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ABSTRACT

The paper considers the problem of validity of unfolding ¢inain size distribution with the back-substitution
method. Due to the ill-conditioned nature of unfolding ns, it is necessary to evaluate the accuracy and
precision of parameter estimation and to verify the pobsitnf expected grain size distribution testing on
the basis of intersection size histogram data. In ordenti@wnethese questions, the computer modeling was
used to compare size distributions obtained stereoldgiadth those possessed by three-dimensional model
aggregates of grains with a specified shape and random s&sultR of simulations are reported and ways
of improving the conventional stereological techniquessarggested. It is shown that new improvements in
estimating and testing procedures enable grain sizehlisivhs to be unfolded more efficiently.

Keywords: computer simulation, grain size distributiolarar section, Saltykov method, stereology.

INTRODUCTION From geometrical considerations it follows that
grain sections of clagscome from the grains of each
The grain size distribution is of considerableclassj (j > i), which centers are placed at a distance
importance in understanding the microstructure OfA/Z)\/m <1 < (0/2)y/j2—(i—1)? from the
rocks, ceramics, alloys and so on. In studying opaqujanar section. Consequently, the intensity of grain
mediums it is convenient for scientists to observe grai@ectionsniR (the number of grain sections in clagser

aggregates in thin or polished sections. Stereologicgjnit area of the intersected plane) may be derived from
techniques are used for converting two-dimensionate linear equation system

grain size measurements into three-dimensional data. q
In the case that an aggregate consists qf second- niR:AZ Bjn,, i=12...q, 1)
phase grains and the surrounding matrix phase, = J

a conventional solution of the unfolding problem ; . . .
introduced by Wicksell (1925) is the back-substitution’Neren; denotes the unknown intensity of grains (the
method advanced by Scheil (1931; 1935) and Schwarf}umt.’er of grains in clasg per unit volume 9f the
(1934) and later modified by Saltykov (1970). TheSPecimen), coefficient;j are (Saltykov, 1970):
original method has been proposed for estimating \/jz—(i 12— \/j2—i2, i<j,
the size distribution of embedded grains assuming Bij :{ 0, i>j.
that they are spherical in shape and their centers are ) )

randomly dispersed within thepecimen With these The requiredn| is found from (1) by back-
assumptionsa planar sectionf an aggregate is made substitution fomR:

and the histogram of diameters of grain sections, based
on size classes of equal width= Ryax/d, whereRmax n

denotes the maximum diameter of intersections inthe ~  ABgg’

sample,q is the number of size classes, is obtained. 1 1 B

Classes are numbered, the first being the smallest, arrmg‘Ll - = (7”51— q71,qn5> 7
diameters of all grain sections relating to clasare A\Bg-1g-1 Bg-1.9-1Bag
assigned a value of its upper bound,

o n,_,= E[ 1 R ,— Bg-—29-1 R,
R=A4AI, 1=1 2,---CI- a- A quz,qu a- quz,ququl,qfl a-
. Cllgsas_s;rglarivrgﬁr;ner, diameters of all grains falling B < By2qg  Bgo2g1Bgig ) nR]
Jare gvenby By-2q-2Bag  Bg-24-2Bg-19-1Baa/ ]

ri=4j, j=12,...09.

163



GULBIN Y: Estimation of the grain size distribution

The solution can be written in the form 0< a< 1, one can derive follow discrete expressions:
Saltykov,1970, p. 283; Stoyatal.,1987
(Saltykov, 1970, p oyamnal. 1987) R =NaN(R) = N(R-1)] ,

pij = p(rj,R) —p(rj,R-1),

Pij = Pg+i—j -
The last expression presented here points up the
where Ajj denotes transition coefficients that arefact that the probabilityp;; in the case of geometric
depended org and cited for example by Russ anddiscretization depends on the difference of indices
DeHoff (2000). They can be generalized as follows: (i — j) only. In view of derived formulae, Eq. 3 can
be transformed into the system of linear equations

q
ZA”n:q7 J:1727q7 (2)
=]

