple grids and three multiple

grids in basic and optimized shifted versions (Fig. 2),

are listed below, where i, j ∈Z are discrete parameters,

u ∈ R is a continuous parameter.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Spatial grids of lines in R
3 used for surface

area estimation. (a) grid with quadratic cross-section;

(b) grid with triangular cross-section; (c) 3-fold basic

grid; (d) 3-fold shifted grid; (e) 4-fold basic grid; (f)

4-fold shifted grid; (g) 7-fold basic grid; (h) 7-fold

shifted grid.

• Unit grid with quadratic cross-section: (i, j,u)

• Grid with triangular cross-section: (i+u, j+u,u)

• Unit grid with triangular cross-section – the above

grid scaled by the factor
4
√
3.

• 3-fold basic grid: (u, i, j) , (i,u, j) , (i, j,u),

• 3-fold shifted grid:
(
u, i, j+ 1

2

)
,

(
i+ 1

2
,u, j

)
,(

i, j+ 1
2
,u

)
.

• Unit 3-fold grids – the above grids scaled by the

factor
√
3.

• 4-fold basic grid: (i+u, j+u,u) , (i+u, j+u,−u) ,
(i+u, j−u,u) , (i+u, j−u,−u) .

• 4-fold shifted grid: (i+u, j+u,u) ,(
i+u, j+u+ 1

2
,−u

)
,
(
i+u+ 1

2
, j−u,u

)
,(

i+u, j−u,−u+ 1
2

)
.

• Unit 4-fold grids – the above grids scaled by the

factor 2
4
√
3.

• 7-fold grids are combinations of above 4-fold grids

with 1
2
homothetic images of 3-fold grids.

• 7-fold basic grid:
(
u, 1

2
i, 1

2
j
)
,
(
1
2
i,u, 1

2
j
)
,(

1
2
i, 1

2
j,u

)
, (i+u, j+u,u) , (i+u, j+u,−u),

(i+u, j−u,u) , (i+u, j−u,−u).

• 7-fold shifted grid:
(
u, 1

2
i, 1

2
j+ 1

4

)
,
(
1
2
i+ 1

4
,u, 1

2
j
)
,(

1
2
i, 1

2
j+ 1

4
,u

)
, (i+u, j+u,u),(

i+u, j+u+ 1
2
,−u

)
,
(
i+u+ 1

2
, j−u,u

)
,(

i+u, j−u,−u+ 1
2

)
.

• Unit 7-fold grids – the above grids scaled by the

factor 2
√
3+

√
3.

The operation of estimation of the area of a surface

by the grid of parallel straight lines can be decomposed

into parallel projection to the plane perpendicular to

the lines, and estimation of the total projection area

by a point lattice. The variance of the estimator can

be decomposed into the variance due to rotation of the

grid and to the residual component of variance.

THE VARIANCE OF SURFACE AREA

ESTIMATES DUE TO ROTATION.

Coefficients of variation of estimate with the grids

of lines due to orientation S−1
√

Varg∈SOd
(E(estS|g))

can be calculated by Eq. 2 substituting for F the

distribution function of angles between normals to

surface and for G the distribution function of angles

between tangents to grid lines. The variances due to

orientation for a flat object, that are also upper bounds

for the variances of the surface area estimates for

arbitrary objects, are shown in Table 1. and the results

for a cylindrical surface are presented in Table 2.

The gain in effectivity with respect to independent

measurements with a simple grid is also shown.
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Table 1. Coefficient of variation of projection of a flat

object into n directions of line grids in R
3 calculated

using Eq. 4 from Appendix A.

n CV CV 2
1 /nCV 2

n

1 0.57735 1

3 0.10163 10.8

4 0.07523 14.7

7 0.03822 32.6

Table 2. Coefficient of variation of projection of a

cylindrical surface into n directions of line grids in R
3

calculated using Eq. 5 from Appendix A.

n CV CV 2
1 /nCV 2

n

1 0.28418 1

3 0.03706 19.6

4 0.02668 28.4

7 0.01196 80.6

Table 3. Coefficients CS
G (K) in Eq. 3 for residual

component of variance of estimates of surface area

with unit (LV = 1) line grids G in R
3: namely

simple (1) grids with square point lattice cross-section

and with triangular point lattice cross-section (K is

arbitrary) and multiple (3, 4, 7) basic and shifted grids

(K is ball or disc).

n G CS
G (K) G CS

G (K)
1 square 3.661 triangular 3.604

3 basic, ball 9.717 basic, disc 8.490

3 shifted, ball 3.810 shifted, disc 4.730

4 basic, ball 11.920 basic, disc 10.376

4 shifted, ball 3.675 shifted, disc 4.832

7 basic, ball 16.594 basic, disc 14.265

7 shifted, ball 4.022 shifted, disc 5.769

THE RESIDUAL COMPONENT OF

VARIANCE OF SURFACE AREA

ESTIMATES.

