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ABSTRACT

We obtained the gonad volume and oocyte number in a single Venerupis pullastra (Montagu, 1803) using
unbiased stereological estimators. Since the gonad is not a fixed anatomical structure and is merged with other
organs in the clam, we used new variance expressions to study the efficiency of these estimators, where the
isotropy condition is not required for the covariogram.
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INTRODUCTION

Unbiased Stereological estimators require that the
probes or test systems (section planes, points, etc.) are
positioned at random in the reference space; moreover,
for a number of practical reasons as well as for
its superior efficiency, systematic sampling has been
performed in design-based stereology: specimens are
sectioned by sets of parallel planes, fields of vision
on a section are selected roughly equidistant and on
each field of vision a test system with regularly spaced
points is placed (a recent reference is Baddeley and
Jensen, 2005).

Most of the studies considered in the literature
to describe the reproduction cycle of different types
of clams obtain the periods of egg-laying and the
determining factors in the reproductive strategies of the
clams (these factors are, mainly, temperature and food
disposition, e.g., Beukema et al. 2001).

This paper deals with the estimation of the volume
of the gonad in a clam (Venerupis pullastra) and with
the estimation of the total number of oocytes within
the gonad. This number is taken to be a measure of the
fecundity of the clams. The total volume is obtained
with a standard Cavalieri estimator based on point
counting, as described in the second section. The third
section discusses the estimation of the variance due
to the point counting using a geometric covariogram,
and the fourth section considers the variance of the
Cavalieri estimator for total volume. Finally, the fifth
section deals with the estimation of the total number
of oocytes as a product of gonad volume and number
density.

Since gonad volume and oocyte number are
relevant quantities in order to analyse the gonad
development stage and egg production rate, our
purpose is to estimate them in a bivalve with a diffused
and changing organ (the gonad) and to present recent
and new variance expressions to study the efficiency of
these estimators.

MATERIALS

Histology. An individual specimen of the clam
Venerupis pullastra (shell length 18.8 mm; weight
1.08 g) was utilised. The soft tissues were removed
and fixed in Bouin’s fluid. Then, the tissues were
dehydrated in an alcohol series and embedded in
plastic in order to prevent loss of tissue. Histological
sections (5 µm) were stained in Wheatley’s trichrome.

To estimate volume, images were obtained at 1×
magnification. Each of these images shows a whole
section of the clam: visceral mass, gonad, digestive
gland and other soft tissues (foot, gills and syphons).
To estimate oocyte number, images were obtained at
20× magnification in the microscope.

GONAD VOLUME ESTIMATION FROM
CAVALIERI SECTIONS

To estimate the gonad volume V of our Venerupis
pullastra, we have fixed a convenient sampling axis Ox
and then

V =
∫ ∞

−∞
A(x)dx , (1)
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where A(x) denotes the area of the intersection
between the gonad of the Venerupis pullastra and a
plane normal to Ox at a point on the abscissa x. We
estimate V from systematic plane sections a distance
T = 0.305 mm apart, normal to the sampling axis at
the abscissas {z + kT,k ∈ Z}, where z = UT and U
is a uniform random number in the interval (0,1). The
Cavalieri estimator of V , which is easily shown to be
unbiased, is

Ṽ = T ∑
k∈Z

A(z+ kT ) = T (A1 +A2 + · · ·+An) , (2)

where A1, . . . ,An are the section areas of the gonad of
the Venerupis pullastra in sequential order (in our case
n = 11).

Since the gonad is merged with the rest of the
organs in the Venerupis pullastra body it is not easy
to obtain the section areas A1, . . . ,An, so we have
estimated them using a point-counting estimator.

To estimate the area A of the planar domain D we
use systematic sampling at the vertices of a rectangular
grid of sides T1 = u =

√

2.3/4 = 0.7583 mm and
T2 = u =

√

2.3/4 = 0.7583 mm; then

Â = u2
∞

∑
i=−∞

∞

∑
j=−∞

1D(z1 + iu,z2 + ju) = u2P , (3)

where z1 and z2 are independent uniform random
variables in the interval [0,u), 1D is the indicator
function of D and P denotes the number of test points
(namely grid vertices) hitting D.

