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ABSTRACT

The paper considers the problem of validity of unfolding thegrain size distribution with the back-substitution
method. Due to the ill-conditioned nature of unfolding matrices, it is necessary to evaluate the accuracy and
precision of parameter estimation and to verify the possibility of expected grain size distribution testing on
the basis of intersection size histogram data. In order to review these questions, the computer modeling was
used to compare size distributions obtained stereologically with those possessed by three-dimensional model
aggregates of grains with a specified shape and random size. Results of simulations are reported and ways
of improving the conventional stereological techniques are suggested. It is shown that new improvements in
estimating and testing procedures enable grain size distributions to be unfolded more efficiently.

Keywords: computer simulation, grain size distribution, planar section, Saltykov method, stereology.

INTRODUCTION

The grain size distribution is of considerable
importance in understanding the microstructure of
rocks, ceramics, alloys and so on. In studying opaque
mediums it is convenient for scientists to observe grain
aggregates in thin or polished sections. Stereological
techniques are used for converting two-dimensional
grain size measurements into three-dimensional data.
In the case that an aggregate consists of second-
phase grains and the surrounding matrix phase,
a conventional solution of the unfolding problem
introduced by Wicksell (1925) is the back-substitution
method advanced by Scheil (1931; 1935) and Schwartz
(1934) and later modified by Saltykov (1970). The
original method has been proposed for estimating
the size distribution of embedded grains assuming
that they are spherical in shape and their centers are
randomly dispersed within thespecimen. With these
assumptions,a planar sectionof an aggregate is made
and the histogram of diameters of grain sections, based
on size classes of equal width∆ = Rmax/q, whereRmax
denotes the maximum diameter of intersections in the
sample,q is the number of size classes, is obtained.
Classes are numbered, the first being the smallest, and
diameters of all grain sections relating to classi are
assigned a value of its upper bound,

Ri = ∆i , i = 1,2, . . .q .

In a similar manner, diameters of all grains falling
in classj are given by

r j = ∆ j , j = 1,2, . . .q .

From geometrical considerations it follows that
grain sections of classi come from the grains of each
class j ( j > i), which centers are placed at a distance
(∆/2)

√

j2− i2 < l ≤ (∆/2)
√

j2− (i−1)2 from the
planar section. Consequently, the intensity of grain
sectionsnR

i (the number of grain sections in classi per
unit area of the intersected plane) may be derived from
the linear equation system

nR
i = ∆

q

∑
j=1

Bi jn
r
j , i = 1,2, . . .q , (1)

wherenr
j denotes the unknown intensity of grains (the

number of grains in classj per unit volume of the
specimen), coefficientsBi j are (Saltykov, 1970):

Bi j =

{ √

j2− (i−1)2−
√

j2− i2,
0,

i ≤ j ,
i > j .

The requirednr
j is found from (1) by back-

substitution fornR
i :

nr
q =

1
∆

nR
q

Bqq
,

nr
q−1 =

1
∆

(

1
Bq−1,q−1
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Bq−1,q
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1
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The solution can be written in the form
(Saltykov,1970, p. 283; Stoyanet al.,1987)

nr
j =

1
∆

q

∑
i= j

Ai jn
R
i , j = 1,2, . . .q , (2)

where Ai j denotes transition coefficients that are
depended onq and cited for example by Russ and
DeHoff (2000). They can be generalized as follows:

Ai j =







Tii , i = j ,

−
j−1
∑

m=i
AmiTm j , i < j .

whereTi j denotes coefficients defined by (Takahashi
and Suito, 2003):

Ti j =















1
B j j

, i = j ,

Bi j

B j j
, i < j .

To improve stereological techniques, S. A.
Saltykov simplified the calculation procedure
described above and extended this unfolding method
to arbitrary convex grains. For adapting the theoretical
model to the practical needs, he substituted the discrete
analogue for the basic stereological equation, having
introduced the geometric scale of size classes instead
the linear one at the same time (Saltykov, 1970,
pp. 302-311). LetN(r), N(R) be the distribution
function of the size of grainsr and that of grain
sectionsR respectively. Furthermore, letNV , NA be
mean numbers of grains per unit volume and grain
sections per unit area respectively. The general formula
relating named quantities together is

