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ABSTRACT

Based on observations on similar-looking randomly deformed particles inference is made about the original
common shape-type of these particles by means of statistical tests.
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INTRODUCTION

Quite often the outcome of an experimental
investigation presents itself in the form of a set of
different, disjoint, but to a certain extent similar
particles in an Euclidean spaceRk. The near
similarity of the particles suggests then to assume
that the particles have arisen by individual random
deformation applied to the contours of bodies of a
parametric class of forms, which represents the shape-
type of the typical particle. When constructing a
suitable stochastic model explaining the genesis of the
experimental outcome, an important task consists in
reconstructing the original form of the particles. In
the following we treat problems where a choice has
to be made between a simple prototype form on one
hand and a more complex alternative shape. Based on
a few easily to perform measurements the perferred
shape-type has to be selected in a way that incorrect
decisions for the alternative shape-type are seldom and
that under this restriction the choice of the alternative
shape-type is most often recommended when it is
actually preferable. It will be shown that statistical
tests are useful tools in this context.

PROBLEM DESCRIPTION BY
A DEFORMATION MODEL

Since most applications concern sets in dimension
2 and 3, our considerations will be restricted to planar
particles inR2 or spatial particles inR3.

Under the null-hypothesisH0 we specify the planar
prototype to be rectangular and the spatial prototype
to be a circular cylinder; under this hypothesis the
grains have thus roughly the form of sticks. We are
here concerned with experimental set-ups where the
original shape is completely specified by a symmetry
axis and by the cross-sectional breadth measured at

the points along this symmetry axis, a set-description
model proposed in Stoyan and Stoyan (1992). Note
that in this paper the prototype shape is described by
the thickness of the body measured orthogonally to the
symmetry axis and not by the radius vector function as
in Streit (1997; 2000; 2003; 2005; 2006). It is supposed
that the axis of symmetry is recognizable either by
means of landmarks or by taking into account a
geometrical property of the particles ( for instance that
the axis of symmetry is coinciding with the axis of the
diameter, thus with the axis of the segment of maximal
length realized within the body). The particle-types
chosen underH0 are particularly simply structered in
view of the fact that the cross-sectional breadth does
not change along this axis. UnderH1 we consider basic
shape-types which allow changes in cross-sectional
breadth, choosing in the two-dimensional version of
the problem:

• a circle in case A
• an ellipse in case B
• an isosceles triangle in case C
• a particle bounded by the

hyperbola(x2/a2
H)− y2−1 = 0

and the straight-linesy = −1/2
andy = +1/2 (expressed in
planar Cartesian coordinates
(x,y)′) in case D.

In the three-dimensional set-up the corresponding
rotation-symmetric bodies represent the shape-types
underH1, that is to say we work with the assumption
that the basic form is:

• a ball in case A
• a rotations-symmetric ellipsoid in case B
• a straight circular cone in case C
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• a rotation-symmetric hyperboloid
bounded by the surfaces
((x2+ y2)/a2

H)− z2−1 = 0 and
the planesz = −1/2 and
z = +1/2 (expressed in Cartesian
coordinates(x,y,z)′ in R3) in case D.

In our stochastic models certain features like the
position, the size or the orientation of the particles are
supposed independent of the shape and need therefore
not to be taken into consideration. Each of the observed
particles may thus be first reoriented and standardized
by putting its axis of symmetry in vertical position and
by assigning the ordinatey = −1/2 to its lowest point
and the ordinatey = 1/2 to its top in the planar case
and proceeding analogously with the assignment of
the z-values in the spatial case (should this operation
admit different realisations we shall choose the one
which leads to the largest value of the test statistic to
be calculated). This standardization is carried out by
using a unit of length in all length measurements for
the same particle adjusted to produce this situation.
For a fixed integern ∈ 2,3, .... orthogonally to this axis
the cross-sectional breadth is measured at the ordinate
levelsy = −(n−1)/(2n),y = −(n−2)/(2n), . . .,y =
(n − 2)/(2n),y = (n − 1)/(2n) in the planar case,
with y replaced byz and taking the straight line
orthogonal to thez - axis which yields the largest
value in the spatial case. Note that any of these level
straight lines cuts the boundary of the prototype shape
only in two points symmetrically arranged around the
symmetry axis.n represents somehow the degree of
measuring-effort undertaken per individual particle.
Let N be the number of observed particles and~Q =
(Q(l)(i/(2n))[i =−(n−1), . . . ,n−1;l = 1, . . . ,N])′ the
set of measurements to be taken, whereQ(l)(i/(2n))
designates the cross-sectional breadth (i.e., maximal
thickness) at levely = i/(2n) or z = i/(2n) of the
lthe particle,q(l)(i/(2n)) its realized value and′ the
transposition of a matrix. Since our data set consists
simply of an ordered set of length measurements it is
sufficient to explain the effect of random deformation
only at the ordinate levels where such mesurements are
taken. We shall here assume that random deformation
of a particle is caused by an individual dilatation of the
cross-sectional breadth of each particle at each level of
the ordinate. Thus random deformation is described by
the following relations between the random variables
of the competing stochastic models valid underH0
respectively underH1:

