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ABSTRACT

The method presented in our paper suggests the use of Functional Data Analysis (FDA) techniques in an
attempt to characterise the nuclei of two types of cells: Cancer and non-cancer, based on their 2 dimensional
profiles. The characteristics of the profile itself, as traced by itsX andY coordinates, their first and second
derivatives, their variability and use in characterization are the main focus of this approach which is not
constrained to star shaped nuclei. Findings: Principal components created from the coordinates relate to
shape with significant differences between nuclei type. Characterisations for each type of profile were found.

Keywords: 2-dimensional profile, cancer detection, functional data analysis, principal differential analysis,
star shape.

INTRODUCTION

Mitosis, the cell generating process in humans,
runs at the nuclei level and, as such, there is an interest
in studying the nuclei of cells with the purpose of
detecting cancerous cells. Milleret al.(1994); Hobolth
and Vedel Jensen (2000) indicate that the morphology
of the cell nucleus will tend to be different in a healthy
cell from what it is in an unhealthy cell. It is expected
there would be morphological characteristics proper of
cancer cells.

The study of shapes involves the imaging process
step to get a “drawing” or graph, and the quantitative
study of descriptors that serve the purpose of
characterising such shapes. It is in the characterisation
step that this paper focuses its interest.

Functional Data Analysis (FDA) (Ramsay and
Silverman, 1997), a young yet growing field of
statistics, offers itself as a tool in shape analysis
of nuclei of cells. This tool enables the comparison
of shapes without the need of strict distributional
assumptions on the behaviours of the contours of
nuclei. It enables the extension of known multivariate
techniques such as Principal Components in the
evaluation of the shapes.

In the present section, preliminaries on the
statistical and biological motivation for the research,
and an overview of some previous approaches are
presented. The “Data and methods” section describes
data preprocessing for the proposed analyses to follow;
FDA using linear interpolation discussion, where
Principal Components Analysis on the profiles is
performed; FDA via basis functions and a curvature

based classification approach are also discussed. The
last section takes advantage of the functional form of
the data and its basis function approximation for an
in-depth model-based analysis of the variability in the
curves via Principal Differential Analysis.

When observing nuclei profiles, it is difficult
to distinguish specific features or landmarks in the
shape. In this sense, Milleret al. (1994) described a
model for representing spatial profiles with no obvious
landmarks. Recently Hobolth and Vedel Jensen (2000)
have described cell nuclei as a deformable template
model, their work dealt with the challenge of modeling
the processX(t). This process was modeled as a
stochastic process where, given the natural sequence
or connections between points in the nucleus’ profile,
the points can not be considered to be independent.
Markov second order properties were imposed on
the stationary cyclic stochastic process. The process
was considered to be Gaussian with mean zero. The
class of Gaussian process was then defined by the
parameterisation of the covariance function for the
process.

The deformable template model was revisited by
Hobolthet al. (2002) and then the shape was modeled
with a radius-vector function and once again{X(t)}
played the role of a Gaussian residual process or
deformation process.

Their findings were that on average the estimates
of the global shape parameter were significantly lower
for the malignant sample, the estimates of local
shape parameter were also significantly lower in the
malignant sample, and the variance of the natural log
of local shape parameter was significantly larger in the
malignant sample.
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The process{X(t)} has been presented and used
to represent the continuous nucleus membrane that
creates the shape or profile of such nucleus. In this
sense it seems reasonable to consider the nucleus
profile as a functional data source. The analyses
Hobolthet al. (2002) perform are constrained to star-
shaped planar objects.

The approach presented in our paper is to measure
the nucleus profile as the bivariate processZ(t) =
(X(t),Y(t)) where X(t) and Y(t) are functional
processes corresponding to the cartesian coordinates
X andY. Hence the aim is to inspect the behaviour of
such processes for malignant and benign nuclei. This
form of representing the profile has the advantage of
not being constrained to star shaped nucleus profiles,
and that the derivatives of the functional data can be
computed from these, now continuous, data. Analysis
on the behaviour of the derivatives sheds light on
possible discriminant features that may be hidden to
the naked eye.