NAN(R) = bNV

∫ ∞

R
r · p(r,R)dN(r) , (3)

where p(r,R) denotes a conditional distribution
function of R, given that r has taken a particular
value,b is a shape factor. For spherical grains Eq. 3
rearranges to

NA[1−N(R)] = NV

∫ ∞

R

√

r2−R2dN(r) , (4)

(cf. Ohser and Nippe, 1997; Ohser and Sandau,
2000). Considering Eq. 3 and starting from the two-
dimensional data histogram based on size classes that
form a geometric series

Ri = Rmaxa
q−i , i = 1,2, . . .q ,

0 < a < 1, one can derive follow discrete expressions:

nR
i = NA [N(Ri)−N(Ri−1)] ,

pi j = p(r j,Ri)− p(r j,Ri−1) ,

pi j = pq+i− j .

The last expression presented here points up the
fact that the probabilitypi j in the case of geometric
discretization depends on the difference of indices
(i− j) only. In view of derived formulae, Eq. 3 can
be transformed into the system of linear equations

nR
q = nr

q pqr̄q

nR
q−1 = nr

q−1pqr̄q−1 +nr
q pq−1r̄q

nR
q−2 = nr

q−2pqr̄q−2 +nr
q−1pq−1r̄q−1 +nr

q pq−2r̄q

. . .

which is represented in a concise form

nR
i =

q

∑
j=i

nr
j pq+i− jr̄ j , i = q,q−1, . . .1 , (5)

where ¯r j denotes the mean caliper diameter of grains
in class j (corresponding to the upper limit of the
size interval), pq+i− j is the probability that such a
diameter of a random intersection of a body whose
shape approximates the shape of grains will fall into
a particular size class. It should be remarked that the
concept of a mean caliper diameter (i.e., a distance
between two parallel planes that are tangent to a grain
measured in any direction) is used here in the context
of the governing stereological relationship

NA = r̄ ·NV , (6)

which holds for non-sphericall convex grains (Russ
and DeHoff, 2000).

The solution of Eq. 5 is given by

nr
q =

nR
q

pqr̄ j

nr
q−1 =

nR
q−1−nr

q pq−1r̄q

pqr̄ j

nr
q−2 =

nR
q−2−nr

q−1pq−1r̄q−1−nr
q pq−2r̄q

pqr̄ j

. . .

or

nr
j =

1
pqr̄ j

(

nR
j −

q−1

∑
i= j

nr
i+1pq+ j−i−1r̄i+1

)

,

j = q,q−1, . . .1 ,

(7)

which realize the backward Gaussian elimination
step for solving linear systems (Meyer, 2000). As a
consequence of this solution, the triangular matrix
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of transition coefficientsCq+ j−i can be obtained and
simplified version of Eq. 7 can be given by (Ohser and
Nippe, 1997):

nr
j =

q

∑
i= j

Cq+ j−in
R
i , j = q,q−1, . . .1 . (8)

As in the previous case, this formula is obtained
assuming that the maximum size of grain sections
is the maximum size of grains in the sample. It
is spherical grains that fulfill the last condition
best of all thanks to the shape of the intersection
diameter distribution for a sphere (Fig. 1). Since
the largest section circle is probably associated with
the largest sphere in the sample, one can subtract
the corresponding number of intersections from the
numbers of ones of each smaller class iterating the
process for the size classes that follow the largest one
until all of them are accounted for.
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Fig. 1. Probabilities of random intersections for a
sphere.

The probability pi of finding a specified shape
body section in corresponding size class is required to
implement Eq. 7 for unfolding. In the case of sphere
this probability can be computed by the well-known
analytical expression

p(Ri−1 < R < Ri) =
√

1−R2
i−1−

√

1−R2
i ,

whereRi−1 and Ri denote a lower and upper bound
of a given size class respectively. Similar expressions
for non-spherical bodies are also available. Mainly
this is true for spheroids (Cruz-Orive, 1978); as for
polyhedra, the only probability that an intersection
of some polyhedron (e.g., prism or tetrahedron) has
a given number of vertices was derived (Sukiasian,
1982; Voss, 1982), whereas the analytical expression

for pi remains to be obtained (Ohser and Sandau,
2000). Only recently has it been possible to evaluate
some probabilities of interest with numerical routines
and to apply stereological techniques for unfolding
the size distribution of non-spherical grains (Ohser
and Nippe, 1997; Han and Kim, 1998; Sahagian
and Proussevitch, 1998; Higgins, 2000; Ohser and
Mücklich, 2000).