H0 : Q(l)(i/(2n)) = Y (l)(i/(2n)) ·a

[i = −(n−1), . . . ,(n−1); l = 1, . . . ,N] ,

and

H1 : Q(l)(i/(2n)) = Y (l)(i/(2n)) ·a ·b(i/(2n))

[i = −(n−1), . . . ,(n−1); l = 1, . . . ,N] ,

where a designates the breadth of the rectangle
respectively the cross-sectional breadth of the circular
cylinder anda · b(i/(2n)) the cross-sectional breadth
of the prototype shape at ordinate levely = i/(2n)
respectivelyz = i/(2n) under H1. For l ∈ 1, . . . ,N,
(Y (l)(i/(2n)) [i =−(n−1), . . . ,n−1])′ are supposed to
be independent random samples from an exponential
distribution with parameterλ .

Fig. 1 illustrates how the experimental data are
obtained in the planar case for a axialsymmetric
figure. The symmetry axis is vertical, the top point
has planar coordinates(0,1/2), the middle point of
the lowest segment has planar coordinates(0,−1/2),
n is 5 and we thus take 9 measurements in
determening the lengths of the horizontal arrows at
levels−4/10,−3/10, . . . ,4/10. The observed particles
are usally not any more axial-symmetric due to random
deformation, but the length measurements can still be
performed at the prescribed levels and the values of
Q(l)(i/2n) be obtained in this way.
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Fig. 1.Measurements leading to the experimental data.

Taking into account that the prototype shapes
underH0 andH1 should give rise to the same observed
particles, it is reasonable to ask that the following
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additional condition is fulfilled, whenever the family
of shapes admitted underH1 is indexed by at least two
unrelated parameters specifying an individual figure
within the shape-class:

The prototype shape underH0 has in the planar
case the same surface area as the prototype shape under
H1 and the prototype shape underH0 has in the spatial
case the same volume as the prototype shape underH1.

Note that we are confronted here with a typical
problem of stereology, since we would like to use one-
dimensional measurements to find out the shape of a
higher-dimensional set.

THE GENERAL DECISION RULE

We shall now apply standard test theory
(Mukopadhyay, 2000) to determine the optimal (i.e.,
most powerful) procedure, which allows us to decide
if it is appropriate to adopt the shape of a stick
(rectangular or cylindric) or whether in view of the
measurements we should rather opt for the alternative
shape-type admitted underH1. In fact the measured
lengths do not have the same chance to arise under the
null hypothesis and under the alternative hypothesis
and this fact will lead us to decide which model we
should prefer, taking into account that we do not want
to reject incorrectlyH0 in more than 100(1−α) % of
the cases, whereα is the chosen size of the test.

According to the standard theory of statistical tests
we have to determine and compare the likelihood
functions underH0 and underH1. We find for these
functions the following analytic expressions:

L(H0,λ ,a : ~Q =~q) =
(

λ
a

)(2n−1)N N

∏
l=1

n−1

∏
i=−(n−1)

exp

(

−
λ q(l)(i/(2n))

a

)

,

and

L(H1,λ ,a : ~Q =~q) =
(

λ
a

)(2n−1)N n−1

∏
i=−(n−1)

[

(

1
b(i/(2n))

)N

×

N

∏
l=1

exp

(

−
λ q(l)(i/(2n))

ab(i/(2n))

)]

.

It is interesting to note that both likelihood
functions depend onλ and on a only in terms of
ρ = λ/a whenever the values ofb(i/(2n)) are not
expressed in terms ofa. If this condition is fulfilled

only the parameterρ is relevant, since a change ofa
(size factor) can be counterbalanced by a change of
λ (factor of cross-sectional deformation). According
to the fundamental theorem of Neyman-Pearson the
recommended test statistic for testingH0 versusH1
takes for givenρ (and for givena in case A ) the form

Λ∗ = L(H1,ρ : ~Q)/L(H0,ρ : ~Q) =

n−1

∏
i=−(n−1)

b(i/(2n))−N×

exp

[

ρ
N

∑
l=1

n−1

∑
i=−(n−1)

Q(l)(i/(2n))

(

1−
1

b(i/(2n))

)

]

.