T = | _
A — " ' J ’ NG = NG Palq
g Amtm 1< Mg 1= Ng1Pafq-1+ NgPa-17q
R r = r = r =
Ng—2 = Ng—2Pql'q-2+Ng_1Pq-1fq-1+ NgPg-2rq

whereT;; denotes coefficients defined by (Takahashi
and Suito, 2003):

which is represented in a concise form

1 .
B_jj , 1= J ) R q ] B -
T = =3 npgi i, i=gd-1..1, (5)
Bi o =
Bjj whererj denotes the mean caliper diameter of grains

in classj (corresponding to the upper limit of the

To improve stereological techniques, S. A.size interval),pq:i—j is the probability that such a
Saltykov simplified the calculation procedurediameter of a random intersection of a body whose
described above and extended this unfolding metho®hape approximates the shape of grains will fall into
to arbitrary convex grains. For adapting the theoretica® Particular size class. It should be remarked that the
model to the practical needs, he substituted the discref@ncept of a mean caliper diameter( a distance
analogue for the basic stereological equation, havingeétween two parallel planes that are tangent to a grain
introduced the geometric scale of size classes instedgéasured in any direction) is used here in the context
the linear one at the same time (Saltykov, 19700f the governing stereological relationship
pp. 302-311). LetN(r), N(R) be the distribution Na=r-Ny, (6)
function of the size of graing and that of grain
sectionsR respectively. Furthermore, léty, Na be
mean number% of ngins per unit volume and graind DeHoff, 2000).
sections per unit area respectively. The general formula The solution of Eq. 5 is given by
relating named quantities together is

which holds for non-sphericall convex grains (Russ

R
n — nq
" 9" nhr
NAN(R) =Ny [ Fp(LRIN(D),  (3) Pt
R nr _ nqil - I’]q pq_qu
where p(r,R) denotes a conditional distribution ot P j
function of R, given thatr has taken a particular ) nE_rna_lquerqfrnaquzG
value,b is a shape factor. For spherical grains Eq. 3 Ng—2= =

r:
rearranges to Paf |

NAL-N(R) =Ny [ VIZZRNT), @) or

1 R a1 B
(cf. Ohser and Nippe, 1997; Ohser and Sandau, nj = oF (nj - z n{+1pq+ji1ri+1> .
2000). Considering Eq. 3 and starting from the two- a) =

dimensional data histogram based on size classes that J=09,09-1,...1,

form a geometric series which realize the backward Gaussian elimination

i step for solving linear systems (Meyer, 2000). As a
R =Rmna@™ , 1=12...q, consequence of this solution, the triangular matrix
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of transition coefficient€y, ;i can be obtained and for p; remains to be obtained (Ohser and Sandau,
simplified version of Eq. 7 can be given by (Ohser an®000). Only recently has it been possible to evaluate

Nippe, 1997): some probabilities of interest with numerical routines
. and to apply stereological techniques for unfolding

r_ AR o the size distribution of non-spherical grains (Ohser
nl_;cq“*'n" j=q4-1..1. (8 and Nippe, 1997; Han and Kim, 1998; Sahagian

and Proussevitch, 1998; Higgins, 2000; Ohser and
As in the previous case, this formula is obtainedMiicklich, 2000).
assuming that the maximum size of grain sections

IS the maximum siz€ of grains 1n the sampl_e_. Itrespects owing to it), the validity of the stereological
is spherical grains that fulfill the last condition ion h he f ¢ . |

best of all thanks to the shape of the intersectiorf o er>10N Nas been the focus o cc_>r_15|derabe recent
diameter distribution for a sphere (Fig. 1). Sipcedttention. Both theoretical and emplrlcal approaches
the largest section circle is probably associated withP tehaels rf[(r)ot#]eemcor;]i\;e t%?etr;leaggrl:ggi.onﬂr]\irr:cgtrerrnzrs
the largest sphere in the sample, one can subtragPP cep o .
the corresponding number of intersections from th measure of stab|||ty and. error sensitivity durlng_
numbers of ones of each smaller class iterating th e numerical analysis of linear systems (Kanatani

process for the size classes that follow the largest ont no': Is%ki‘;’ilwr?’n 131%51' Itf trLastri been ; d(:rr;onlstr?tefl
until all of them are accounted for. at co oh numbers of matrices ol stereologica

coefficients in linear systems of the type (1) or
(5) are rather small in order to consider numerical
solutions being discussed as computationally stable
(Ohser and Sandau, 2000). The algebraic treatment
0.6 - has been complemented by experimental studies of
the stereological estimation error. With full-scale