In spite of apparent progress (and in many
respects owing to it), the validity of the stereological
conversion has been the focus of considerable recent
attention. Both theoretical and empirical approaches
to the problem have been applied. The former
appeals to the concept of the condition number as
a measure of stability and error sensitivity during
the numerical analysis of linear systems (Kanatani
and Ishikawa, 1985). It has been demonstrated
that condition numbers of matrices of stereological
coefficients in linear systems of the type (1) or
(5) are rather small in order to consider numerical
solutions being discussed as computationally stable
(Ohser and Sandau, 2000). The algebraic treatment
has been complemented by experimental studies of
the stereological estimation error. With full-scale
and model tests, grain size distributions unfolded
by the Saltykov method or alternative stereological
procedures were compared with actual ones, which
arise from additional investigations of specimens via
independent techniques (Karasev and Suito, 1999;
Susan, 2005) or derive from computer simulations
(Blödner et al., 1984; Takahashi and Suito, 2001;
Xu and Pitot, 2003). Assuming spherical shape of
grains, experimental evidence points to the fact that
although the intensitynr

j can be predicted reasonably
well with unfolding, the total number of grains per
unit volume NV is often underestimated against the
true value (Takahashi and Suito, 2003). As this takes
place, the mean grain diameterm is overestimated
due to the omission of small grain sections (Susan,
2005). Unfolding data are slightly effected by the
number of size classes (provided it lies between 15 and
25) but highly susceptible to the number of observed
grain sections (which is advised should be range
from several hundred to several thousand). While
the Saltykov method offers some advantages over
alternative stereological procedures, it along with them
is unable to verify hypothesized diameter distribution
with goodness-of-fit tests owing to computational
errors (Blödneret al., 1984).

This paper addresses some of the questions
raised in the preceding discussion. From insufficient
stability of unfolding results caused by a recursive
algorithm generating intensities of grains it is
necessary to determine the accuracy and precision
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of parameter estimation and to justify the possibility
of testing statistical hypotheses about the functional
form of an expected grain size distribution for the
stereological conversion. In an effort to handle these
issues, the computer modeling was used to match
size distributions obtained stereologically with those
possessed by three-dimensional aggregates of grains
with a same shape and random size. A sphere and
rhombic prism were chosen as assumed model shapes
since they are often employed to approximate a
habit of crystal inclusions in natural and artificial
matters. For instance, the spherical shape can be used
to approximate the rhombic dodecahedron crystals
of garnet in metamorphic rocks as well as the
prismatic shape is suitable for approximation of tabular
crystals of plagioclase in basalts. In view of the
fact that the shape can vary along with the size
of grains, there are several works, which attack the
problem of stereological estimation as applied to
the bivariate size-shape distribution (Wicksell, 1926;
Cruz-Orive, 1976; 1978; Møller, 1988; Benes̆et al.,
1997; Ohser and Mücklich, 2000). However, in studies
of specimens like rocks, where the shape of grains
is typically invariable due to similar conditions of
crystallization, the topical problem is to unfold the
solely the grain size distribution. With this in mind,
to improve results of unfolding with reference to
prismatic grains, the Saltykov method was developed
having regard to intersection histogram properties
for a prism with a given aspect ratio. The manner
of verification of the expected diameter distribution
with the minimum chi-square method of parameter
estimation was advanced. On this basis, the evaluation
of statistics for stereological estimators was made as a
function of the amount of sampling.

STEREOLOGY OF SPHERES

It was the stereology of spherical grains that
the first series of simulations dealt with. In each
simulation, the test volume was filled with the large
number of randomly locatedspheres with random
diameters. After that, cutting the volume by a set of
parallel planes, which are apart from each other at a
distance exceeding the diameter of the largest sphere
in the population, the intersection diameter histogram
was constructed from the geometric discretization
with a = 10−0.1, q = 20. In so doing, overlapping
intersections, whose contribution was negligible due
to large spaces between centers of spheres as
compared with their diameters, were considered
together with non-overlapping ones. On the basis of
two-dimensional data, the intensity of spheres was
estimated fromEq. 7, where ¯r j as used here denotes the

diameter of section circles lying in classj, pq+ j−i−1 is
the analytical probability for the diameter of a random
intersection of a unit sphere to fall in corresponding
size class.