The critical region of the optimal test is formed by
the 100(1−α)% largest values ofΛ∗ underH0. It is
evident thatΛ∗ can be replaced by the equivalent test
statistic

TN,n = ρ
N

∑
l=1

n−1

∑
i=−(n−1)

Q(l)(i/(2n))

(

1−
1

b(i/(2n))

)

.

The test accepts the alternative shape-type if the
value ofTN,n is sufficently large.

Note that Q(l)(i/(2n)) follows under H0 an
exponential distribution with parameterρ and that this
implies thatρQ(l)(i/(2n)) follows underH0 a standard
exponential distribution. Based on this consideration
we find for the first and second moments underH0 the
expressions:

mN:n := E[TN,n : H0] = N
n−1

∑
i=−(n−1)

(

1−
1

b(i/(2n))

)

,

and

vN:n := Var[TN,n : H0] =

N
n−1

∑
i=−(n−1)

(

1−
1

b(i/(2n))

)2

.

SinceTN,n may be represented as the sum ofN random
variables,

T (l)
N,n := ρ

n−1

∑
i=−(n−1)

Q(l)(i/(2n))

(

1−
1

b(i/(2n))

)

,

[l = 1, . . . ,N] ,

which are independent and identically distributed,
TN,n is for fixed n and for N → ∞ asymptotically
normally distributed with meanmN:n and with variance
vN:n. This allows to determine the asymptotic critical
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value cN:n(1− α) for the test of sizeα . We find
cN:n(1−α) = mN:n + (vN:n)

1/2z(1−α), wherez(1−
α) satisfiesΦ(z(1−α)) = 1−α and is tabulated and
Φ designates the distribution function of the standard
normal distribution. The critical region of the test is
thus given byTN,n > cN:n(1−α).

FURTHER INDICATIONS FOR
PARTICULAR SHAPE
ALTERNATIVES

In order to be able to implement the test the values
b(i/(2n)) for i =−(n−1), . . . ,n−1 have to be known.
In the cases A, B, C and D and for the planar and for
the spatial version of the problem the following results
are obtained by elementary calculations:

– Case A, planar particles:
b(i/(2n)) =

√

1− i2/n2/a

– Case A, spatial particles:
b(i/(2n)) =

√

1− i2/n2/a

– Case B, planar particles:
b(i/(2n)) = (4/π)

√

1− i2/n2

– Case B, spatial particles:
b(i/(2n)) = (

√

3/2)
√

1− i2/n2

– Case C, planar particles:
b(i/(2n)) = (1− (1/n)) or 1+(i/n)

– Case C, spatial particles:
b(i/(2n)) =

√
3[(1/2)− (i/(2n))] or√

3[(1/2)+(i/(2n))].

– Case D, planar particles:
b(i/(2n)) = ((

√
5/4)+ ln((

√
5+1)/2))−1

√

1+ i2/(4n2)

– Case D, spatial particles:
b(i/(2n)) =

√

12/13
√

1+ i2/(4n2).

EXTENSION OF THE METHOD

The described method can also be applied to
particles with axial symmetry which have for some
straight-lines at some ordinate levels more than two
intersection points with their boundary when we
replace the measurement of the cross-sectional breadth
by the measurement of the total (maximal) length of
the segments of intersection between the particle and
the lines y = i/(2n) respectivelyz = i/(2n). Since
our random deformations do not change the number

of these segments, choosing between shape types
exhibiting a different number of segments at the same
measurement level underH0 and underH1 is easy and
leads to a clear-cut rejection of (at least) one of the
hypotheses.

It is worthwhile to note that our procedure is
not restricted to exponentially distributed dilatation
factors; the method may be applied in an similar way
if the deformation factors follow other distributions on
R+ and even in the case of interdependence between
the factors associated to the same particle.

RELATED WORK

The idea to interpret observed particles as
randomly deformed prototypes is already expressed
in the publications of Grenander (1993). In Hobolth
et al. (2003) the sets are described by the normalized
radius-vector function and its polar Fourier expansion.
In Hobolth and Vedel Jensen (2000) the observed
shape is a continuous stochastic deformation of a
template curve by means of a zero mean stationary
cyclic Gaussian process. In Kentet al. (2000) the
observed figures are represented as deformed n-sided
regular polygons. While these approaches work with
transformed measurements to describe particles in
general and lead thus to the necessity to find out which
set of transformed measurements correspond to the
shape-types to be distinguished, these shape-types are
in my contribution introduced at the outset, since they
are chosen as classes of admitted templates.
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