In spite of apparent progress (and in many

0.7

2 051 and model tests, grain size distributions unfolded
S 0.4 by the Saltykov method or alternative stereological
s 0.3 | procedures were compared with actual ones, which
09_ ' arise from additional investigations of specimens via

0.2 1 independent techniques (Karasev and Suito, 1999;
Susan, 2005) or derive from computer simulations

0.1 1
(Blodner et al., 1984; Takahashi and Suito, 2001;
0.0 = Xu and Pitot, 2003). Assuming spherical shape of
0 02 04 06 08 10 grains, experimental evidence points to the fact that

R/R, . although the intensity! can be predicted reasonably
well with unfolding, the total number of grains per
Fig. 1. Probabilities of random intersections for a  unit volume Ny is often underestimated against the
sphere. true value (Takahashi and Suito, 2003). As this takes
place, the mean grain diametar is overestimated

The probability p; of finding a specified shape due to the omission of small grain sections (Susan,

body section in corresponding size class is required t600°)- Unfolding data are slightly effected by the
implement Eq. 7 for unfolding. In the case of Spheréﬁumberof size classes (provided it lies between 15 and

this probability can be computed by the well-known22) but highly susceptible to the number of observed
analytical expression grain sections (which is advised should be range

from several hundred to several thousand). While
the Saltykov method offers some advantages over

_ N\ _R2  _ _R2 _ . . .
P(R-1<R<R)= \/1 Rl{l \/1 R alternative stereological procedures, it along with them

h _ dR denot | q bound is unable to verify hypothesized diameter distribution
w ere_R.,l an R denote a OWer and upper bound,,;, goodness-of-fit tests owing to computational
of a given size class respectively. Similar expressiong o (Blodnekt al., 1984)

for non-spherical bodies are also available. Mainly

this is true for spheroids (Cruz-Orive, 1978); as for This paper addresses some of the questions
polyhedra, the only probability that an intersectionraised in the preceding discussion. From insufficient
of some polyhedrong(g., prism or tetrahedron) has stability of unfolding results caused by a recursive
a given number of vertices was derived (Sukiasianalgorithm generating intensities of grains it is
1982; Voss, 1982), whereas the analytical expressiomecessary to determine the accuracy and precision
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GULBIN Y: Estimation of the grain size distribution

of parameter estimation and to justify the possibilitydiameter of section circles lying in clagspgj—i—1iS

of testing statistical hypotheses about the functionahe analytical probability for the diameter of a random
form of an expected grain size distribution for theintersection of a unit sphere to fall in corresponding
stereological conversion. In an effort to handle thessize class.

issues, the computer modeling was used to match ¢, yerifying a hypothesized diameter distribution
size distributions obtained stereologically with those,,

. : m unfolded data it is advisable to use the chi-square
pc_)ssessed by three-dimensional aggregates of grai 2) goodness-of-fit test (Cramér, 1946). It may be
with a same shape and random size. A sphere a

O rried out only on independent observations, which
rhombic prism were chosen as assumed model shapgs, ¢t into categories, not on relative frequencies,

since they are often employed to approximate ayerage values, or other derived data. Hence, this
habit of crystal inclusions in natural and artificial {g5t is not applied to compare the unfolded diameter
matters. For instance, the spherical shape can be usgdrinution and that of spheres forming the model
to approximate the rhombic dodecahedron CryStaléggregateas was done by Blodnet al. (1984) On

of garnet in metamorphic rocks as well as thene other hand, as discussedMgdelhaft (1973pnd

prismatic shape is swtablg for approximation oftabulafyan and Kim (1998), this test is applied to compare the
crystals of plagioclase in basalts. In view of theppserved diameter distribution and that of intersection
fact that the shape can vary along with the sizgfspheres, which would form the aggregate in the case

of grains, there are several works, which attack theneir diameter distribution is identical to the unfolded
problem of stereological estimation as applied tqgne.