Now, the estimator used for V is

V̂ = T
n

∑
k=1

Â(z+ kT ) = Tu2(P1 +P2 + · · ·+Pn) , (4)

where Pi denotes the number of points hitting the i-th
gonad section.

The results obtained in our estimation were

V̂ = T.u2(20+28+28+23+24+35+22+11+

8+5+3) = 207Tu2 mm3 = 36.302625 mm3 .
(5)

To predict the efficiency of this estimation we will
consider the variance of the estimators given in Eqs. 2
and 3. That is, under some elementary mathematical
assumptions we have

Var(V̂ ) = Var(Ṽ )+T
n

∑
i=1

σ 2
i , (6)

where Var(Âi) = σ 2
i . The last term on the right side of

the preceding equation is the contribution of the nugget
variance to the variance.

The coefficient of error, CE() =
√

Var()/E(),
where E is expected value, reveals the accuracy of the
estimator; therefore, we are interested in the prediction
of CE in our case. To obtain this prediction we will first
consider the nugget variance due to the point-counting
estimator of planar area and later on the variance of the
Cavalieri estimator for volume.

VARIANCE OF THE POINT-COUNTING
ESTIMATOR FOR PLANAR AREA

To approximate the variance of the estimator given
in Eq. 3, we will consider two variance representations
based on the geometric covariogram of D. The
geometric covariogram of D is a function g : R

2 −→ R

defined as

g(x,y) =
∫

R

∫

R

f (z1,z2) f (z1 + x,z2 + y)dz1 dz2

= Area(D∩ (D+(x,y))) ,
(7)

where f (z1,z2) = 1D(z1,z2) and D + (x,y) is the
translation of D by the vector (x,y). That is, g(x,y) is
the area of the intersection between D and a copy of D
translated by (x,y).

In general, and especially in our case where
the gonad is an irregular domain, the geometric
covariogram depends on the vector (x,y) and is
anisotropic. Therefore, we will consider the approach
of Gual-Arnau and Cruz-Orive, 2006 and use as the
variance approximation the expression

Var(Â) =
−u3

6 ∑
k∈Z

(

∂g
∂y

(ku,0)+
∂g
∂x

(0,ku)

)

. (8)

Now, we approximate the partial derivatives by

∂g
∂y

(ku,0) ≈ g(ku,u)−g(ku,0)

u
, (9)

∂g
∂x

(0,ku) ≈ g(u,ku)−g(0,ku)

u
. (10)

On the other hand, the unbiased estimators of the
required covariogram values g(k1u,k2u) are

u2Ck1,k2 = u2
∞

∑
i=−∞

∞

∑
j=−∞

fi j fi+k1, j+k2 , (11)

where fi j = 1D(z1 + iu,z2 + ju).
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Then,

Var1(Â) ≈ −u4

6 ∑
k∈Z

(

(Ck,1 −Ck,0)+(C1,k −C0,k)
)

.

(12)

On the other hand, if we assume that g is isotropic,
a known approximation variance states (see Cruz-
Orive, 1993)

Var2(Â)

≈ 0.0569u4 (6C0,0 −4(C1,0 +C0,1)− (C2,0 +C0,2)) .
(13)

Now we approximate the nugget variance defined
in Eq. 6 using Eq. 12 (g is anisotropic) and Eq. 13 (g is
assumed to be isotropic).

T
n

∑
i=1

σ 2
i ≈ T

n

∑
i=1

Var1(Âi)

= Tu4(6.83+5.67+7.33+4+5+7
+6.33+1.83+3.5+1.17+0.83)

= 49.49Tu4 .

(14)

T
n

∑
i=1

σ 2
i ≈ T

n

∑
i=1

Var2(Âi)

= Tu4(2.67+3.02+4.15+4.6+3.87
+3.02+2.28+1.82+1.88+1.08+0.57)

= 28.96Tu4 .
(15)

Note that Eq. 14 and Eq. 15 are based on the actual
measurement of the specimen.