For verifying a hypothesized diameter distribution
from unfolded data it is advisable to use the chi-square
(χ2) goodness-of-fit test (Cramér, 1946). It may be
carried out only on independent observations, which
are put into categories, not on relative frequencies,
average values, or other derived data. Hence, this
test is not applied to compare the unfolded diameter
distribution and that of spheres forming the model
aggregate,as was done by Blödneret al. (1984). On
the other hand, as discussed byNadelhaft (1973)and
Han and Kim (1998), this test is applied to compare the
observed diameter distribution and that of intersection
of spheres, which would form the aggregate in the case
their diameter distribution is identical to the unfolded
one.

To construct the intersection diameter distribution
refers to the unfolded one, estimation of parameters
of the sphere diameter distribution was made from
unfolded data by the maximum likelihood method.
The main problem, which arises in this context, is a
frequent appearance of negative intensities of sphere
sections in small classes due to errors caused by
inaccuracy in the determination of intensities of sphere
sections in large ones and accumulated during the
successive subtraction by Eq. 7. Taking into account
that negative intensities are slight, one can neglect
them without appreciable loss of accuracy, especially,
as will be shown below, they play no part in definitive
estimation of parameters.

The next step was a calculation of the expected
intensity of spheresnr

j
∗ from estimated parameters,

whereupon the expected intensity of sphere sections
nR

i
∗

was derived from the following equation

nR
i
∗
=

q

∑
j=i

nr
j
∗pq+i− jr j , i = 1,2, . . .q , (9)

which is equivalent to Eq. 5. When corrected for a
sum of observed intensities, the expected intensities
of sphere sections (i.e., theoretical probabilities for the
test model) coupled with the observed ones were used
to calculate the chi-square test statistics

D =
l

∑
i=1









nR
i −

q

∑
i=1

nR
i

nR∗
i

q

∑
i=1

nR∗
i









2

q

∑
i=1

nR
i

nR∗
i

q

∑
i=1

nR∗
i

, l ≤ q .
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As part of a calculation, adjacent expected intensities
were combined if one of them was less then 5 (Sheskin,
2000).

It is known that the limiting distribution of the
chi-square statistic in the case of a composite null
hypothesis depends on which method is applied
for estimation of the parameters of a hypothesized
distribution. In this connection it would appear natural
to look for the ‘best’ values of unknown parameters
capable of making the value ofD as small as possible.
Under reasonably general conditions, minimum chi-
square estimation outlined above coincides with the
maximum likelihood method for grouped data. In both
cases, under the assumption that a null hypothesis
is true, the chi-square statistic is asymptotically (as
the sample size tends to infinity) distributed as aχ2

random variable with(w− u−1) degrees of freedom,
wherew denotes the number of bins,u is the number
of parameters in the hypothesized distribution to be
estimated (Cramér, 1946). Note that the estimator
based on the sample vector from the multinomial
distribution cannot be replaced here by the maximum
likelihood estimator for ungrouped data (Chernoff
and Lehmann, 1954). Generally, the calculation of
such an estimator is only possible numerically, as is
the minimum chi-square estimator. Some examples
of numerical routines for the minimum chi-square
method were reported (Ratcliff and Tuerlinckx, 2002).

On this basis, minimum chi-square estimation by
adjusting parameter values of the unfolded distribution
was chosen to obtain the proper distribution ofD.
With this aim in mind, a value of each unknown
parameter was searched in the vicinity of its initial
estimate. The routine of searching consisted of an
enumeration of series of values in intervals which
covered initial estimates and had widths equal to
20% of them. Among these values, the ones that
yielded a minimum for the chi-square statistic were
selected. The minimized value ofD was used to test
the hypothesisH0 that the observed intensities of
sphere sections correspond to the expected ones. If
this hypothesis was accepted, it is inferred that there
is no significant discrepancy between the unfolded
intensities of spheres and the actual ones.

During the modeling procedure several types
of sphere diameter distributions (lognormal, gamma,
Rayleigh, Weibull, etc.) were simulated. As an
example, the conditions used in one of the simulation
sets provided for spheres whose diameters are
lognormally distributed, are given in Table 1.