the bivariate size-shape distribution (Wicksell, 1926; _ _ _ o
Cruz-Orive, 1976: 1978: Mgller, 1988: Benegal., To construct the mtersectlon_ dla_meter distribution
1997; Ohser and Miicklich, 2000). However, in studied€fers to the unfolded one, estimation of parameters
of specimens like rocks, where the shape of graingf the sphere diameter distribution was made from
is typically invariable due to similar conditions of Unfolded data by the maximum likelihood method.

crystallization, the topical problem is to unfold the ]:I'he ma;n problem, Wh'fCh arli_es |_ntth|s_t(_:onte;<t, 'i a
solely the grain size distribution. With this in mind, requent appearance of negative Intensities ot sphere

to improve results of unfolding with reference to _sect|ons in small classes due to errors caused by

prismatic grains, the Saltykov method was developeleccuracy in the determination of intensities of sphere
having regard to intersection histogram propertie§ecuons. in large ones and accumu!ateql during the
for a prism with a given aspect ratio. The mannepuccessive subtraction by Eq. 7. Taking into account

of verification of the expected diameter distributiontﬂgﬁnnﬁgﬁgﬁ;ntigi:gilse ?égssg;ggé’cggi C‘Zg gi?;ﬁd
with the minimum chi-square method of parameterI PP Y, €sp Y:

estimation was advanced. On this basis, the evaluatio‘ellqS will be shown below, they play no part in definitive

i ) ) estimation of parameters.
of statistics for stereological estimators was made as a
function of the amount of sampling. The next step was a calculation of the expected
intensity of spheres)|” from estimated parameters
whereupon the expected intensity of sphere sections

STEREOLOGY OF SPHERES niR* was derived from the following equation

q
It was the stereology of spherical grains that R = > i pgri-jfp, i=12...q, (9
the first series of simulations dealt with. In each 1=l

number of randomly locatedspheres with random sym of observed intensities, the expected intensities
diameters. After that, cutting the volume by a set ofof sphere sections.€., theoretical probabilities for the

parallel planes, which are apart from each other at gst model) coupled with the observed ones were used
distance exceeding the diameter of the largest sphetg calculate the chi-square test statistics

in the population, the intersection diameter histogram

was constructed from the geometric discretization

yvith a= 1091 g = 20. Ir_1 SO doing, over_lqpping R % R i+
intersections, whose contribution was negligible due N
to large spaces between centers of spheres as I iglni

2

compared with their diameters, were considered D= Z q R , 1<q.
together with non-overlapping ones. On the basis of = s nR g i

two-dimensional data, the intensity of spheres was i=1 s nf

estimated fronq. 7, whererj as used here denotes the i=1
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As part of a calculation, adjacent expected intensitieformulae
were combined if one of them was less then 5 (Sheskin,
2000). .2 20
lgrm= Z n;lgr; Z nj ,

It is known that the limiting distribution of the j=1 =1
chi-square statistic in the case of a composite null 20 20
hypothesis depends on which method is applied Ig[exp(Ginr)] = Z ni(lgrj —Ig )2 Z nj
for estimation of the parameters of a hypothesized =1 =1
distribution. In this connection it would appear natural R 20
to look for the ‘best’ values of unknown parameters Ny = Z nﬁ .
capable of making the value Bf as small as possible. j=1
Under reasonably general conditions, minimum chi-
square estimation outlined above coincides with the The histogram based on twenty size classes was
maximum likelihood method for grouped data. In bothysed to evaluate estimators ai and Oinr. Their
cases, under the assumption that a null hypothesiglative standard errors are no more than 2-5%
is true, the chi-square statistic is asymptotically (asvith the estimators only slightly biased toward large
the sample size tends to infinity) distributed agx%a size classes at the same time. Negative and positive
random variable witljw — u — 1) degrees of freedom, deviations from true parameter values, which observed
wherew denotes the number of bing,is the number in a single simulation, are less than 4-5 and 9—10%,
of parameters in the hypothesized distribution to bgespectively. Both accuracy and precision of estimation

estimated (Cramér, 1946). Note that the estimatoisually increased provided they are evaluated by
based on the sample vector from the multinomiaininimization of the statisti®.