From Eqs. 2, 14 and 15, we obtain approximations
of the coefficient of error in the estimation of
planar area by point-counting; for instance, the
coefficient of error of Â1 is, using Eq. 14 and
Eq. 15, respectively, CE1(Â1) ≈

√
6.83/20 = 0.13 and

CE2(Â1) ≈
√

2.67/20 = 0.082.

In Fig. 1 we have the histological section which
corresponds to the area A5. In Fig. 2 the points of the
grid which lie in the gonad appear in green P5 = 24.
In Fig. 3 we have the points which appear in green in
Fig. 2. The number of black points is C1,1, that is, the
black points are the intersection between the grid of
green points and a copy of this grid translated by the
vector (1,1).

Fig. 1. An example of an image obtained from a
histological section of the clam for volume estimation.

Fig. 2. The points of the grid which lie in the gonad
appear in green and they give an estimate of A5. Red
dots correspond to clam’s foot and yellow dots to
visceral mass.

Fig. 3. The number of black points is C1,1 = 9; that is,
the black points are the intersection between the grid
of green points and a copy of this grid translated by
the vector (1,1).
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VARIANCE OF THE CAVALIERI
ESTIMATOR FOR VOLUME
Here we approximate the variance of the volume

estimator using a formula based on the covariogram of
the measurement function A(x)

g(y) =
∫

R

A(y)A(y+ x)dy . (16)

This formula is obtained in Gual-Arnau and Cruz-
Orive, 2006 and, since the gonad is an irregular domain
in the specimen, we will use the expression

Var(Ṽ ) ≈

≈−T 2

3

(

g′(0)+
T
4

(

g′′(0)+2
∞

∑
k=1

g′′(kT )

))

.

(17)

Now, the derivatives of the covariogram are
approximated by

g′(0) ≈ −g(2T )+4g(T )−3g(0)

2T
, (18)

g′′(0) ≈ g(2T )−2g(T )+g(0)

T 2 , (19)

g′′( jT ) ≈ g(( j +1)T )−2g( jT )+g(( j−1)T )

T 2 ,

j = 1, . . . ,n−1.
(20)

Then,

Var(Ṽ ) ≈ T
12

(3g(0)−4g(T )+g(2T ))

+
T
6

g((n−1)T ) .
(21)

The first term on the right side of the preceding
equation is a classical approximation formula for
variance (see Gundersen and Jensen, 1987).

Now, using the estimators of the required
covariogram values g(kT ),

TCk = T
n−k

∑
i=1

ÂiÂi+k , (22)

and considering local errors (see Cruz-Orive, 1999),
we obtain

Var(V̂ ) ≈ T 2

12

(

3(C0 −
n

∑
i=1

σ 2
i )−4C1 +C2

)

+T 2
n

∑
i=1

σ 2
i +

T 2

6
Cn−1 .

(23)

In our case (see Eq. 5) Cn−1 = C10 = 20 ∗ 3u4 =
60u4, C0 = 5001u4, C1 = 4535u4 and C2 = 3849u4.

Now, from Eq. 23 but using Eq. 14 and Eq. 15 we
have two variance approximations

Var1(V̂ ) ≈ T 2u4
(

563.53
12

+49.49+10
)

= 106.45T 2u4 ,

(24)

and

Var2(V̂ ) ≈ T 2u4 (52.1+28.96+10)

= 91.05T 2u4 .
(25)

Finally, from the preceding approximations and
from Eq. 5 we have

CE1(V̂ ) ≈
√

106.45Tu2

207Tu2

= 0.05 ,

(26)

and

CE2(V̂ ) ≈
√

91.05Tu2

207Tu2

= 0.046 .

(27)

ESTIMATION OF OOCYTE NUMBER BY
THE CAVALIERI-DISECTOR DESIGN

The total number of oocytes within the gonad will
be estimated indirectly via the corresponding number
density N = V NV , where V represents the volume of
the gonad (estimated in the preceding sections) and NV
the oocyte number per unit volume.

