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ABSTRACT

Cavalieri sampling and point counting are frequently applied in combination with magnetic resonance (MR)
imaging to estimate the volume of human brain compartments.Current practice involves arbitrarily choosing
the number of sections and sampling intensity within each section, and subsequently applying error prediction
formulae to estimate the precision. The aim of this study is to derive a reference table for researchers who
are interested in estimating the volume of brain regions, namely grey matter, white matter, and their union, to
a given precision. In particular, this table, which is basedon subsampling of a large brain data set obtained
from coronal MR images, offers a recommendation for the minimum number of sections and mean number
of points per section that are required to achieve a pre-defined coefficient of error of the volume estimator.
Further analysis on MR brain data from a second human brain shows that the sampling intensity recommended
is appropriate.

Keywords: Cavalieri sampling, coefficient of error, grey matter, human brain, magnetic resonance imaging,
point counting, stereology, volume estimator, white matter.

INTRODUCTION

Observer-based methods, where the region of
interest is visually identified by the observer,
are often regarded as “gold standard” methods
in quantitative magnetic resonance (MR) imaging
studies. For example, in some applications, volumetric
measurements of brain structures are obtained by
manually delineating the region of interest on
consecutive MR images (see for example, Salmenperä
et al., 1998; Bernasconiet al., 2003). However, this
procedure is usually highly time consuming, and
therefore, it may not be feasible in studies where
a large group of subjects need to be investigated.
An alternative technique, namely point counting,
has been widely applied in combination with the
Cavalieri method to estimate the volume of internal
brain compartments, such as hippocampus, amygdala,
ventricle, Broca’s area, white and grey matter,etc.
(e.g., Doherty et al., 2000; Keller et al., 2002;
Garcı́a-Fiñanaet al., 2003; Gong et al., 2005;
Salmenperäet al., 2005; Schmitz and Hoff, 2005,
and references therein). In these studies, a set of
parallel and equidistant MR images with a uniform
random position are selected, and the area is estimated
for each section by randomly superimposing a grid
of systematic points and counting the number of
points which fall inside the region of interest (see
for example, Gundersen and Jensen, 1987). The
question of identifying an effective sampling density

for volumetric measurements using Cavalieri and
point counting has previously been addressed (e.g.,
Gundersen and Jensen, 1987; Regeur and Pakkenberg,
1989; Robertset al., 1997). In particular, it is suggested
that counting a total of 150 points per structure
is usually appropriate to achieve a coefficient of
error of the volume estimator between 3% and 10%
(Gundersen and Jensen, 1987).

In this paper, we analyse a large brain data
set (acquired from coronal MR images) to derive
a detailed reference table for the minimum number
of sections and sampling intensity per section that
are required to achieve a pre-defined coefficient of
error when estimating the volume of human grey
matter, white matter and their union. In the following
section, we introduce Cavalieri sampling, the point
counting technique, and the error prediction formulae
currently available to predict their precision. Those
error predictor formulae are useful for a posterior
assessment of the coefficient of error using the data
sample. Then, a description of the data set and
methodology is given, and the results are derived.
In particular, two tables are derived to allow prior
selection of the sampling intensity. Finally, the main
conclusions and a discussion can be found at the end
of the paper.
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CAVALIERI SAMPLING AND
VARIANCE PREDICTION

The volume of a three dimensional bounded
structure,V, can be expressed as the one-dimensional
integral

∫
R f (x) dx, where f (x) represents the area of

the intersection between the structure and a plane at
the point of abscissax. An unbiased estimator ofV can
be defined from a set of equidistant observations off
by applying:

V̂ = T ∑
k∈Z

f (UT +kT); T ∈ R+ , (1)

(see,e.g., Baddeley and Jensen, 2005, and references
therein) whereT, called the sampling period, is
the distance between consecutive observations along
the sampling axis and where, in order to guarantee
unbiasedness,U is a uniform random variable in the
interval[0,1). For simplicity,U will denote indistinctly
a variable or a realization of it. We assume thatf : R→
R+ is a piecewise infinitely differentiable function
which vanishes outside a bounded interval[a,b].

