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ABSTRACT

Cavalieri sampling and point counting are frequently agblin combination with magnetic resonance (MR)
imaging to estimate the volume of human brain compartmeustent practice involves arbitrarily choosing
the number of sections and sampling intensity within eactiae and subsequently applying error prediction
formulae to estimate the precision. The aim of this studypiddrive a reference table for researchers who
are interested in estimating the volume of brain regionsyalg grey matter, white matter, and their union, to
a given precision. In particular, this table, which is basadsubsampling of a large brain data set obtained
from coronal MR images, offers a recommendation for the mimh number of sections and mean number
of points per section that are required to achieve a pre-gfioefficient of error of the volume estimator.
Further analysis on MR brain data from a second human brainsthat the sampling intensity recommended
is appropriate.

Keywords: Cavalieri sampling, coefficient of error, greytteag human brain, magnetic resonance imaging,
point counting, stereology, volume estimator, white nratte

INTRODUCTION for volumetric measurements using Cavalieri and
point counting has previously been addressed),(
Observer-based methods, where the region afundersen and Jensen, 1987; Regeur and Pakkenberg,
interest is visually identified by the observer,9g89: Robertstal, 1997). In particular, it is suggested

are often regarded as “gold standard” methOdfhat counting a total of 150 points per structure

in quantitative magnetic resonance (MR) imagingls usually appropriate to achieve a coefficient of

studies. For example, in some applications, volumetriC .
measurements of brain structures are obtained H§/TOr Of the volume estimator between 3% and 10%

manually delineating the region of interest on(Gundersenand Jensen, 1987).
consecutive MR images (see for example, Salmenpera
et al, 1998; Bernascoma_t al, 2903). However, this In this paper, we analyse a large brain data
procedure is usually highly time consuming, andset (acquired from coronal MR images) to derive
theirefore, it ma>; no'é.be feasﬁzjle mbstu_dles Where, getailed reference table for the minimum number
a large group of subjects need to be mvesﬂggtedof sections and sampling intensity per section that
An alternative technique, namely point counting, . . 4 .

are required to achieve a pre-defined coefficient of

has been widely applied in combination with the o
Cavalieri method to estimate the volume of internafor when estimating the volume of human grey

brain compartments, such as hippocampus, amygdafaatter, white matter and their union. In the following
ventricle, Broca’s area, white and grey mattetz. ~ Section, we introduce Cavalieri sampling, the point
(e.g, Doherty et al, 2000; Keller et al, 2002; counting technique, and the error prediction formulae
Garcia-Finanaet al, 2003; Gonget al, 2005; currently available to predict their precision. Those
Salmenperéet al, 2005; Schmitz and Hoff, 2005, error predictor formulae are useful for a posterior

and references therein). In these studies, a set gkgessment of the coefficient of error using the data

paralle| and' _eqwdlstant MR images with a un'f.ormsgmple. Then, a description of the data set and
random position are selected, and the area is estimate

for each section by randomly superimposing a grid etnodology is given, and the results are derived.
of systematic points and counting the number ofn Particular, two tables are derived to allow prior
points which fall inside the region of interest (seeselection of the sampling intensity. Finally, the main
for example, Gundersen and Jensen, 1987). Theonclusions and a discussion can be found at the end
guestion of identifying an effective sampling densityof the paper.
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CAVALIERI SAMPLING AND whereq € [0,1] and () and () denote the gamma
VARIANCE PREDICTION function and the Riemann Zeta function, respectively

(see Garcia-Fiflana and Cruz-Orive, 2004; Cruz-Orive,

The volume of a three dimensional bounded?006, Where a table with numerical values to(q)
structure)V/, can be expressed as the one-dimension&¥ Provided, and references therein). The smoothness
integral [ (x) dx, where f(x) represents the area of constany can be estimated from the data sample as
the intersection between the structure and a plane §gScribed in Souchet (1995) and Garcia-Fifiana and

the point of abscissa An unbiased estimator &fcan ~ Cruz-Orive (2004).

be defined from a set of equidistant observation$ of It is often the case that the section ardds i =
by applying: 1,...,n} are not calculated precisely but estimated
N using a second level of sampling. In particular, with
V=T3% f(UT+KT); TERT, (1) the point counting technique, a test grid of equidistant
kez points with a distanti apart is superimposed on each