The results obtained appear in Fig. 2 and Table 2.
The parameter estimators are herein calculated from

formulae

lg m̂ =
20

∑
j=1

nr
j lgr j

/ 20

∑
j=1

nr
j ,

lg [exp(σ̂lnr)] =
20

∑
j=1

nr
j(lgr j − lg m̂)2

/ 20

∑
j=1

nr
j ,

N̂V =
20

∑
j=1

nr
j .

The histogram based on twenty size classes was
used to evaluate estimators ofm and σlnr. Their
relative standard errors are no more than 2–5%
with the estimators only slightly biased toward large
size classes at the same time. Negative and positive
deviations from true parameter values, which observed
in a single simulation, are less than 4–5 and 9–10%,
respectively. Both accuracy and precision of estimation
usually increased provided they are evaluated by
minimization of the statisticD.

The value of the estimator ofNV was obtained from
the summation of unfolded intensities of spheres. In
the course of the summation, the negative intensities
nr

i were omitted, because otherwise underestimation
of NV prevails. Furthermore, it has appeared useful to
increase the number of size classes (e.g., from 20 to
80) for extracting an virtually unbiased estimator of
that parameter. As a consequence, its relative standard
error and bias are 4 and 1%, respectively.

The experimental distribution function of
minimized D, which is calculated when the null
hypothesisH0 is true, follows nearly the theoretical
χ2

w−3 distribution fuction. When the alternative
hypothesisH is true, which is close to the null
hypothesis (for instance, if the observed section
diameter distribution is associated with spheres whose
diameters are Rayleigh distributed), the power of the
test is found to be near one (Fig. 3).

Table 1. Conditions for the sphere diameter
distribution simulation set.

Number of simulations 300
Number of spheres per test volume,NV 30000
Number of sphere sections per area of
test planes,NA

2000

Number of size classes of diameter
histograms,q

20

Type of diameter distribution lognormal
Median diameter of spheres,m 0.01
Standard deviation,σlnr 0.5

167



GULBIN Y: Estimation of the grain size distribution

-1000

0

1000

2000

3000

4000

5000

6000

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Diameter of spheres

In
te

n
s
ity

 o
f 
s
p

h
e

re
s

0

50

100

150

200

250

300

350

400

450

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Diameter of sphere sections

In
te

n
s
ity

 o
f 
s
p

h
e

re
 s

e
c
tio

n
s

Fig. 2. Left: actual sphere diameter distribution (solid line) and unfolded one (dotted line). Right: observed
section diameter distribution (dotted line) and expected one (solid line). D = 5.53, χ2

0.05;12= 21.03.
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Fig. 3.Probability distribution functions of the statistic D for spheres (red) and χ2
12 distribution (black) if the null

hypothesis H0 is true (left) or the alternative hypothesis H is true (right).

Simulation results for alternative types of sphere
diameter distributions are closely similar to one
another. In particular, for the Rayleigh distribution,
the relative standard error and bias of the estimator
of the scale parameter are each no more than a few
percent as before. The same is true for the estimator
of NV . Also, the empirical distribution function ofD,
found under the null composite hypothesis, follows
the theoretical chi-square distribution function, if not
as near. The small gap between the empirical and
theoretical distribution here is probably explained by
dependence of the limiting distribution ofD from a
manner of binning(Lemeshkoet al., 2007). Whereas
one can use logarithmic data and an arithmetic series
of histogram classes for the lognormal distribution,
it is forced to apply raw data and a geometric series
of histogram classes for the Rayleigh distribution.
Even with a combination of classes in the tails of

a histogram, the both modes of binning are non-
optimal to test a distribution (although possibly the
uniform binning in a less degree than the non-
uniform one). Because the limiting distribution ofD
lies betweenχ2

w−1 and χ2
w−u−1 distributions in this

situation (Lemeshkoet al., 2007), the probability that
the chi-square test statistic does not exceed a given
value is found to be understated when usingthe
χ2

w−u−1 distribution as a limiting one. In the case under
review, it follows that the probability of type I error
(erroneously rejecting the hypothesis that diameters of
spheres are Rayleigh distributed) also increases. For
the same case, a number of degrees of freedom should
be reduced by one so that an empirical distribution will
almost coincide with the theoretical distribution and
the probability of type I error decrease to a minimum.
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Table 2.Results of parameter estimation for the sphere diameter distribution simulation set. Hereafter, values
in parentheses are maximum likelihood statistics of parameter estimators, values in front of parentheses are
statistics computed by minimization of D.