We estimate the oocyte number on specially
treated adjacent series by systematically subsampled
disectors; the procedure was carried out on a monitor
screen with the aid of the CAST Grid system (Olympus
Denmark). The estimator that we use is

N̂V =
∑Q−

a′h∑P′ mm−3 , (28)

where h represents disector height, which in our case
is the same for all slices h = 0.005 mm, P′ the number
of upper right corners of the sampling frames hitting
the relevant reference space in the upper disector face
within the same slice, a′ the area of the counting
frame (a′ = 0.144 mm2) and ∑Q− the total number of
oocytes counted in all the disectors.
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Then, from Eq. 5 and Eq. 28 we obtain

N̂ =
Ta∑11

i=1 Pi ∑Q−

a′h∑P′

=
36.3026205∗∑Q−

0.144∗0.005∗68
= 741.475(25+39+47+39+39+44+

+28+18+10+13+5)

= 741.475∗307 = 227633 .

(29)

The quantity that ∑Q− is multiplied by in Eq. 29
is not a constant; however, this equation is basically
equivalent to an alternative expression arising from
the fractionator idea. From this expression, which is
detailed in Cruz-Orive et al. (2004, p. 27), we obtain

CE(N̂) = CE(∑Q−) (30)

at least approximately.

Now, the square of the coefficient of error of the
estimator N̂ may be approximated by (Cruz-Orive and
Geiser, 2004 and Cruz-Orive, 1999)

CE2(N̂) =

= α(h/T,q)
3(C0 −∑n

i=1 µ2
i )−4C1 +C2

(∑Q−)2 +
∑n

i=1 µ2
i

(∑Q−)2 ,

(31)

where α(h/T,q) is a constant depending on the
sampling fraction h/T and the smoothness constant
of the measurement function q, Ck = ∑n−k

j=1 fi fi+k ( fi
represents the estimation number of particles in the i-
th primary slice) and µ2

i is the conditional variance of
fi given the true number of particles.

To simplify the estimate of ∑n
i=1 µ2

i we may resort
to the homogeneous Poisson particle model (Cruz-
Orive and Geiser, 2004), and we have

CE2(N̂) =

= α(h/T,q)
3(C0 −∑Q−)−4C1 +C2

(∑Q−)2 +
1

∑Q− .

(32)

Note that only the local error contribution uses a
special assumption for the arrangement of the oocytes
(approximately Poisson).

Now an estimate of q is given by the Kieu-Souchet
formula (Kieu et al., 1999),

q̂ =
1

2log2
log
(

3C0 −4C2 +C4

3C0 −4C1 +C2

)

− 1
2

. (33)

In our case, using the number of particles in each
slice which appear in Eq. 29, we obtain the values of
Ci and the estimate q̂ = 0.392. From this value of q̂ and
the value of h/T = 0.005/0.305 = 0.0164 we have the
constant α(h/T,q) = 34.695 (see the tables for α in
Cruz-Orive, 2006).

Finally, we have all the values to be substituted in
Eq. 31 and we obtain CE2(N̂) = 0.011 and CE(N̂) =
0.105, fairly low if we take into account that the gonad
is a very irregular domain in the Venerupis pullastra.

In Fig. 4 we have one of the 68 tiles used to
estimate oocyte number (see Baddeley and Jensen,
2005, p. 239 and Figure 10.8).

Fig. 4. A tile used to estimate oocyte number with the
disector rule. Two oocytes are sampled in this tile.

CONCLUSIONS

The stereological estimators of gonad volume and
oocyte number are effective and easy to implement.
Moreover, although the gonad is an irregular structure
in the clam, when the section areas of the gonad are
estimated by point-counting, there is practically no
difference in considering the isotropy condition in the
covariogram or not (see Eqs. 14 and 15).

In this paper we have applied stereological
methods for estimating the oocyte number in a
specimen of Venerupis pullastra. From this study,
applying the same methods to several specimens
of different native clams, it is expected to obtain
conclusions about the fecundity of these types of
clams. In addition, our estimation variances will be
able to be compared with the biological variance in
order to draw inference to biological issues such as
assessing fecundity.
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