distribution cannot be replaced here by the maximum _ _

likelihood estimator for ungrouped data (Chernoff ~ Thevalue ofthe estimator df, was obtained from
and Lehmann, 1954). Generally, the calculation ofh® summation of unfolded intensities of spheres. In
such an estimator is only possible numerically, as i$1€ course of the summation, the negative intensities
the minimum chi-square estimator. Some exampled Were omitted, because otherwise underestimation
of numerical routines for the minimum chi-square©f Nv prevails. Furthermore, it has appeared useful to

method were reported (Ratcliff and Tuerlinckx, 2002) increase the number of size classeg.( from 20 to
80) for extracting an virtually unbiased estimator of

_On this basis, minimum chi-square estimation byt parameter. As a consequence, its relative standard
adjusting parameter values of the unfolded distribution. ror and bias are 4 and 1% respectively.

was chosen to obtain the proper distribution @f
With this aim in mind, a value of each unknown  The experimental distribution function of
parameter was searched in the vicinity of its initialminimized D, which is calculated when the null
estimate. The routine of searching consisted of aRypothesisHo is true, follows nearly the theoretical
enumeration of series of values in intervals whichx2 5 distribution fuction. When the alternative
covered initial estimates and had widths equal tdypothesisH is true, which is close to the null
20% of them. Among these values, the ones thatypothesis (for instance, if the observed section
yielded a minimum for the chi-square statistic werediameter distribution is associated with spheres whose
selected. The minimized value &f was used to test diameters are Rayleigh distributed), the power of the
the hypothesisHy that the observed intensities of testis found to be near one (Fig. 3).

sphere sections correspond to the expected ones. If

this hypothesis was accepted, it is inferred that ther@able 1. Conditions for the sphere diameter

is no significant discrepancy between the unfoldediistribution simulation set.

intensities of spheres and the actual ones.

Number of simulations 300
During the modeling procedure several types Number of spheres per test volunig, 30000

of sphere diameter distributions (lognormal, gamma, Number of sphere sections per area &f000

Rayleigh, Weibull, etc.) were simulated. As an test planesiNa

example, the conditions used in one of the simulation Number of size classes of diamete0O

sets provided for spheres whose diameters arehistogramsg

lognormally distributed, are given in Table 1. Type of diameter distribution lognormal

, - Median diameter of spheram, 0.01
The results obtained appear in Fig. 2 and Table 2'Standard deviatiorgi,, 0.5

The parameter estimators are herein calculated from
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Fig. 2. Left: actual sphere diameter distribution (solid line) and unfolded one (dotted line). Right: observed
section diameter distribution (dotted line) and expected one (solid line). D = 5.53, X3 5.1,= 21.03.
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o
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Statistic D Statistic D

Fig. 3. Probability distribution functions of the statistic D for spheres (red) and xlzz distribution (black) if the null
hypothesis Hg istrue (left) or the alternative hypothesisH istrue (right).

Simulation results for alternative types of spherea histogram, the both modes of binning are non-
diameter distributions are closely similar to onepptimal to test a distribution (although possibly the

the relative standard error and bias of the estimatqp ¢ one). Because the limiting distribution Bf
of the scale parameter are each no more than a few 2 2 . . .
betweenyy_, and xz_,_4 distributions in this

percent as before. The same is true for the estimaté)"_rES s i
of Ny. Also, the empirical distribution function d, situation (Lemeshket al., 2007), the probability that

found under the null composite hypothesis, followsthe chi-square test statistic does not exceed a given
the theoretical chi-square distribution function, if notvalue is found to be understated when usithg

as near. The small gap between the empirical ang2  , distribution as a limiting ondn the case under
theoretical distribution here is probably explained byreview, it follows that the probability of type | error
dependence of the limiting distribution @ from a  (grroneously rejecting the hypothesis that diameters of

manner of bmnmg{_Lem_eshkoet al., 2007.) Whe_reas . spheres are Rayleigh distributed) also increases. For
one can use logarithmic data and an arithmetic serleﬁ ber of d ¢ freed hould
of histogram classes for the lognormal distribution [N€ S&Me case, a number of degrees of freedom shou

of histogram classes for the Rayleigh distribution.@lmost coincide with the theoretical distribution and

Even with a combination of classes in the tails ofthe probability of type | error decrease to a minimum.
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Table 2.Results of parameter estimation for the sphere diameter distribution simulation set. Hereafter, values
in parentheses are maximum likelihood statistics of parameter estimators, values in front of parentheses are
statistics computed by minimization of D.