MATERIALS AND METHODS

The data comprise 50 profiles of tumor cells
from a benign melanocytic nevus of the human skin
and 50 of malignant melanoma of the human skin.
These have been studied previously in (Hobolth and
Vedel Jensen, 2000), (Vedel Jensen and Sorensen,
1991), and (Gardneret al., 2005). These nuclei profiles
were kindly provided by Hobolth and Jensen and can
be seen in Fig. 1.

Fig. 1.ProfIles of 50 malignant cell nuclei (last 5 rows)
and 50 benign cell nuclei (first 5 rows).

In our paper, the profiles were to be analysed using
FDA; and in such analysis a “reference” point or time
t0 was wanted, such that it was not only meaningful
in being the first point of the nucleus profile looked
at, but that would be, although arbitrary, determined
by the same consistent criteria for each profile. Hence,
each nucleus was fitted with an ellipse via least squares
to obtain information on the rotation, if any, of such
corresponding ellipse. The ellipse fitting was done via
the method of Fitzgibbonet al. (1999), which is based
on solving a generalised eigenvector problem.

For the analysis, where interest focuses on overall
shape, the profiles are “aligned” to avoid fictitious
variability. The alignment and standardisation of the
profiles is obtained by rotating the profiles so that
the best fitting ellipse will be resting horizontally on
the semimajor axis. After being rotated, the profiles
are centered and scaled so that their caliper diameter,
measured parallel to the semimajor axis, ranges from
−1 to 1. This standardises the range of theX
coordinates to be in[−1,1]. TheY ranges are scaled
by their correspondingX factor to preserve perspective
and ratio betweenX and Y in each of the profiles.
This normalisation is performed in the same spirit
as Ramsay and Silverman (2002) do for the bone
shapes and the intercondylar notch in their case study
publication.

Some controversy surrounds the alignment or
registration procedures. There are two main tendencies
regarding shape analysis, the landmark based approach
(Lele and Richtsmeier, 1991; 1992; Dryden and
Mardia, 1998) and the outline based approach
(Grenander and Manbeck, 1993). Our paper follows
an outline based approach. Macleod (1999) states
“hard distinctions between landmark and outline
morphometric data/analysis are illusory and damaging
to the entire enterprise of morphometrics”. The paper
argues that although biological correspondence for
measurements is legitimate, it does not address or
avoids in itself the potential source of error. In
his article it is stated that any comparison that is
meaningful happens at the landmark to landmark
comparison which is as good as the curve to curve
comparison in comparing outlines.

It is worth mentioning that the aim of our paper
is not to search for the biological reason that makes
the shapes of the profiles to be the way they are. No
biological homology is being assumed. Shape itself
is measured as Fersonet al. (1985) do and therefore,
quoting them “it is valuable to quantify shape variation
sensu stricto”.

The point that will be deemed as(X(t0),Y(t0))
is chosen as the leftmost point that lies on the
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semimajor axis. For the linear interpolation in the
profiles, measurement of the arc length starts from
t0 and t increases counterclockwise. Each profile is
represented by 150 arc-length equidistant points.

Fig. 2 shows this representation of theX(t),Y(t)
coordinates of the first benign nucleus.
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Fig. 2. X(t),Y(t) for first benign nucleus based on
equidistant points.

At further stages, where derivative information
is needed and analysed, the data are approximated
by basis functions. Approximation for each of the
coordinates in theX(t),Y(t) process is based on
Fourier expansions for the underlying cyclic structure
and on the B-spline fit for extraction of residuals
information. The profiles of the nuclei are formed
by the X,Y pairs at each timet, and in this manner
each of the pairs contributes to the variability of the
profile at specific positions in the profile. Based on
this, the profile can be seen as having the 150 points
as variables and then Principal Components Analysis
can be performed to discover the type of variation that
affects each of the types of profiles the most.

In order to perform PCA, each bivariateX(t),Y(t)
datum is considered separately in each of its
coordinates. The data from the 100 profiles are
arranged in 100 rows with 300 columns, (150 for
each of X and Y coordinates) and multivariate
PCA is performed on these (Ramsay and Silverman,
2002). The resulting matrix of loadings is rearranged
as a three-dimensional array for easier access and
interpretation. This array has in its first two dimensions
150×2 matrices of loadings for the 2-vectorX,Y pairs,
and its third dimension accounts for the 100 ‘pages’
corresponding to the 100 profiles.