The variance of̂V can be expressed as follows:

Var(V̂) = 2
∞

∑
k=1

G (k/T) , (2)

(see Yates, 1948; Moran, 1950) whereG is the Fourier
transform of the covariogram off , g, and which is
defined as

g(h) =
∫

R
f (x) f (x+h) dx , h∈ R . (3)

Several estimators of Var(V̂) have been derived
based on mathematical expansions of Eq. 2 in powers
of T (e.g., Matheron, 1965; 1971; Gundersen and
Jensen, 1987; Cruz-Orive, 1989; Kellerer, 1989; Kiêu,
1997; Gual-Arnau and Cruz-Orive, 1998; Gundersen
et al., 1999; Garcı́a-Fiñana and Cruz-Orive, 2004).
A general and currently accepted variance estimator
reads as follows:

var(V̂) = α(q) T2(3C0−4C1 +C2) , (4)

whereq, called thesmoothness constant, is the order
of the first non-continuous (which could be fractional)
derivative of f . The quantitiesCk with k = 0,1,2 are
defined asCk = ∑n−k

i=1 fi fi+k where { fi ; i = 1, ...,n}
denotes the set of equidistant observations off within
the interval[a,b]. The analytical expression ofα(q) is
given by:

α(q) =
Γ(2q+2) ζ (2q+2) cos(πq)

(2π)2q+2 (1−22q−1)
, (5)

whereq ∈ [0,1] and Γ() and ζ () denote the gamma
function and the Riemann Zeta function, respectively
(see Garcı́a-Fiñana and Cruz-Orive, 2004; Cruz-Orive,
2006, where a table with numerical values forα(q)
is provided, and references therein). The smoothness
constantq can be estimated from the data sample as
described in Souchet (1995) and Garcı́a-Fiñana and
Cruz-Orive (2004).

It is often the case that the section areas{ fi ; i =
1, ...,n} are not calculated precisely but estimated
using a second level of sampling. In particular, with
the point counting technique, a test grid of equidistant
points with a distantu apart is superimposed on each
section with a uniform random position. In this case,
Eq. 1 becomes:

Ṽ = T u2 ∑
k∈Z

P(UT +kT); T ∈ R+ , (6)

whereP(UT + kT) represents the number of points
hitting the region of interest for a section at the
point of abscissaeUT + kT. Point counting is also
applied to structures where manual delineation of the
section boundaries is possible. The reason is that point
counting is less time consuming and this is a clear
advantage in studies where volume estimation for a
large number of subjects is required.

When the grid of points is superimposed with
isotropic orientation (as well as with a uniform random
position as described above), the contribution of the
variance due to point counting can be expressed as
(Matheron, 1971):

VarPC(Ṽ) = u4 T2 ν , (7)

where

ν = 0.0724
B̄

Ā1/2
P̄1/2 n , (8)

and wherēA andB̄ represent the mean boundary length
and mean area of the sections, respectively, andP̄
is the mean number of points counted per section
(Gundersen and Jensen, 1987).

Eq. 4 has been extended to take into account the
contribution due to point counting given by Eq. 7. The
corresponding variance estimator becomes:

var(Ṽ) = T2 u4 [
α(q)

(
3
(
C′

0− ν̂
)
−4C′

1 +C′
2

)
+ ν̂

]
,

(9)
where the quantitiesC′

k with k= 0,1,2 are now defined
asC′

k = ∑n−k
i=1 PiPi+k wherePi; i = 1, ...,n, represents

the number of points counted on thei-th section (see
Cruz-Orive, 1999; Kiêuet al., 1999; Garcı́a-Fiñanaet
al., 2003, and references therein). The estimatorν̂ can
be directly derived from Eq. 8, wherēP is estimated
from the data sample and the shape coefficientB̄/Ā1/2
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can be empirically estimated following the procedure
as described in Gundersen and Jensen (1987). The
shape coefficient is considered to be stable for a given
type of shape.