(see,e.g, Baddeley and Jensen, 2005, and referencé&gction with a uniform random position. In this case,
therein) whereT, called the sampling period, is EQ- 1 becomes:
the distance between consecutive observations alon ~
the sampling axis and where, in order to guaranteeg V=T Z PUT+KT); TeR", ©)

. . . . . kez
unbiasednesd) is a uniform random variable in the
interval[0, 1). For simplicity,U will denote indistinctly whereP(UT + kT) represents the number of points
avariable or arealization of it. We assume thaR —  hitting the region of interest for a section at the
R*™ is a piecewise infinitely differentiable function point of abscissa& T + kT. Point counting is also
which vanishes outside a bounded interfeab). applied to structures where manual delineation of the
section boundaries is possible. The reason is that point
counting is less time consuming and this is a clear

N o advantage in studies where volume estimation for a
Var(V) =2 z G(k/T), (2) large number of subjects is required.

K=1

The variance o¥/ can be expressed as follows:

When the grid of points is superimposed with
(see Yates, 1948; Moran, 1950) whéfés the Fourier isotropic orientation (as well as with a uniform random
transform of the covariogram of, g, and which is position as described above), the contribution of the
defined as variance due to point counting can be expressed as

(Matheron, 1971):

h:/fxfx+hdx, heR. (@3 ~
g = [ 109 f(x+h) 3) Vatoo(Y) — T2 -
Several estimators of V&) have been derived WNere 5
based on mathematical expansions of EqQ. 2 in powers V= 0.0724—1/—2 pl/2 n, (8)
of T (e.g, Matheron, 1965; 1971; Gundersen and _ _ A
Jensen, 1987; Cruz-Orive, 1989; Kellerer, 1989; Kiguand whereA andB represent the mean boundary length
1997; Gual-Arnau and Cruz-Orive, 1998; Gundersend mean area of the sections, respectively, Bnd
et al, 1999; Garcia-Fiflana and Cruz-Orive, 2004)is the mean number of points counted per section
A general and currently accepted variance estimatdGundersen and Jensen, 1987).

reads as follows: Eq. 4 has been extended to take into account the

7\ 2 _ contribution due to point counting given by Eq. 7. The
varV) = a(q) T*(3Co —4C1 +C) , () corresponding variance estimator becomes:

whereq, called thesmoothness constarns the order ~ 2 4 ;o PN
of the first non-continuous (which could be fractional) varV) =T u [a(q) (3 (CO - V) - 4C1+C2) T V]g’
derivative of f. The quantitieC, with k=10,1,2 are ©)

defined asC, — zn4< fifi,« where {fi; i = 1,...n} where the quantitieS, with k=0, 1,2 are now defined
= yRET, pi=1. . .

denotes the set of equidistant observation within ~ 8C = SRRk whereP; i = 1,...,n, represents

the intervala, b]. The analytical expression of(q) is  the number of points counted on théh section (see

given by: Cruz-Orive, 1999; Kiéet al, 1999; Garcia-Finanet

al., 2003, and references therein). The estimsatoan
M(20+2) {(29+2) coq M) be directly derived from Eq. 8, wheiR is estimated
(@) = (2m2+2 (1— 229-1) ’ ) from the data sample and the shape coeffidByi’/?
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can be empirically estimated following the procedurel.
as described in Gundersen and Jensen (1987). The
shape coefficient is considered to be stable for a given
type of shape. 2.

In most studies, the researcher will arbitrarily
choose the number of sections and the point gric,
density. An estimation of the variance of the volume
estimator is then obtained based on the acquired
data sample by applying Eq. 9. However, to optimise
the sampling density, it is useful to have an ide&,
beforehand of the appropriate sampling parameters.
In the next section, we derive, based on Eqg. 7
and empirical resampling, a reference table with
the approximate number of sections and sampling
intensity per section required to obtain reasonable
coefficients of error of the volume estimators of human
cerebral grey matter, white matter and the union of

The distance between parallel sections is fixed as
T = s(mm) wheresis initially set tos= 10.

Thes possible systematic samples of section areas
with a distancel apart are extracted.

The volume is estimated for each sample and

the set of volume estimate®/; i = 1,2,...,s} is
computed.
The empirical coefficient of error ofV

due to sectioning is calculated by applying
1 ~ =\ 2 =2 1/2 = 3 ~

<§,Z?1 (vi fv) Y, ) ,whereV =155 V.