The purpose of performing PCA on the data is
to try to detect differences in the two groups while
reducing the data dimensionality. Differences in the
components’ scores for the two different types of
profiles are expected. Interpretability is gained from
the principal components in a graphical sense by
investigating the possible effect that each component
has on the geometry of the mean profile.

The effect of the principal components on the
shape of the profiles is captured graphically by adding
and subtracting a fixed amountC times the standard
deviation of the component to the mean profile
(obtained by averaging out the values ofX(t),Y(t) for
each fixedt).

The effect of the first 6 principal components
(accounting for 91% of variability) on the shape of the
profiles is shown in Fig. 3.

PCA number 1 PCA number 2

PCA number 3 PCA number 4

PCA number 5 PCA number 6

Fig. 3. Effect of first6 principal components on the
mean profile; thick line is the mean profile, dotted line
shows mean minus PCA effect and solid thin line shows
mean plus pca effect.

For example, Fig. 3 shows the effect of having a
component being negative or positive for profiles. The
first principal component is regulating the behaviour
of the convexity or concavity of the bottom part of
the profile. A positive first principal component tends
to make the bottom of the profile cut into the profile
making it concave, whereas a negative first component
tends to create a convex bump in the lower part of the
profile as well as having the profile exceed the borders
of the mean profile in most directions.

It is expected for benign profiles and malignant
profiles to differ in the mean values on some of these
components.

Profiles of benign cell nuclei tend to have a
negative value for the first principal component and
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those of malignant cell nuclei tend to have a positive
value in this component. For the second component,
benign profiles tend to have negative values while
malignant ones tend to have a positive value. For
components 3 to 6 the benign nuclei tend to have a
positive value and the malignant a negative value. It is
of interest to know if these differences are significant.

Performing Welch’s T test, which is in practice
fairly robust to departures form normality, on the
means of each type of profile, it is seen that
the mean value of the first component for benign
profiles is significantly smaller than the mean
value for first component of malignant profiles (p-
value < 0.002) with a 95% confidence interval
of (−1.3637,−0.2808). Wilcoxon’s rank sum test,
which does not need suffice the T test’s normality
assumption, also yields a significant difference (p-
value < 0.02). So the first principal component is
useful in separating benign and malignant profiles.

Means for components 2 through 5 do not show
to be significantly different. However, benign profiles
have a significantly higher mean for component 6
than that of the malignant profiles (Welch’s:p-value
< 0.04, Wilcoxon’s:p-value< 0.03)

Variability at different scales is of interest, so far,
the analysis has been concerned with overall shape.
The variability of the profiles at the level of their
derivatives, that is, the speed at which the border of
the profiles changes and comparing measures of their
curvature is the next step in more detailed examination
of the profiles. It is assumed that a benign cell will
tend to have a smoother and convex nucleus which will
have smaller total curvature measurements than that of
a malignant one which is assumed that will tend to be
a “squiggly”, non-convex nucleus; this curvature will
be measured locally.

For example, taking the first profile from Fig. 1
(benign) and the profile in row 6 and column 7 in Fig. 1
(malignant), it is clear that the nucleus that does not
“cut” into itself will have a total sum of local curvature
smaller than the malignant one that is shaped like a
croissant.

There is emphasis on trying methods that will
measure local variability, given that, as Peura and
Iivarinen (1997) discuss, some known descriptors,
such as convexity ratio, prove not to be useful in
distinguishing a planar object with a smooth boundary
from another with irregular boundary if both happen to
be non-convex. Other shape descriptors such as those
explained by Gundersenet al.(1988) have been used in
shape analysis as a way to condense information into
simpler low-dimensional quantities, however, these

have not been created to address local differences
specifically.

The nuclei are, by nature, closed curves and hence
cyclic; this would suggest the use of Fourier series
expansion for the profiles.

Transforming the discrete data, sayzi , into
functional form (x(t)) involves representing the
function by a linear combination of a fixed numberK
of known basis functions, usually denoted byφk,

x(t) =
K

∑
k=1

ckφk(t) . (1)

Since interest lies in the variability of derivatives,
and it is assumed that benign and malignant profiles
differ on their borders locally, the fit of the basis
functions was not penalised, hence the variability in
the curvature was preserved rather than smoothing
it out. Functional data was created based on all the
observed points for each profile, but with a fixed
number of basis functions to be consistent in the
approximation.