In most studies, the researcher will arbitrarily
choose the number of sections and the point grid
density. An estimation of the variance of the volume
estimator is then obtained based on the acquired
data sample by applying Eq. 9. However, to optimise
the sampling density, it is useful to have an idea
beforehand of the appropriate sampling parameters.
In the next section, we derive, based on Eq. 7
and empirical resampling, a reference table with
the approximate number of sections and sampling
intensity per section required to obtain reasonable
coefficients of error of the volume estimators of human
cerebral grey matter, white matter and the union of
both (namely total).

DATA AND METHODOLOGY

The material under study is the grey matter (GM)
and white matter (WM), which includes glial tissue, of
a human brain, and the union of both compartments,
namely ‘Total’. A total of 217 non-empty consecutive
coronal images with a distant 1mm apart were acquired
by magnetic resonance imaging.

The overall coefficient of error of̃V (defined as the
root square of the variance of̃V divided byV) can be
decomposed into:

CE(Ṽ) =
(

CE2
S(Ṽ)+CE2

PC(Ṽ)
)1/2

, (10)

where CES(Ṽ) and CEPC(Ṽ) are the coefficient of
errors due to sectioning (variability between sections)
and point counting (mean variability within sections),
respectively. The two terms on the right hand side of
Eq. 10 are here calculated for the volume estimator of
the three brain compartments GM, WM and Total. We
consider sample sizesn∈{1,2, ...,20} and assume that
the mean number of counted points per section takes
values in the set̄P∈ {1,2, ...,100}.

For each MR section, the area of GM, WM and
Total was measured by automatic pixel counting (pixel
side = 1mm), and the samples of section areas here
obtained were considered to be free of measurement
errors (see McNultyet al., 2000 for a more detailed
description of the data set). Empirical calculation of
CES(Ṽ) is obtained by extracting subsamples of the
initial data set (with 217 area data) via the following
procedure:

1. The distance between parallel sections is fixed as
T = s(mm) wheres is initially set tos= 10.

2. Thes possible systematic samples of section areas
with a distanceT apart are extracted.

3. The volume is estimated for each sample and
the set of volume estimates{V̂i ; i = 1,2, ...,s} is
computed.

4. The empirical coefficient of error ofṼ
due to sectioning is calculated by applying(

1
s ∑s

i=1

(
V̂i −V̂

)2
/ V̂

2
)1/2

, whereV̂ = 1
s ∑s

i=1V̂i .

5. Steps 1–4 are repeated withs= 11,12, ...,217.

For simplicity and since Eq. 7 provides satisfactory
results for a wide variety of geometrical shapes
(Gundersen and Jensen, 1987), we have used Eq. 7
to obtain the contribution to the coefficient of
error from point counting, instead of deriving an
empirical coefficient of error based on several random
positions and orientations of the square grid on
each section. In particular, VarPC(Ṽ) is calculated
as a function of the number of sections and the
mean number of points counted per section̄P by
applying Eq. 7. Note that CE2PC(Ṽ) can be written as(
0.0724B̄/Ā1/2

)
P̄−3/2 n−1.

Estimates of the shape coefficient,̄B/Ā1/2, have
been previously calculated for the three brain
compartments here considered (GM, WM and Total),
and take values 19.3, 11.5 and 7.7, respectively (see
Garcı́a-Fiñanaet al., 2003).

By using the statistical package R, a code
was developed to calculate the contribution to the
coefficient of error from the two levels of sampling
and to construct the reference tables given in the next
section.

Table 1. Optimum values for n and̄P, such that
minimum effort (i.e., minimum total number of points
counted) is required to achieve coefficients of error of
10%, 5% and 2.5% for the volume estimator of grey
matter, white matter and Total.