The residual component of variance of surface area

(S) of object K estimate by grids of lines in R
3 can be

expressed approximately similarly to Eq. 1 as

Eg∈SO3
(Var(estS|g)) =CS

G(K)HABS (K)L
− 3

2
V , (3)

where LV is the grid length intensity, HABS (K) is

the absolute width of K defined using the absolute

mean curvature by equality 2πHABS = K3
1 (Baddeley,

1980). The values of the coefficients in Eq. 3 for our

grids (Table 3) and for ball and disc are calculated in

Appendix B.

The coefficients of simple grids are independent

of the body. In the multiple grids it is not true as

demonstrated by the examples of the estimates of the

disc and ball surface areas.

DISCUSSION

The study of variances of estimators with

periodic grids is important for the design of efficient

measurement methods. Approximate asymptotic

results for homothetic images of grids with spatial

density increasing to infinity, as those applied in the

paper to variance of volume estimates or to residual

components of variances of the length and surface

area estimators, use simple properties of the measured

objects and yield useful results for model objects under

study. We suppose that the formulas are generally

valid, and the coefficients of ball and disc in formula

for the residual component of variance of surface area

estimates represent extreme values of coefficients for

arbitrary objects. Using the knowledge on the behavior

of the estimators we were able to design efficient

estimators of surface area using spatial grids of shifted

line probes and estimators of length of fibre like

objects using spatial grids of touching spheres. The

asymptotic results are established rigorously in the

case of volume estimates only, the theory of variance

in more difficult cases – the surface area and length

estimates – is far from completness yet, however the

presented study with model objects exhibits some

important features of the variance of length and surface

area estimators.
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APPENDIX A

Let us start with auxiliary computations. Let x =
(x1, . . .xd), α = (α1, . . .αd), |x|α = |x|α1

1 . . . |x|αd

d , |α|=
Σd
i=1αi, then

ˆ

Sd−1

|x|α dS (x) =
Πd

i=1Γ
(

αi+1
2

)

1
2
Γ

(
|α |+d

2

) ,

where dS is surface measure. The equality can be

proved by calculating
´

Rd |x|α exp
(
−‖x‖2

)
dx in two

ways: by Fubini theorem and in spherical coordinates.

The indentity
´

Sd−1
1 dS (x) = dκd can serve as an

example where κd = π
d
2 Γ

(
d
2
+1

)−1
is the volume of

the unit ball Bd (1) in R
d .

As
´

Sd−1
|x1|dS (x) = 2κd−1, the mean of the

projection length of a unit segment to a line (a simple

projection) is 2κd−1/dκd . As
´

Sd−1
|x1|2 dS (x) = κd ,

the squared coefficient of variation of the projection
is

CV 2 =

(
dκd

2κd−1

)2
1

d
−1 .

The values of the the CV 2 for d =
1,2,3,4, . . . are 0,π2/8 − 1,1/3,9π2/64 − 1, . . . ∼=
0,0.23,0.33,0.39 . . . (the limit is π/2−1∼= 0.57).

Eg∈SOd
(L1L2), the mixed second order moment

of lengths of projections of a unit segment
to two lines spanning angle ψ in R

2 (a
double projection) is 1

π

´ π
φ=0

sin |φ −ψ|sinφ dφ =
1
π

(
sinψ +

(
π
2
−ψ

)
cosψ

)
. In R

d we obtain the
corresponding value

2

dπ

(
sinψ +

(π

2
−ψ

)
cosψ

)
, (4)

multiplying the value for R
2 by the value

´

Sd−1

(
x21 + x22

)
dS (x) = 2/d. Eg∈SOd

(L1L2), the mixed

second order moment of lengths of projections of unit
segments spanning angle χ to corresponding lines
spanning angle ψ is