A Fourier expansion with 17 basis functions
was used. The choice of 17 basis functions was
based on trying to capture the local variability and
approximate the observed data closely. Also, when
looking at boxplots of the means of coefficients of
order higher than 17, these looked narrow and close
to zero, therefore decided to use only 17. The Fourier
approximation would be:

x̂(t) = c0 +c1sinωt +c2cosωt +c3sin2ωt

+c4cos2ωt + . . . (2)

Fig. 4 shows the approximation applied to two benign
profiles.
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Fig. 4.Two profiles (gray) and approximations (red).
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It was observed that the means of the coefficients of
order higher than 3 are not all zero which is indicative
of greater deformations from elliptical templates and
indicative of greater local variability existing in the
profiles.

The construction of the functional form of the
data guarantees that the obtained planar curve (profile)
is closed and twice differentiable (Ramsay and
Silverman, 1997); hence known calculus results can be
used to express the profiles’ shape and curvature.

The curvatureκ(t) at some pointt in the curve is:

κ(t) =
X′(t)Y′′(t)−X′′(t)Y′(t)

(X′(t)2+Y′(t)2)
3/2

, (3)

and the total curvatureCurv(Z) of the planar profile
takes the form:

Curv(Z) =
∫

Z
|κ(t)|dt

=
∫ 1

0

|X′(t)Y′′(t)−X′′(t)Y′(t)|
X′(t)2+Y′(t)2 dt . (4)

For the calculation of curvature there is no need
for registration or alignment of the data since the
integration is over the entireC2 curve.

The hypothesis of interest is:

H0 : µCurv(z),b = µCurv(z),m vs.

H1 : µCurv(z),b < µCurv(z),m

where µi stands for the mean parameter of the
distribution of the curvatures for groupi ∈ {
Malignant, Benign}.

Performing Welch’s T test it was concluded
that the mean curvature of the benign profiles is
significantly smaller than that of the malignant(p =
0.00029), and performing Wilcoxon’s rank sum test
yields the same conclusion(p = 0.00067). Fig. 5
shows the density estimates for the curvatures of
profiles, the curvature axis starts close to 6 as the
curvature of a closed curveC in Rn is greater or equal
to 2π, with equality if and only ifC is the boundary of
a two-dimensional compact convex set, as mentioned
in Proposition 2.1 of Gardneret al. (2005).

So far, the aim has been to find a process that
will help to classify the profiles into malignant or
benign types. Moreover, it is desirable to be able to
provide some uncertainty measurement or assessment
of this classification. Such a procedure should not
only characterise the existing profiles, but be able to
shed some light on classifying or characterising new
profiles.
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Fig. 5. Density estimates for the curvatures of benign
(left) and malignant (right) profiles.

Hobolth et al. (2002); Hobolth and Vedel Jensen
(2000) assume in their modeling, and conclude in their
results, that malignant and benign profiles differ in the
amount and type of variability or deformation from the
templates. They also show that local variability plays
a significant role in the shape of the profiles (Hobolth
et al., 2003).

When creating the functional data via Fourier
series, the data showed high variability at local levels.
For perfectly smooth ellipses, coefficients of order
higher than three would be exactly zero, because of
the parameterisation in polar coordinates:x(t) = acost
andy(t) = bsint for t in [0,2π]. The first 3 coefficients
would necessarily bec0 = 0, c1 = 0, andc2 = a for
X(t); andc0 = 0, c1 = b, andc2 = 0 for Y(t). There is
more structure than just that of periodical or sinusoidal
nature in theX,Y coordinates, there is also what may
be considered a residual process.

The variability structure of the coordinates can be
assessed by the behaviour of their derivatives and the
relationship between different orders of derivatives.
Borrowing concepts from the differential equations
world, a Linear Differential Operator (LDO) that
determines the relationships between the derivatives of
different orders is defined.