Steps 1-4 are repeated waith- 11,12,...,217.

For simplicity and since Eq. 7 provides satisfactory

both (namely total). results for a wide variety of geometrical shapes

(Gundersen and Jensen, 1987), we have used Eq. 7
to obtain the contribution to the coefficient of
error from point counting, instead of deriving an
empirical coefficient of error based on several random
The material under study is the grey matter (GM)positions and orientations of the square grid on
and white matter (WM), which includes glial tissue, of each section. In particular, w(\N/) is calculated
a human brain, and the union of both compartmentsss a function of the number of sections and the
namely ‘Total'. A total of 217 non-empty consecutive mean number of points counted per secti@nby

coronal images with a distant 1mm apart were acquiregpp|ying Eq. 7. Note that Gi&(V) can be written as
by magnetic resonance imaging. (0.072457/;\1/2) p-3/2 -1

DATA AND METHODOLOGY

The overall coefficient of error &f (defined as the
root square of the variance Wfdivided byV) can be
decomposed into:

Estimates of the shape coefficie®/AY2, have
been previously calculated for the three brain
compartments here considered (GM, WM and Total),
and take values 19.3, 11.5 and 7.7, respectively (see

(10) Garcia-Finanat al.,, 2003).

~ ~ ~\1/2

CE(V) = (CEA(V) +CE&(V)) .
where Cg(\N/) and CEDC(\N/) are the coefficient of By using the statistical package R, a code
errors due to sectioning (variability between sectionsyvas developed to calculate the contribution to the
and point counting (mean variability within sections),coefficient of error from the two levels of sampling
respectively. The two terms on the right hand side ofind to construct the reference tables given in the next
Eq. 10 are here calculated for the volume estimator odection.
the three brain compartments GM, WM and Total. We
consider sample sizes= {1,2,...,20} and assume that
the mean number of counted points per section takelsable 1. Optimum values for n and®, such that

values in the se® € {1,2,...,100}. e ) o ;
minimum effort (i.e., minimum total number of points
For each MR section, the area of GM, WM andcounted) is required to achieve coefficients of error of
Total was measured by automatic pixel counting (pixelLl0%, 5% and 2.5% for the volume estimator of grey
side = 1mm), and the samples of section areas hersatter, white matter and Total.
obtained were considered to be free of measurement

errors (see McNultyet al, 2000 for a more detailed 10%_ 5%_ 2.5%
description of the data set). Empirical calculation of Compartment n P n P n P

CEg(V) is obtained by extracting subsamples of the g 3 ?3 ig ég ig
initial data set (with 217 area data) via the following Total 4 8 7 1 12 18

procedure:
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Fig. 1. Ratio of the coefficient of error of the volume estimator dupdint counting and sectioning as a function
of the number of sections when= 20. The value of n for which the ratio is equal to 1 is given lgydbscissa of

the intersection between the continuous curve and the ¢naiaz non-continuous straight line.
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Fig. 2. Values of n and® for coefficients of error o¥/ equal to 10%, 5% and 2.5%. The straight broken lines
represent constant values of the total number of points tealiE = nP.
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RESULTS human brain. We analysed possible deviations from
the pre-defined levels of precision after following the
The contribution of the overall coefficient of error recommendations of Table 2 for a second brain. The

of the volume estimator of each brain compartmenyaging protocol and stereological quantification for
depends both on the number of sections and the MERHe second brain was similar to the one described in

number of points counted per section. Fig. 1 show . .
the ratio of the two components of the Coefﬁcient%ectlonData and Methodologyalthough the distance

error decomposition given in Eq. 10 whBr= 20. For between images for this second brain was equal to
small n, the greater contribution comes from the first0.625 mm.
component (sectioning), whilst asincreases, point
counting emerges as the greatest source of error. TRepie » Mean number of pointsP) required for a
relative contribution from each error componentdlffersrange of values of the number of sections (n) and pre-
between structures. B defined levels of C(E?).