ˆ

SOd

|(gy,x)(gu,v)|dg ,

where x,y,u,v ∈ R
d , |x| = |y| = |u| = |v| = 1, (y,u) =

cosψ , (x,v) = cosχ , SOd is the group of rotations
equipped with the probabilistic invariant measure.
From this formula the kernel Kd can be calculated.
Special values of Kd can be calculated from preceding
formulas. Thus CV 2 of the simple projection of
unit segment gives Kd (0,0) and CV 2 of the double
projection of a unit segment gives Kd (ψ,0). It is easy
to see that K2 (ψ,χ) = K2 (ψ −χ,0).

By Parseval equality for harmonic analysis on Sd−1

we obtain the following expression:

2

π

ˆ π
2

ψ=0

K3 (ψ,χ)dψ =

(
dκd

2κd−1

)2

×

Σ∞
n=0 (4n+1)

(
(2n−3)!!

(2n+2)!!

)2(
(2n−1)!!

2n!!

)2

×

Σm
l=−m

(2n−2l−1)!!

(2n+2l)!!

(2n+2l−1)!!

(2n−2l)!!
cos(2lχ)−1 ,

(5)

which enables us to calculate the variance of multiple
projections of a cylindrical surface in R

3. It was
obtained from Fourier series in spherical harmonics of
absolute value of sine of lattitude, of 1−dimensional
measure supported by equator and of sum of Dirac
measures located χ radians apart from each other.

APPENDIX B

The variance of estimates of surface area of a
convex body by periodic grid of lines can be calculated
using generalization of isotropic (point) covariogram
of the body (Matheron, 1965): the value of generalized
covariogram for pair of lines is the measure of set
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of such euclidean motions of the lines, that the both

lines intersect the body, multiplied by the sine of

angle between the lines, or the limit for parallel

lines. The value for a pair of parallel lines is equal

to mean isotropic point covariogram of the planar

projection of the body. For nonparallel lines we

obtained so far a simple result for ball or disc only.

For ball we obtained montée of covariogram of the

circle (Matheron, 1965). For disc we obtained montée

of mean covariogram of the disc planar projection

multiplied by 2
π

(
sinψ +

(
π
2
−ψ

)
cosψ

)
where ψ is

angle between the lines. Using Poisson summation

formula yields the following formulas for coefficients

in Eq. 3 of the ball (as in Janáček, 1999) and the disc

(Table 3).

The Fourier coefficient of a aZ
3 – periodic measure

µ with index ξ ∈ a−1
Z
3, a > 0, is

µ̃ξ = a−3

ˆ

〈0,a)3
exp(−2πixξ )dµ (x) , (6)

CS
G(ball) =

4

π2

ξ 6=0

∑
ξ∈a−1Z3

∣∣µ̃ξ

∣∣2 |ξ |−3 .

Fourier coeficients of unit grid with quadratic

cross-section are µ̃ξ = 1 for ξ = (i, j,0), i, j ∈ Z,

µ̃ξ = 0 otherwise.

Grid with triangular cross-section:

• µ̃ξ =
√
3 for ξ = (i, j,−i− j), i, j ∈ Z

• µ̃ξ = 0 otherwise.

Coefficients of unit grid with triangular cross-section

are 1√
3
multiples of above coefficients with indices ξ

scaled by factor 1
4√
3
.

3-fold basic grid:

• µ̃ξ = 1 for ξ = (l,m,0), ξ = (m,0, l) and ξ =
(0, l,m).

• µ̃ξ = 2 for ξ = (l,0,0) , ξ = (0, l,0) and ξ =
(0,0, l).

• µ̃ξ = 3 for ξ = (0,0,0).

• µ̃ξ = 0 otherwise.

3-fold shifted grid:

• µ̃ξ = (−1)m for ξ = (0, l,m), ξ = (m,0, l) and

ξ = (l,m,0).

• µ̃ξ = 2 for ξ = (2l,0,0) , ξ = (0,2l,0) and ξ =
(0,0,2l).

• µ̃ξ = 3 for ξ = (0,0,0).

• µ̃ξ = 0 otherwise.

Coefficients of unit 3-fold grids are 1
3
multiples of

above coefficients with indices ξ scaled by factor 1√
3
.