Use the following notation:

Dmx(t) =
∂ mx
∂ tm , (5)

for them-th derivative of the functionx(t), whereD is
the derivative operator, and whenm= 0 then the result
is the identity,D0x = x.

In this way, define a Linear Differential Operator
by:

L =
m

∑
j=0

β jD
j , (6)

in the functional case,β j is a functionβ j(t).
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Instead of assuming a homogeneous differential
model, a more realistic model is assumed: a non-
homogeneous system where there exists a forcing
function, sayα(t), and some error structure :

LXi(t) = αi(t)+εi(t), whereεi(t)∼ N(0,σ2(t)) . (7)

If the LDO captures most of the structure, the error
terms are expected to oscillate very closely around
zero. Given a specified LDO, it is expected for the
benign profiles to have weight functionsβi(t) different
from those of the malignant ones. Moreover, it is
expected that the weight functions will characterise the
type of profile.

Applying the LDO for the benign profiles (as
determined by its weight functions) to a benign profile
will result in a residual process as described in
(7). Applying the LDO for the benign profiles to a
malignant profile will give erratic residuals. Similar
results will be seen if the LDO for the malignant
profiles is applied to the benign and malignant types
of profiles.

In order to estimate the weight functions for the
operators, the data need to be registered to avoid any
phase shifts that would introduce exogenous variability
to the derivatives and therefore to the estimated
structure.

The alignment or registration of the data is based
on the creation of a “time warping” function that
has the effect of stretching and/or shrinking the time
axis so that the values ofXi(t), Xj(t) for tk′ 6= tk
align according to some criterion, see Ramsay and
Silverman (1997) for more details.

The mean of the benign profiles was calculated
using the normalised data, that is, the 150 linearly
interpolated values of theX(t),Y(t) functions, based
on the equidistant time points for the rotated and
centred profiles and this was used as a target curve for
the registration.

The original rotated and centred data was then
registered to this target, based on the first derivative of
the data because the derivatives usually exhibit more
variability and they oscillate around zero. Then the
data were registered using the time warping function
(sayW(t)) calculated for the derivatives.

The panels in Fig. 6, show the registeredX(t),Y(t)
data and the target function to which they were
registered.
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Fig. 6.Registered curves-gray, mean black. Left panel
X(t), right panel Y(t).

The registration procedure was done based on overall
shape rather than on landmarks, otherwise, given the
possible non-convexity of the profiles, the profiles
would have been forced to change shape.

The global structure observed in theX(t),Y(t)
functions is of a sinusoidal nature, given this structure,
and the interest in velocity ofX(t),Y(t) the linear
operator to be used, such that it would annihilate the
structure of such velocity is:

Lx = D3x+β2D2x+β1Dx , (8)

which can be seen as a second order operator on the
derivative ofx.

This operator annihilates the structure in an exact
sinusoidal structure for a homogeneous differential
system, that is to say thatLx= 0, if no forcing function
is assumed to be driving the variability and ifx was,
say sint. In this way :Dx = cost, D2x = −sint, and
D3x = −cost and hence

D3x+0×D2x+1×Dx= 0 (β2 = 0,β1 = 1) . (9)

TheX(t),Y(t) functions are not exactlysint or cost
functions as they have added variability and so should
assume that there is a forcing functionαi(t) that yields
the non-homogeneous differential model asLx= αi(t).
Let weightsβ j(t) for the LDO be the functions that
will characterise each type of profile.

The name of Principal Differential Analysis was
coined by Ramsay as the process is, in its motivation
at least, comparable to that of principal component
analysis. The motivation or question is: “Can we use
a set ofN functional observationsxi to create a very
small set ofm functions on which we can approximate
efficiently the observed functions?” (Ramsay and
Silverman, 1997)

In the case of the LDO, it is desired to have the
LDO (defined by its weights) that comes as close
as possible in satisfying the homogeneous equation
Lx = 0.
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Once a decision on the operatorL is taken, define
linearly independent functions, sayui , that will span
its null space. Any functionx, satisfyingLx= 0 can be
expressed as a linear combination of suchui.

Then minimise:

SSEPDA(L) =
N

∑
i=1

∫
[Lxi(t)]

2dt , (10)

to find the weights.

The calculation of such weights is outlined in
Ramsay and Silverman (1997) as these are their
results.