10% 5% 2.5%
Compartment n P̄ n P̄ n P̄
GM 6 9 8 20 20 25
WM 6 7 13 10 20 16
Total 4 8 7 11 12 18
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Fig. 1.Ratio of the coefficient of error of the volume estimator due to point counting and sectioning as a function
of the number of sections when̄P = 20. The value of n for which the ratio is equal to 1 is given by the abscissa of
the intersection between the continuous curve and the horizontal non-continuous straight line.

Fig. 2. Values of n andP̄ for coefficients of error of̃V equal to 10%, 5% and 2.5%. The straight broken lines
represent constant values of the total number of points counted E= nP̄.
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RESULTS

The contribution of the overall coefficient of error
of the volume estimator of each brain compartment
depends both on the number of sections and the mean
number of points counted per section. Fig. 1 shows
the ratio of the two components of the coefficient
error decomposition given in Eq. 10 when̄P = 20. For
small n, the greater contribution comes from the first
component (sectioning), whilst asn increases, point
counting emerges as the greatest source of error. The
relative contribution from each error component differs
between structures.

Fig. 2 shows the values ofn andP̄ that are required
to reach fixed pre-defined levels of CE(Ṽ), namely,
10%, 5% and 2.5%. As we would expect, as the CE(Ṽ)
decreases, the intensity of sampling required increases.
Also, for a given value of CE(Ṽ), as the number of
sections increases, the mean number of points required
per section decreases. Optimum values ofn and P̄
for a given coefficient of error are regarded here as
those that minimize the total number of points counted.
Therefore, if we define the effortE as a quantity
proportional to nP̄, E is an indicator of the time
required to estimate the volume of the structure under
study. The curves in Fig. 2 exhibit oscillations which
are produced by the systematic nature of the sampling
and are connected with the oscillating term of Var(Ṽ)
called Zitterbewegung (Matheron, 1971; Kiêu, 1997;
Garcı́a-Fiñana and Cruz-Orive, 2000). Due to the
oscillating behaviour of the curves in Fig. 2, however,
there may exist several pairs(n, P̄) which minimiseE,
each corresponding to a local minimum ofE. To avoid
this obstacle, optimum values were calculated based
on spline interpolated upper bounds of the curves (see
Table 1). Therefore, the recommended values ofn and
P̄ are conservative approximations, and as such, we
expect that the values of the exact coefficient of error
of Ṽ would tend to be lower than the initially defined
level.

It is acknowledged that in practice, it is not always
possible or desirable to take the optimumn. For this
situation, Table 2 provides a reference for the average
of points per section which should be taken for fixed
values ofn.

The optimum sampling parameters recommended
in Tables 1 and 2 are strongly related to the
geometry of the brain structures under consideration,
and probably also to the cutting direction. Therefore,
although these tables have been derived from MR data
of one human brain, we expect that Tables 1 and 2
will provide an appropriate reference for the brain
compartments: GM, WM and Total of any other adult

human brain. We analysed possible deviations from
the pre-defined levels of precision after following the
recommendations of Table 2 for a second brain. The
imaging protocol and stereological quantification for
the second brain was similar to the one described in
SectionData and Methodology, although the distance
between images for this second brain was equal to
0.625 mm.

Table 2.Mean number of points (̄P) required for a
range of values of the number of sections (n) and pre-
defined levels of CE(Ṽ).

GM (%) WM (%) Total (%)
n 10 5 2.5 10 5 2.5 10 5 2.5
1
2
3 74 39
4 41 13 8
5 11 72 8 63 6 15 96
6 9 28 7 32 5 13 57
7 8 21 6 18 5 11 34
8 7 20 83 5 16 82 4 10 28
9 7 18 69 5 14 59 4 9 26
10 6 15 58 5 13 46 4 8 24
11 6 15 50 4 11 40 3 8 22
12 6 13 45 4 10 37 3 8 18
13 5 13 41 4 10 35 3 7 18
14 5 13 39 4 9 33 3 7 17
15 5 12 36 4 9 32 3 7 16
16 5 11 34 4 9 29 3 6 15
17 5 11 31 3 8 26 3 6 15
18 4 11 28 3 8 23 3 6 14
19 4 10 26 3 8 19 3 6 14
20 4 10 25 3 7 16 2 6 13

Table 3 shows that the empirical values of CE(Ṽ)

that a researcher will obtain after following the
recommendation given by Table 2 with the second MR
data are appropriate.