4-fold basic grid:

• µ̃ξ =
√
3 for ξ = (l,m,n) where l,m,n ∈ Z \ {0},

l 6= ±m 6= ±n 6= l, l +m+ n = 0, l +m− n = 0,

l−m+n = 0 or l−m−n = 0.

• µ̃ξ = 2
√
3 for ξ = (l,−l,0), ξ = (l,0,−l), ξ =

(0, l,−l), ξ = (0, l, l), ξ = (l,0, l) and ξ = (l, l,0).

• µ̃ξ = 4
√
3 for ξ = (0,0,0).

4-fold shifted grid:

• µ̃ξ =
√
3 for ξ = (l,m,n) where l,m,n ∈ Z \ {0},

l 6= ±m 6= ±n 6= l, l+m+n = 0.

• µ̃ξ = (−1)m
√
3 for ξ = (l,m,n) where l+m−n=

0.

• µ̃ξ = (−1)l
√
3 for ξ = (l,m,n) where l−m+n =

0.

• µ̃ξ = (−1)n
√
3 for ξ = (l,m,n) where l−m−n=

0.

• µ̃ξ = 2
√
3 for ξ = (2l,−2l,0), ξ = (2l,0,−2l),

ξ = (0,2l,−2l), ξ = (0,2l,2l), ξ = (2l,0,2l) and
ξ = (2l,2l,0).

• µ̃ξ = 4
√
3 for ξ = (0,0,0).

Coefficients of unit 4-fold grids are 1

4
√
3
multiples

of above coefficients with indices ξ scaled by factor
1

2
4√
3
.

7-fold basic grid:

• µ̃ξ = 4 for ξ = (2l,2m,0), ξ = (2m,0,2l) and

ξ = (0,2l,2m) where l,m ∈ Z\{0}, l 6= m.

• µ̃ξ = 8 for ξ = (2l,0,0) , ξ = (0,2l,0) and ξ =
(0,0,2l).

• µ̃ξ =
√
3 for ξ = (l,m,n) where l,m,n ∈ Z \ {0},

l 6=±m 6=±n 6= l and l+m+n= 0, l+m−n= 0,
l−m+n = 0 or l−m−n = 0.

• µ̃ξ = 4+2
√
3 for ξ = (2l,−2l,0), ξ = (2l,0,−2l),

ξ = (0,2l,−2l), ξ = (0,2l,2l), ξ = (2l,0,2l) and
ξ = (2l,2l,0).

• µ̃ξ = 2
√
3 for ξ = (2i+1,−2i+1,0), ξ =

(2i+1,0,−2i+1), ξ = (0,2i+1,−2i+1), ξ =
(0,2i+1,2i+1), ξ = (2i+1,0,2i+1) and ξ =
(2i+1,2i+1,0) where i ∈ Z.

• µ̃ξ = 12+4
√
3 for ξ = (0,0,0).

7-fold shifted grid:
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• µ̃ξ = (−1)m 4 for ξ = (2l,2m,0), ξ = (2m,0,2l)
and ξ = (0,2l,2m) where l,m ∈ Z\{0}, l 6= m.

• µ̃ξ = 8 for ξ = (4l,0,0) , ξ = (0,4l,0) and ξ =
(0,0,4l).

• µ̃ξ =
√
3 for ξ = (l,m,n) where l,m,n ∈ Z \ {0},

l 6= ±m 6= ±n 6= l, l+m+n = 0.

• µ̃ξ = (−1)m
√
3 for ξ = (l,m,n) where l+m−n=

0.

• µ̃ξ = (−1)l
√
3 for ξ = (l,m,n) where l−m+n =

0.

• µ̃ξ = (−1)n
√
3 for ξ = (l,m,n) where l−m−n=

0.

• µ̃ξ = (−1)l 4 + 2
√
3 for ξ = (2l,−2l,0), ξ =

(2l,0,−2l), ξ = (0,2l,−2l), ξ = (0,2l,2l), ξ =
(2l,0,2l) and ξ = (2l,2l,0).

• µ̃ξ = 12+4
√
3 for ξ = (0,0,0).

Coefficients of unit 7-fold grids are(
4
(
3+

√
3
))−1

multiples of above coefficients with

indices ξ scaled by factor
(
2
√

3+
√
3
)−1

.