The model for the change inX(t) being:

LX(t) = α(t)+ ε(t) , (11)

where

LX(t) = β1(t)DX(t)+β2(t)D
2X(t)+D3X(t) , (12)

and so can be expressed as

D3X(t) = β1(t)DX(t)+β2(t)D
2X(t)

+α(t)+ ε(t) . (13)

Here, rewriteβi instead of−βi as theβi are to be
estimated.

In the calculations, estimate the forcing function
α(t), the weight functionsβ1(t), β2(t) simultaneously
and from these estimate the residual processε(t). B-
splines are useful in approximating functions with
local variability, more so than Fourier series. Hence
47 B-spline basis functions of order 8 were used for
creating the functional forms of the data. The order
might seem high, but the reader is reminded that the
aim is to calculate third derivatives with penalised
smoothing for the creation of the functional data. The
penalisation, as described in (Green and Silverman,
1994; Ramsay and Silverman, 1997) will be dealing
with 5th order derivatives and hence the fit is done with
2 degrees more; this results in degree 7 and therefore
the order (degree of local polynomial+1) has to be 8.
The choice of 47 basis functions yields 41 knots which
gives, in the case of the smallest number of points in
a profile (189 points), about 5 internal points between
knots, and in the case of the greatest number of points
in a profile (343 points), some 8 internal points.

Six functions for the benign profiles and six for the
malignant are estimated: Two forcing functionsαX(t)
andαY(t), and the four weight functionsβ1X, β2X, β1Y,
β2Y for each type.

The forcing and weight functions for benign
profiles are presented together in Fig. 7. It can be
seen that the forcing function is the largest source of
variation and how the first and second derivatives have
smaller impact in such variability.
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Fig. 7. Forcing and weight functions for benign
profiles. Solid black line is the forcing function, grey
line is β̂1 and dashed line iŝβ2.

Residual functions obtained from applying the LDO
with weights calculated from all 50 benign profiles to
the benign profiles were estimated. Since the aim is
to classify new profiles, such a process is mimicked by
calculating the residuals for each of the benign profiles
by leave one out crossvalidation.

Residual functions calculated for malignant
profiles using the weight functions from the benign
profiles should be significantly greater than the ones
obtained for the benign profiles using the same
weight functions. The forcing and weight functions
for malignant profiles are presented together in Fig. 8.
It can be seen that the forcing function is the largest
source of variation and how the first and second
derivatives have smaller impact.

The residual functions obtained from applying the
LDO with weights calculated from all 50 malignant
profiles to the malignant profiles were estimated via
crossvalidation as done for applying benign profiles’
weights on benign profiles.

Residual functions calculated for benign profiles
using the weight functions from the malignant profiles
significantly deviate from 0, more so than the ones
obtained for the malignant profiles using the same
malignant weight functions.

As expected, the residuals obtained from applying
benign weight functions to benign profiles (benign on
benign) and malignant weight functions to malignant
profiles (malignant on malignant) were distributed
closer to zero than those obtained from applying
benign weight functions to malignant profiles and vice
versa.
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Fig. 8. Forcing and weight functions for malignant
profiles. Solid black line is the forcing function, grey
line is β̂1 and dashed line iŝβ2.

Fig. 9 shows the functional 95% confidence
intervals for theX(t) andY(t) mean residual curves of
benign on benign and of malignant on malignant and it
is clear that zero is always inside the intervals.
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Fig. 9. 95% Confidence-like interval for the mean of
residuals. Black line: benign on benign, gray line:
malignant on malignant.

These intervals are calculated in an analogous way
as confidence intervals for point estimates, the only
difference is that the mean and standard deviation
of the curves are curves themselves. The standard
deviation is a function of the parametert, it varies at
different timest.