Estimator Mean Standard error  Relative standard error, %latiRe bias, %
m 0.0102 (0.0103) 0.0002 (0.0003) 2 (3) 2(3)

Binr 0.512 (0.503) 0.0108 (0.0254) 2 (5) 2 (1)

Ny 30409 1114 4 1

Table 3.Prababilities that random inter sections of a cube have a given number of vertices

Number of Intersection probability

polygon vertices found numerically derived theoretically

3 0.2798 2- %ﬁ arctany/2 ~ 0.2798
4 0.4873 2 —3-22+ 22arctan/2 ~ 0.4868
5 0.1865 2- 4+ 4v2 - 122 arctan/2 ~ 0.1869
6 0.0464 2 —2y/2+ “2arctan/2 ~ 0.0464
STEREOLOGY OF PRISMS side) of section polygons were measured (Fig. 4).

One of three kinds of measured sizes, namely, the

The stereology of prismatic grains was thelength Ry was used to generate the intersection size
objective of the next series of simulations. In eacthistogram. In choosing between the sizes, a preference
simulation, the test volume was filled with the numberhas been given to those conveniently measured by
of randomly oriented rhombic prisms (rectangularhand. The histogram was arranged from the geometric
parallelepipeds) that had a random size and a ﬁxediscretize_ltion without considering overlapping effects
aspect ratio ohi: b:c,a< b<c. Itis axiomatic that Overagain.
centers of prisms were distributed in a Poisson field

with a constant density which was sufficiently low to

neglect overlapping effects. To ensure the randomness \

of a specified direction of a prisr&(¢,6), where

¢, 0 < ¢ < 2mrdenotes longitude (the angle between /
the positiveX axis and the orthogonal projection of

the direction on thex¥ plane),0, - 11/2 < 6 < 11/2 Fig. 4. Measurements of the longest side (solid lines),

is latitude (the angle between the direction and it%helength (dashed lines) and the breadith (dotted lines)
orthogonal projection on the same plane), a rando f prism polygon sections

value uniformly distributed in[0,2m) for ¢ and
that in [—1,1] for sin@ were taken (cf. Cruz-Orive,
1997). The final position of a prism was attained
by rotating around that direction with the random
angley, 0 < ¢ < 2mruniformly distributed in[0, 27).
Matrix operations were used to perform translation
and rotations necessary for simulations (&g, Han a check on the validity of the programming code,

and Kim, 1998; Ohser and Mucklich, 2000). the probabilities of 19 cube section polygons with

After cutting the volume by a set of planar a variety of the number of vertices were found
sections, the length of the longest sidg the length numerically (Table 3), which agreed closely with the
R, (the longest dimension) and the bread® (the theoretical predictionévoss, 1982; Ohser and Nippe,
size measured in the direction normal to the longest997)

Much the same procedure works efficiently for
calculation of sets of probabilitieg; for prisms with
a different aspect ratio. Unlike the kind of simulation
é}lescribed above, it provides for the test volume filling
with prisms that had a same size and shafs.
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Following equations were developed to unfold the  Thereafter, the the resulting value was adjusted

prism size distribution from measurement data considering the contributions from intensities of
41 prisms of smaller classes,
1
R R R
nG,=——I[n"— 3% Zn Pg—kri—i_
j-+k j i+k+1Mag—k+j—i—=1 ] R /' _ <R R R
Z Pg—k < Z NG, = ZNgk — 2ZNgPg — NG 1Pg-1
R R
Zn zn J+£ 1zn ; — 2Ng2Pg—2— -+ — ZNgik_1Pg—k+1 5
+k = +k o+ i R ! R R R
2Ng k-1 = 2Ng k-1~ 2Ng-1Pg — 2N Pg-1
R R
. ank —2Ngy1Pg-2— - = 2Ng k—2Pgk+1
nj+k - r 9 (10) R / R R R
j+k 2Ng k2 = 2Ng k-2 — 2Ng_2Pg — 2Ng_1Pg-1
. . . . R R
] =09,9—1,...,1. Formulae were derived allowing —2NgPg—2— .- — ZNg}k_3Pg—k+1 5