Estimator Mean Standard error Relative standard error, % Relative bias, %

m̂ 0.0102 (0.0103) 0.0002 (0.0003) 2 (3) 2 (3)

σ̂lnr 0.512 (0.503) 0.0108 (0.0254) 2 (5) 2 (1)

N̂V 30409 1114 4 1

Table 3.Probabilities that random intersections of a cube have a given number of vertices

Number of Intersection probability

polygon vertices found numerically derived theoretically

3 0.2798 2− 4
√

2
π arctan

√
2≈ 0.2798

4 0.4873 2√
3
−3−2

√
2+ 12

√
2

π arctan
√

2≈ 0.4868

5 0.1865 2− 4√
3
+4

√
2− 12

√
2

π arctan
√

2≈ 0.1869

6 0.0464 2√
3
−2

√
2+ 4

√
2

π arctan
√

2≈ 0.0464

STEREOLOGY OF PRISMS

The stereology of prismatic grains was the
objective of the next series of simulations. In each
simulation, the test volume was filled with the number
of randomly oriented rhombic prisms (rectangular
parallelepipeds) that had a random size and a fixed
aspect ratio ofa : b : c, a < b < c. It is axiomatic that
centers of prisms were distributed in a Poisson field
with a constant density which was sufficiently low to
neglect overlapping effects. To ensure the randomness
of a specified direction of a prism~E(ϕ ,θ ), where
ϕ , 0≤ ϕ < 2π denotes longitude (the angle between
the positiveX axis and the orthogonal projection of
the direction on theXY plane),θ , −π/2 ≤ θ ≤ π/2
is latitude (the angle between the direction and its
orthogonal projection on the same plane), a random
value uniformly distributed in[0,2π) for ϕ and
that in [−1,1] for sinθ were taken (cf. Cruz-Orive,
1997). The final position of a prism was attained
by rotating around that direction with the random
angleψ , 0≤ ψ < 2π uniformly distributed in[0,2π).
Matrix operations were used to perform translations
and rotations necessary for simulations (see,e.g., Han
and Kim, 1998; Ohser and Mücklich, 2000).

After cutting the volume by a set of planar
sections, the length of the longest sideR1, the length
R2 (the longest dimension) and the breadthR3 (the
size measured in the direction normal to the longest

side) of section polygons were measured (Fig. 4).
One of three kinds of measured sizes, namely, the
length R1 was used to generate the intersection size
histogram. In choosing between the sizes, a preference
has been given to those conveniently measured by
hand. The histogram was arranged from the geometric
discretization without considering overlapping effects
over again.

Fig. 4.Measurements of the longest side (solid lines),
the length (dashed lines) and the breadth (dotted lines)
of prism polygon sections.

Much the same procedure works efficiently for
calculation of sets of probabilitiespi for prisms with
a different aspect ratio. Unlike the kind of simulation
described above, it provides for the test volume filling
with prisms that had a same size and shape.As
a check on the validity of the programming code,
the probabilities of 106 cube section polygons with
a variety of the number of vertices were found
numerically (Table 3), which agreed closely with the
theoretical predictions(Voss, 1982; Ohser and Nippe,
1997).
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Following equations were developed to unfold the
prism size distribution from measurement data

∑nR
j+k =

1
pq−k

(

nR
j −

q−1

∑
i= j

ΣnR
i+k+1pq−k+ j−i−1

)

,

∑nR
j+k

′
= ∑nR

j+k −
j+k−1

∑
i= j

ΣnR
i pq+ j−i,

nr
j+k =

ΣnR
j+k

′

r̄ j+k
, (10)

j = q,q − 1, . . . ,1. Formulae were derived allowing
for the fact that the modal size class (q− k) of prism
sections is generally not the largest size classq as
illustrated in Fig. 5. Therefore, the maximum size
of prism sections is very likely not the maximum
size of prisms in the sample, particularly when the
number of intersections available for observation is
limited. Neglect of this may introduce large errors
into unfolding data (Sahagian and Proussevitch, 1998;
Higgins, 2000).

Fig. 5. Probabilities of random intersections for a
prism with aspect ratio 1 : 1 : 5.