We can see that the shifting caused vanishing of
the coefficients with smallest indices, which explains
the superior performance of the shifted grids (Table 3).

Properly grouping the terms in expression for the
coefficients we can use the Epstein zeta functions
Z (A,3) defined as

Z (A,s) =
n 6=0

∑
n∈Zd

|An|−s ,

with matrix A equal to Id , d = 1 or 2, the identity matrix
in R

d and

A2 =

√
2

4
√
3

( √
3
2

0
1
2

1

)
.

The values of coefficientsCS
G(ball) are

• 4
π2Z (I2,3) for simple grid with quadratic
crossection,

• 4
π2Z (A2,3) for simple grid with triangular
crossection,

• 4
π2

√
3
3

(3Z (I2,3)+6Z (I1,3)) for basic 3-fold grid
and ball,

• 4
π2

√
3
3

(
3Z (I2,3)− 9

2
Z (I1,3)

)
for shifted 3-fold

grid and ball,

• 4
π2

1
2
3

3
4

(
4 ·3− 3

4Z (A2,3)+12 ·2− 3
2Z (I1,3)

)
for

basic 4-fold grid and ball,

• 4
π2

1
2
3

3
4

(
4 ·3− 3

4Z (A2,3)−9 ·2− 3
2Z (I1,3)

)
for

shifted 4-fold grid and ball,

• 4
π2

1

2
√

3+
√
3

(
4 ·3 1

4Z (A2,3)+6Z (I2,3) +

+ 3
(
4+3

√
2+

√
6
)
Z (I1,3)

)
for basic sevenfold

grid and ball,

• 4
π2

1

2
√

3+
√
3

(
4 ·3 1

4Z (A2,3)+6Z (I2,3) −

− 9
4

(
4+3

√
2+

√
6
)
Z (I1,3)

)
for shifted

sevenfold grid and ball.

The Epstein zeta functions Z (I1,3), Z (I2,3)
and Z (A2,3) can be calculated using the following
identities valid between the Epstein zeta functions, the
Riemann zeta function ζ and Dirichlet function Lp

ζ (s) =
∞

∑
n=1

n−s , Lp (s) =
∞

∑
n=0

(p|n)n−s ,

where (p|n) is the Kronecker symbol:

Z (I1,s) = 2ζ (s) ,

Z (I2,s) = 4ζ
( s

2

)
L−4

( s

2

)
,

Z (A2,s) = 21+
s
2 31−

s
4 ζ

( s

2

)
L−3

( s

2

)
.

The covariances of the simple estimates of the disc
surface area must be multiplied by additional factor
f (ψ) = 2

π

(
sinψ +

(
π
2
−ψ

)
cosψ

)
where ψ is angle

spanned by tangents to parallel lines of the simple
subgrids.

Thus we obtain the values of coefficientsCS
G(disc):

• 4
π2

√
3
3

(
3Z (I2,3)+ f

(
π
2

)
6Z (I1,3)

)
for basic 3-fold

grid and disc,

• 4
π2

√
3
3

(
3Z (I2,3)− f

(
π
2

)
9
2
Z (I1,3)

)
for shifted 3-

fold grid and disc,

• 4
π2

1
2
3

3
4

(
4 ·3− 3

4Z (A2,3) +

+ f
(
arccos 1

3

)
·12 ·2− 3

2Z (I1,3)
)

for basic 4-fold grid and disc.

• 4
π2

1
2
3

3
4

(
4 ·3− 3

4Z (A2,3) −

− f
(
arccos 1

3

)
·9 ·2− 3

2Z (I1,3)
)

for shifted 4-fold grid and disc.

• 4
π2

1

2
√

3+
√
3

(
4 ·3 1

4 Z (A2,3)+6Z (I2,3) +

+ 3
(
4 f

(
π
2

)
+3

√
2 f

(
arccos 1

3

)
+
√
6 f

(
arccos 1√

3

))

Z (I1,3)) for basic sevenfold grid and disc.

• 4
π2

1

2
√

3+
√
3

(
4 ·3 1

4 Z (A2,3)+6Z (I2,3) −

− 9
4

(
4 f

(
π
2

)
+3

√
2 f

(
arccos 1

3

)
+
√
6 f

(
arccos 1√

3

))

Z (I1,3)) for shifted sevenfold grid and disc.
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