for the fact that the modal size class k) of prism

sections is generally not the largest size clgsas

illustrated in Fig. 5. Therefore, the maximum size

of prism sections is very likely not the maximum  The refined total number of intersectioas®, ,’

size of prisms in the sample, particularly when theyas ysed to calculate the required intensity,,
number of intersections available for observation is

limited. Neglect of this may introduce large errors SR
into unfolding data (Sahagian and Proussevitch, 1998; = _(Hk 7
Higgins, 2000). ot Mok
R /
0.4 o Paen
’ q+k—1 — i ’
g+k-1
R !/
0.3 - o= ZEquk_z
are log+k—2

Probability
o
N

When calculatingn’ ,, values, the mean caliper

0.1
diameter of prisms in clasp+ k should be obtained.
Note in this connection that for the chosen mode of

0.0 - normalization of data, the upper bound of the largest

0 02 04 06 08 10 size class of the prism section histogram (similar those
R, /R shown in Fig. 5) corresponds to the largest diagonal of

the prism facédoc (subject to the longest side of a prism

Fig. 5. Probabilities of random intersections for a  section is measured as the size of an intersection). It

1,max

prismwith aspectratiol:1:5 follows that the long edge of prisms in clags k can
be given by
In the first stage of the calculation, the total number _
of intersectionsEn® , associated with the prisms of Ciip— _ Ttk
. . itk . . . j+k 2 2
size class |+ k) wasapproximatedaking into account Vbe+c
the contributions from intensities of prisms of IagerConsiderin that
classes, 9
1 5 _ a+b+c
=— i k=———C;j
znq+k pq_knq ) j+k 2 jrkos
1 . .
zan+k—1 . (ngil _ Zn§+kpq_k_1) : (cf. Russ and DeHoff, 2000), this yields
1 _ a+b+c
R R R =Tl
ZNgik2= 5 (N2~ NGk 1Pa-ics k=i e

— IR, Pa—k-2) » . .
+kPa ) After the stereological conversion, and before

parameter estimation, the mean caliper diametex
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given classwas changed once again by the long edgeange 1-2%) with the exception 8 which has the
of a prism in that class from relative bias changing from5 to 10% in accordance
) to the shape of prisms.

+km7 The same behavior of estimators is observed

not only for the lognormal distribution but as well
to provide unbiased estimators of interest. for other types of distributions, particularly for the
) ) Rayleigh one. The relative standard error and bias of

A common undesirable effect resulting from they, o astimator of the scale parameter in this instance
calculation by Eq. 10 is an appearance of negativg o each less then 1-2%. The analogous statistics
intensities of prism sections not only in the left, but Ky depend on the shape of prisms and each
also in the right tail of the unfolded distribution. vary in the range of several percent. As for the
As noted above for spheres, these intensities aigerimental distribution function of minimizeD,
rather weak and could be ignored in estimating Of¢ the nyll hypothesis (that prism sizes are Rayleigh
some parameters of the distribution (like mean andjsinyted) is true, then it lies noticeably below the
standard deviation)gspecially since initial estimates theoreticaly2_, distribution function. This leads to the
adjust byminimization of the chi-square test StatiStiC'probabiIity (V)Vftype | error being increased and offers

Nevertheless, for prisms as opposed to spheres, theggiculties with accepting the null hypothesis.
intensities must not be ruled out in estimating of the

number of spheres per test volume. Experiments show

that every so often the value df, computed by the

summation of unfolded intensities without considering CONCLUSIONS
negative ones is overestimated. Thus one should taking In thi K th ¢ deli dt
into account positive intensities as well as negative n this work, the computer modeling was used to

ones to obtain the value of the estimator that is close etermi_ne t_he co_rre_ctne_zss and reliability of unfolding
to the true value the grain size distribution by the Saltykov method.