Fig. 2 shows the values afandP that are required
to reach fixed pre-defined levels of (fE) namgly, GM (%) WM (%) Total (%)
10%, 5% and 2.5%. As we would expect,astheE n 10 5 25 10 5 25 10 5 25
decreases, the intensity of sampling required increasesl
Also, for a given value of CE7), as the number of 2

sections increases, the mean number of points required® 74 39

per section decreases. Optimum valuesnadénd P 4 41 13 8

for a given coefficient of error are regarded here as5 11 72 8 63 6 15 96
those that minimize the total number of points counted.6 9 28 7 32 5 13 57
Therefore, if we define the effofE as a quantty 7 8 21 6 18 5 11 34
proportional tonP, E is an indicator of the tme 8 7 20 83 5 16 82 4 10 28
required to estimate the volume of the structureunder9 7 18 69 5 14 59 4 9 26
study. The curves in Fig. 2 exhibit oscillations which 10 6 15 58 5 13 46 4 8 24
are produced by the systematic nature of the samplingll 6 15 50 4 11 40 3 8 22
and are connected with the oscillating term of @ 12 6 13 45 4 10 37 3 8 18
called Zitterbewegung (Matheron, 1971; Kiéu, 1997; 13 5 13 41 4 10 35 3 7 18
Garcia-Fifiana and Cruz-Orive, 2000). Due to thel4 5 13 39 4 9 33 3 7 17
oscillating behaviour of the curves in Fig. 2, however, 15 5 12 36 4 9 32 3 7 16
there may exist several paifs, P) which minimiseE, 5 11 34 4 9 29 3 6 15
each corresponding to a local minimumtéfToavoid 17 5 11 31 3 8 26 3 6 15
this obstacle, optimum values were calculated basedl8 4 11 28 3 8 23 3 6 14
on spline interpolated upper bounds of the curves (seel® 4 10 26 3 8 19 3 6 14
Table 1). Therefore, the recommended values aifid 4 10 25 3 7 16 2 6 13

P are conservative approximations, and as such, we
exgect that the values of the exact coefficient of error
of V would tend to be lower than the initially defined
level.

Table 3 shows that the empirical values of (¥
that a researcher will obtain after following the

recommendation given by Table 2 with the second MR
It is acknowledged that in practice, it is not alwaysyata are appropriate.

possible or desirable to take the optimumnFor this

situation, Table 2 provides a reference for the average _

of points per section which should be taken for fixedTable 3.Empirical levels of CEV) (%) obtained when
values ofn. the recommended sampling intensities given in Table 2

: . r :
The optimum sampling parameters recommended"® used

in Tables 1 and 2 are strongly related to the

geometry of the brain structures under consideration, 10 GM é%) o5 1OWM é%) o5 1'(|)‘ota| é%) o5
and probably also to the cutting direction. Therefore, 103 59 99 53 50 50 26

although these tables have been derived from MR data
of one human brain, we expect that Tables 1 and Zig gg 2; gi gg 2g zé gg ig gi
will provide an appropriate reference for the brain 20 9'5 4'9 2.8 9'2 5'3 3'5 9'9 4'4 2'4
compartments: GM, WM and Total of any other adult i : : : : : : : '
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DISCUSSION to the different levels of sampling involved. Let us
assume, for example, that our aim is to compare grey
This study has focused on the precision ofmatter volume between patients with schizophrenia
the Cavalieri estimator in combination with pointand a control group, where volume is estimated
counting to estimate the volume of the human brairapplying Cavalieri sampling and point counting. In
compartments: grey matter, white matter and theithis case, an estimate of the biological variability
union. We have derived a reference table with thavithin each group as well as the stereological variance,
approximate number of sections and number of pointsonsidered in this paper, would be required for the
per section that are required to estimate the volumeample size calculation (see Cruz-Oreteal., 2004).
with a pre-defined coefficient of error (10%, 5% and Optimal sampling intensities in a two stage

2.5%). For example, the optimum values to achievgjn, e random sampling design have been previously
a coefficient of error of 5% are,83 and 7 sections investigated based on exact expressions of the

with 20,10 and 11 mean number of points counted, jance ¢.g9, Cochran, 1977). Finding an analogous
per section, for GM, WM and Total, respectively. The 4 general procedure to identify optimal sampling

mean number of points recommended per section iSarameters in systematic sampling is a challenging

directly connecf[ed to the _size of the_z grid requlredpromem due to the complex expressions of the
Table 2 was derived to provide the optimum valu®of 5 iance involved, and this is left for future work.
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