In the first stage of the calculation, the total number
of intersectionsΣnR

j+k associated with the prisms of
size class (j+k) wasapproximatedtaking into account
the contributions from intensities of prisms of lager
classes,

ΣnR
q+k =

1
pq−k

nR
q ,

ΣnR
q+k−1 =

1
pq−k

(

nR
q−1−ΣnR

q+k pq−k−1
)

,

ΣnR
q+k−2 =

1
pq−k

(

nR
q−2−ΣnR

q+k−1pq−k−1

−ΣnR
q+k pq−k−2

)

,

. . .

Thereafter, the the resulting value was adjusted
considering the contributions from intensities of
prisms of smaller classes,

ΣnR
q+k

′
= ΣnR

q+k −ΣnR
q pq −ΣnR

q+1pq−1

−ΣnR
q+2pq−2− . . .−ΣnR

q+k−1pq−k+1 ,

ΣnR
q+k−1

′
= ΣnR

q+k−1−ΣnR
q−1pq −ΣnR

q pq−1

−ΣnR
q+1pq−2− . . .−ΣnR

q+k−2pq−k+1 ,

ΣnR
q+k−2

′
= ΣnR

q+k−2−ΣnR
q−2pq −ΣnR

q−1pq−1

−ΣnR
q pq−2− . . .−ΣnR

q+k−3pq−k+1 ,

. . .

The refined total number of intersectionsΣnR
j+k

′

was used to calculate the required intensitynr
j+k,

nr
q+k =

ΣnR
q+k

′

r̄q+k
,

nr
q+k−1 =

ΣnR
q+k−1

′

r̄q+k−1
,

nr
q+k−2 =

ΣnR
q+k−2

′

r̄q+k−2
,

. . .

When calculatingnr
j+k values, the mean caliper

diameter of prisms in classj + k should be obtained.
Note in this connection that for the chosen mode of
normalization of data, the upper bound of the largest
size class of the prism section histogram (similar those
shown in Fig. 5) corresponds to the largest diagonal of
the prism facebc (subject to the longest side of a prism
section is measured as the size of an intersection). It
follows that the long edge of prisms in classj + k can
be given by

c j+k =
r j+k√
b2 + c2

.

Considering that

r̄ j+k =
a +b + c

2
c j+k ,

(cf. Russ and DeHoff, 2000), this yields

r̄ j+k = r j+k
a +b + c

2
√

b2 + c2
.

After the stereological conversion, and before
parameter estimation, the mean caliper diameterin a
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given classwas changed once again by the long edge
of a prism in that class from

c j+k = r̄ j+k
2

a +b + c
,

to provide unbiased estimators of interest.

A common undesirable effect resulting from the
calculation by Eq. 10 is an appearance of negative
intensities of prism sections not only in the left, but
also in the right tail of the unfolded distribution.
As noted above for spheres, these intensities are
rather weak and could be ignored in estimating of
some parameters of the distribution (like mean and
standard deviation),especially since initial estimates
adjust byminimization of the chi-square test statistic.
Nevertheless, for prisms as opposed to spheres, these
intensities must not be ruled out in estimating of the
number of spheres per test volume. Experiments show
that every so often the value of̂NV computed by the
summation of unfolded intensities without considering
negative ones is overestimated. Thus one should taking
into account positive intensities as well as negative
ones to obtain the value of the estimator that is closer
to the true value.

Several types of prism size distributions, including
the lognormal, were simulated as part of the unfolding
procedure. When this takes place, the shape of prisms
changed from columnar (with the aspect ratio 1 : 1 : 5)
to tabular (with the aspect ratio 1 : 5 : 5). To verify
unfolding data, the original hypothesis on similarity
between unfolded and actual prism size distributions
was invariably replaced by the hypothesis on similarity
between observed and expected intersection size ones.
The results of a selection of the simulations, made
under conditions similar to those described previously
in Table 1, are shown in Fig. 6 and Table 4. They
are not too different from those obtained for spheres.
Such is the case both with parameter estimation and the
distribution of the minimized chi-square test statistic
referring to Fig. 7.

For spheres and prisms alike, the accuracy and
precision of estimation is a function of the amount
of sampling, as demonstrated by the dependence
between statistics of estimators and the number of
intersections (Fig. 8). One and half thousand or two
thousand sections are generally enough to obtain
estimators with the standard error not exceeding 2–3%
(when estimating the local and shape parameter of
the size distribution) else 4–7% (when estimating the
number of grains per test volume). Here, relative errors
encountered in a single simulation comprise roughly
no more than 10–20%, increasing from columnar to
tabular prisms. Estimators are slightly biased (in the

range 1–2%) with the exception ofN̂V which has the
relative bias changing from−5 to 10% in accordance
to the shape of prisms.