Particular emphasis has been given to develop the

Several types of prism size distributions, includingconventional stereological techniques with regard to
the lognormal, were simulated as part of the unfoldingspherical and prismatic grains, and to assess goodness-
procedure. When this takes place, the shape of prisms-fit between the unfolded and actual grain size
changed from columnar (with the aspectratio 1 : 1 : Syistribution. In order to improve the calculation
to tabular (with the aspect ratio 1:5 :5). To verify procedure, new formulae have been proposed for
unfolding data, the original hypothesis on similarity unfolding the prism size distribution, which consider
between unfolded and actual prism size distributionshe intersection possibilities arranged both to left
was invariably replaced by the hypothesis on similarityand to right of the modal size class, and serve to
between observed and expected intersection size onéscrease quality of the stereological conversion. For
The results of a selection of the simulations, madéypothesized grain size distribution to be verified, the
under conditions similar to those described previouslyest based on the comparison of the observed and
in Table 1, are shown in Fig. 6 and Table 4. Theyexpected intensities of grain sections through the chi-
are not too different from those obtained for spheressquare statistic was developed.
Such is the case both with parameter estimation and the

distribution of the minimized chi-square test statisticas Lé)s('gr% tlkées Iogn?srmca(t)lnirlllcjj dgfjhetrheslltzihiﬁtgizléﬂ(s)gz d
referring to Fig. 7. Pies,

method yields slightly biased estimators of location
For spheres and prisms alike, the accuracy andnd scale parameters of a distribution as well as
precision of estimation is a function of the amountthe appreciably biased estimator of the total number
of sampling, as demonstrated by the dependenad# grain per unit volume (whose standard errors
between statistics of estimators and the number aire relatively small and decrease with increasing
intersections (Fig. 8). One and half thousand or twdotal number of intersections), if the unknown
thousand sections are generally enough to obtaiparameters are estimated by minimization of the
estimators with the standard error not exceeding 2—3%hi-square statistic. Moreover, it is shown that the
(when estimating the local and shape parameter axperimental distribution function of minimizeD,
the size distribution) else 4-7% (when estimating thevhich is calculated when the null hypothesis (that
number of grains per test volume). Here, relative errorthe observed intensities of sphere sections correspond
encountered in a single simulation comprise roughlyo the expected ones) is true, follows nearly the
no more than 10-20%, increasing from columnar tgheoretical x2 , , distribution function. Since the
tabular prisms. Estimators are slightly biased (in theempirical distribution curve lies somewhat below the

Cjrk =T
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GULBIN Y: Estimation of the grain size distribution
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Fig. 6. Left: actual prism size distribution (solid line) and unfolded one (dotted line). Right: observed section
size distribution (dotted line) and expected one (solid line). The aspect ratio of a prism shapeis 1:1:5. D = 5.95,
X8 os.12=21.03.
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Fig. 7.Probability distribution functions of the statistic D for prisms (red) and x122 distribution (black) if the null
hypothesis Hg istrue (left) or the alternative hypothesisH istrue (right).

Table 4.Results of parameter estimation for the prism size distribution simulation set.

Estimator Mean Standard error Relative standard error, % latiRe bias, %
Prismswith aspect ratio 1:1:5

m 0.0098 0.0002 2 -1

Oinr 0.5060 0.0165 3 1

\Y 33275 1134 4 11
Prismswith aspect ratio 1:5:5

m 0.0099 0.0002 2

Oinr 0.5015 0.0153 3 1

\¥ 31325 2117 7 4.4
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Fig. 8. Dependence between statistics of estimators and the number of intersections. (1) spheres, (2-5) prisms
with aspect ratio 1:1:1 (2), 1:1:5 (3), 1.:5:5 (4), 1:1:3 (5); (a) relative standard error, (b) relative bias of an
estimator. To construct diagrams, from 5 to 8 series of simulations with various number of observed sectionswere
used, each series consists of 300 simulations. In all cases the actual grain size distribution correspondswith the
lognormal one.
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