Table 3.Empirical levels of CE(Ṽ) (%) obtained when
the recommended sampling intensities given in Table 2
are used.

GM (%) WM (%) Total (%)
n 10 5 2.5 10 5 2.5 10 5 2.5
5 10.3 5.9 9.9 5.3 9.0 5.0 2.6
10 9.9 5.1 2.3 9.0 5.0 3.1 8.4 5.0 2.3
15 9.2 4.9 2.4 8.5 5.3 2.5 8.5 4.5 2.4
20 9.5 4.9 2.8 9.2 5.3 3.5 9.9 4.4 2.4
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DISCUSSION

This study has focused on the precision of
the Cavalieri estimator in combination with point
counting to estimate the volume of the human brain
compartments: grey matter, white matter and their
union. We have derived a reference table with the
approximate number of sections and number of points
per section that are required to estimate the volume
with a pre-defined coefficient of error (10%, 5% and
2.5%). For example, the optimum values to achieve
a coefficient of error of 5% are 8,13 and 7 sections
with 20,10 and 11 mean number of points counted
per section, for GM, WM and Total, respectively. The
mean number of points recommended per section is
directly connected to the size of the grid required.
Table 2 was derived to provide the optimum value ofP̄
in applications where the number of sections is already
fixed. Structures with a complex geometry will tend
to need a more dense sampling than smooth structures
to achieve the same level of precision. This effect can
be directly observed in Table 2 where larger values of
n and P̄ are required for grey matter when compared
to white matter, and of white matter when compared
to Total, to achieve the same CE(Ṽ). The tables were
subsequently checked using a second MR brain data
set, and although predictions of the optimum level of
sampling were not always conservative, the empirical
coefficient of error was within a reasonable interval
(see Table 3).

The optimum sampling parameters depend on the
sampling direction. In this study we consider coronal
sections of the brain, and although we suspect that a
different direction might provide similar results, this
would need to be confirmed in an additional study. The
shape coefficient̄B/Ā1/2 also depends on the sampling
direction. For a different sampling orientation (e.g.,
axial, sagittal),B̄/Ā1/2 can be calculated for practical
purposes from the analysis of few sections.

Tables 1 and 2 are provided as an aid for
researchers, to enable some element of confidence
that the level of sampling implemented will provide
a reasonable coefficient of error. However, these
results are only a guideline, and error prediction
formulae would need to be applied to estimate the
level of precision achieved based on the data sample
acquired as described in SectionCavalieri sampling
and variance prediction. In studies that are based on
the comparison of two or more groups, the researcher
often needs to predict how many subjects (e.g.,
animals, patients,etc.) are required to detect a given
difference between the population means for specified
values of the significance level and power. Information
is then required about the variability of the data due

to the different levels of sampling involved. Let us
assume, for example, that our aim is to compare grey
matter volume between patients with schizophrenia
and a control group, where volume is estimated
applying Cavalieri sampling and point counting. In
this case, an estimate of the biological variability
within each group as well as the stereological variance,
considered in this paper, would be required for the
sample size calculation (see Cruz-Oriveet al., 2004).

Optimal sampling intensities in a two stage
simple random sampling design have been previously
investigated based on exact expressions of the
variance (e.g., Cochran, 1977). Finding an analogous
and general procedure to identify optimal sampling
parameters in systematic sampling is a challenging
problem due to the complex expressions of the
variance involved, and this is left for future work.
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