The same behavior of estimators is observed
not only for the lognormal distribution but as well
for other types of distributions, particularly for the
Rayleigh one. The relative standard error and bias of
the estimator of the scale parameter in this instance
are each less then 1–2%. The analogous statistics
of N̂V depend on the shape of prisms and each
vary in the range of several percent. As for the
experimental distribution function of minimizedD,
if the null hypothesis (that prism sizes are Rayleigh
distributed) is true, then it lies noticeably below the
theoreticalχ2

w−2 distribution function. This leads to the
probability of type I error being increased and offers
difficulties with accepting the null hypothesis.

CONCLUSIONS

In this work, the computer modeling was used to
determine the correctness and reliability of unfolding
the grain size distribution by the Saltykov method.
Particular emphasis has been given to develop the
conventional stereological techniques with regard to
spherical and prismatic grains, and to assess goodness-
of-fit between the unfolded and actual grain size
distribution. In order to improve the calculation
procedure, new formulae have been proposed for
unfolding the prism size distribution, which consider
the intersection possibilities arranged both to left
and to right of the modal size class, and serve to
increase quality of the stereological conversion. For
hypothesized grain size distribution to be verified, the
test based on the comparison of the observed and
expected intensities of grain sections through the chi-
square statistic was developed.

Using the lognormal and other size distributions
as examples, it is concluded that the discussed
method yields slightly biased estimators of location
and scale parameters of a distribution as well as
the appreciably biased estimator of the total number
of grain per unit volume (whose standard errors
are relatively small and decrease with increasing
total number of intersections), if the unknown
parameters are estimated by minimization of the
chi-square statistic. Moreover, it is shown that the
experimental distribution function of minimizedD,
which is calculated when the null hypothesis (that
the observed intensities of sphere sections correspond
to the expected ones) is true, follows nearly the
theoretical χ2

w−u−1 distribution function. Since the
empirical distribution curve lies somewhat below the
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Fig. 6. Left: actual prism size distribution (solid line) and unfolded one (dotted line). Right: observed section
size distribution (dotted line) and expected one (solid line). The aspect ratio of a prism shape is 1:1:5. D = 5.95,
χ2

0.05;12= 21.03.
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Fig. 7.Probability distribution functions of the statistic D for prisms (red) and χ2
12 distribution (black) if the null

hypothesis H0 is true (left) or the alternative hypothesis H is true (right).

Table 4.Results of parameter estimation for the prism size distribution simulation set.

Estimator Mean Standard error Relative standard error, % Relative bias, %

Prisms with aspect ratio 1:1:5

m̂ 0.0098 0.0002 2 -1

σ̂ln r 0.5060 0.0165 3 1

N̂V 33275 1134 4 11

Prisms with aspect ratio 1:5:5

m̂ 0.0099 0.0002 2 0

σ̂ln r 0.5015 0.0153 3 1

N̂V 31325 2117 7 4.4
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Fig. 8. Dependence between statistics of estimators and the number of intersections. (1) spheres, (2-5) prisms
with aspect ratio 1:1:1 (2), 1:1:5 (3), 1:5:5 (4), 1:1:3 (5); (a) relative standard error, (b) relative bias of an
estimator. To construct diagrams, from 5 to 8 series of simulations with various number of observed sections were
used, each series consists of 300 simulations. In all cases the actual grain size distribution corresponds with the
lognormal one.

theoretical one, the probability of type I error (wrongly
rejecting the null hypothesis) tends to increase. When
the alternative hypothesis is true, which is close to the
null hypothesis, the power of the test is found to be
near one.

From the result obtained it may be inferred that
the back-substitution method is well suited to solve
the unfolding problem. By this manner, at least
in the case of spherical and prismatic grains, the
high accuracy and precision may be achieved when
estimating parameters and the reliable prediction may
be attained when testing the statistical hypothesis
concerned with the functional form of an expected
grain size distribution. Another major point for the
discussion is evaluation of the shape of grains from
the sample undergoing the stereological conversion.
This topic also attracts close attention (since without
knowledge of the shape, we cannot properly make the
conversion), but its consideration exceeds the limits of

the present work.
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