Figs. 10 and 11 show thep-values for the Wilcoxon
test for the location parameter of zero. These figures
show that thep-value-curves for benign on benign
are not less than 0.53 for X(t) residuals and not less
than 0.33 for Y(t) for any t ∈ [0,1]; the p-values for
malignant on malignant are not less than 0.21 forX(t)
and not less than 0.29 for Y(t) for any t ∈ [0,1] and
hence it can be concluded that the residuals are centred
at zero at all timest ∈ [0,1].
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Fig. 10.Pointwise (fine grid of 1000 times ti) P-values
of testing mean of residuals (µ) equals 0 for (X) .
Black line: benign on benign, gray line: malignant on
malignant, dashed line: P-value = 0.05.
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Fig. 11.Pointwise (fine grid of 1000 times ti) P-values
of testing mean of residuals (µ) equals 0 for (Y ).
Black line: benign on benign, gray line: malignant on
malignant. Dashed line: P-value=0.05.
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Fig. 12 shows the functional 95% confidence
intervals for theX(t) and Y(t) mean residuals of
benign on malignant and for malignant on benign and
it is clear that zero is not always inside the intervals.
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Fig. 12.95% Confidence-like interval for the mean of
residuals. Black line: benign on malignant, gray line:
malignant on benign.

Figs. 13 and 14 show thep-values for the Wilcoxon
test for the location parameter of zero. This figure
shows that thep-values are less than 0.05 in some
intervals, and in those time periods it can be concluded
that the residuals are centred at a value significantly
different from zero.
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Fig. 13.Pointwise (fine grid of 1000 times ti) P-values
of testing mean of residuals (µ) equals 0 for (X). Black
line: benign on malignant, gray line: malignant on
benign. Dashed line: P-value=0.05.
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Fig. 14.Pointwise (fine grid of 1000 times ti) P-values
of testing mean of residuals (µ) equals 0 for (Y ). Black
line: benign on malignant, gray line: malignant on
benign. Dashed line: P-value=0.05.

The analysis has shown that the residual processes
obtained by applying weight functions of the same
type as the profile type (benign on benign or malignant
on malignant) are “well behaved” in both of the
coordinatesX,Y and their confidence intervals always
cover zero. On the other hand, when applying weight
functions of different type than that of the profiles
(benign on malignant, malignant on benign) the
residual processes are “ill behaved” in at least one of
the coordinatesX,Y, having the confidence intervals
not covering zero over non-negligible proportions of
time spanning from 21.1% to 52.5%.

Based on this analysis and given the fact that
profiles are obtained in batches, say from a biopsy,
a new batch of profiles can be digitised, converted
into functional data, registered to the benign profiles’
mean function and then have the weight functions
applied to each of the profiles to obtain the residual
processes. Once these are obtained, the confidence
intervals and/or the Wilcoxon tests can be performed
to obtain a diagnostic of benign or malignant.

CONCLUSION

The purpose of this paper is to combine techniques
from the methods presented in a new approach that
surpasses constraints faced when applying the methods
individually. The approach used is of an exploratory
nature in search for a possible aid in the diagnosis.
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NETTEL-AGUIRRE A: Nuclei shape analysis

The alignment and registration of the profiles is,
from a biological point of view, arbitrary and has
no physiological meaning. It is, however, a protocol
followed to analyse all profiles in a consistent way.
The ‘reference’ point is reached in each profile by
following a fixed criterion.

The ways in which the methods were applied
in this paper allowed dealing with the profiles
as continuous functions which better represent the
continuous form and nature of the nuclei profiles, and
without the restriction to objects that are star shaped
with respect to their centre of mass as in (Hobolth
et al., 2002).

Excluding the non-star shaped profiles from the
present data could have affected the discovery of
the characteristics pointed out by the first principal
component, as in that analysis it is seen that one of the
graphical characteristics where the scores of principal
components differ significantly relates to the non-
convexity of the shape and the non-star shaped profiles
in this data set also happened to be non-convex.

This paper shows in a tangible graphical way, the
shape differences between the two types of profiles. A
useful tool in the principal differential analysis gave
the criterion for classification based on the behaviour
of 95% intervals for the residuals. When it comes
to having some measure of uncertainty, the reader
could relate to the confidence intervals and thep-value
function. It is important that the reader remembers that
the profiles, although they are presented individually,
belong to a set of nuclei which comes from one tissue
sample such as a biopsy. In this sense, an analyst will
not be facing the problem of having only one profile to
diagnose or to classify, as there will be a set of profiles
and hence the sample means and standard deviations
of the residuals obtained by applying the weight
functions, and so, the construction of the confidence
intervals is possible.
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