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ABSTRACT

This paper deals with spatially adaptive morphological filtering, extending the theory of mathematical
morphology to the paradigm of adaptive neighborhood. The basic idea in this approach is to substitute the
extrinsically-defined, fixed-shape, fixed-size structuring elements generally used by morphological operators,
by intrinsically-defined, variable-shape, variable-size structuring elements. These last so-called intrinsic
structuring elements fit to the local features of the image, with respect to a selected analyzing criterion
such as luminance, contrast, thickness, curvature or orientation. The resulting spatially-variant morphological
operators perform efficient image processing, without any a priori knowledge of the studied image and
some of which satisfy multiscale properties. Moreover, in a lot of practical cases, the elementary adaptive
morphological operators are connected, which is topologically relevant. The proposed approach is practically
illustrated in several application examples, such as morphological multiscale decomposition, morphological
hierarchical segmentation and boundary detection.

Keywords: adaptive neighborhood, connected operators, intrinsic spatial analysis, mathematical morphology,
multiscale representation.

INTRODUCTION

Firstly, a lot of image processing techniques
use spatially-invariant transformations, with fixed
operational windows. This kind of operators, such
as morphological operators or convolution filters,
give efficient and compact computing structures, in
the sense where data and operators are independent.
However, due to their fixed operational windows, they
consequently have several strong drawbacks such as
creating artificial patterns, changing the detailed parts
of large objects, damaging transitions or removing
significant details (Arce and Foster, 1989).

Alternative approaches towards spatially-variant
image processing have been proposed (Gordon and
Rangayyan, 1984; Perona and Malik, 1990; Salembier,
1992; Alvarez et al., 1993; Charif-Chefchaouni and
Schonfeld, 1994; Vogt, 1994; Braga Neto, 1996;
Cuisenaire, 2005; Lerallut et al., 2005) with the
introduction of adaptive operators, where the adaptive
concept results from the spatial adjustment of the
operational window. A spatially adaptive operator will
no longer be spatially-invariant, but must vary over the
whole image with adaptive windows, taking locally
into account the image context. Such transforms
perform efficient image processing.

Secondly, usual image processing operators have
some limitations concerning their operational windows
(adaptive or not). In fact, these last ones are usually
extrinsically defined with regard to the local features

of the image. A priori constraints are imposed
upon the size and/or the shape of the operational
windows, which is not the most appropriate. For
instance, spatially-invariant approaches such as
wavelets (Mallat, 1989), morphological pyramids (Sun
and Maragos, 1989; Laporterie et al., 2002), and
isotropic scale-spaces (Lindeberg, 1994; Heijmans and
Boomgaard, 2000) use sliding windows extrinsically
defined with regard to the analyzing scales. Indeed,
their size and shape are fixed on the whole image for
each scale, i.e., a priori determined, independently
of the image context. In an other example (Vogt,
1994), spatially-variant morphological operators are
used, where the shape of morphological structuring
elements that automatically adjust the gray tones in a
range image is rectangular or ellipsoidal, involving a
priori knowledge about the image context.

Therefore, intrinsic approaches, using self-defined
operational windows that fit to the local content of
the image, without any a priori spatial constraints,
are more appropriate. Following this idea, image
processing based on the Adaptive Neighborhood
(AN) paradigm (Paranjape et al., 1994) has been
proposed. A set of adaptive neighborhoods (ANs
set) is defined around each point within the image,
whose extent depends on the local features of the
image in which the given point is situated. Thus,
for each point to be processed, its associated ANs
set is used as (intrinsic) operational windows of the
considered transformation. The resulting operators
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perform meaningful image processing as shown in
various image filtering processes (Rabie et al., 1994;
Rangayyan et al., 1998; Rangayyan and Das, 1998;
Ciuc et al., 2000; Buzuloiu et al., 2001; Ciuc, 2002).

In this paper, an intrinsic spatially-variant
approach in the context of Mathematical Morphology
(MM) is then proposed using autoreflected Structuring
Elements (traditionally called symmetric (Serra,
1988a), i.e., structuring elements which are equal to
their reflected set), based on the AN paradigm.

While autoreflectedness is not necessary in the
general framework of spatially-variant mathematical
morphology, as formally proposed by Charif-
Chefchaouni and Schonfeld (1994) and practically
used by Cuisenaire (2005) and Lerallut et al. (2005), it
is relevant for three main reasons:

1. it is more adapted to image analysis for topological
and visual reasons,

2. both dualities by adjunction and by involution for
dilation and erosion are satisfied,

3. it allows to simplify mathematical expressions
of morphological operators, without increasing
computational complexity of algorithms.

Thereafter, the fixed-size, fixed-shape SEs generally
used for morphological operators are substituted by
(intrinsic) Adaptive Structuring Elements (ASEs)
adjusted to a specified set of adaptive neighborhoods
based on an analyzing criterion. It leads to
Adaptive Neighborhood Mathematical Morphology
(ANMM), which provides convincing spatially
adaptive morphological filters (Debayle and Pinoli,
2005a). Some of which satisfy multiscale properties
(Debayle and Pinoli, 2005b). Moreover, in a lot of
practical cases, the elementary adaptive morphological
operators are connected, contrary to the usual ones
which fail to this property. The proposed approach
is practically illustrated through several application
examples, such as multiscale decomposition,
hierarchical segmentation and boundary detection
on the ‘cameraman’ image, the ‘tools’ image and a
metallurgic grains real image, respectively.

ADAPTIVE NEIGHBORHOOD
SETS

The first step in this ANMM approach consists in
defining a set of adaptive neighborhoods determined
on the spatial support of the studied image.

Let D ⊆ R
2 (or more generally in R

n (Debayle,
2005)), the (usually rectangular) domain of definition

of the images and I the set of image mappings
from D into R. For each point x ∈ D of an image
f ∈ I, the adaptive neighborhood (AN) sets, denoted
V h

m(x), are computed in relation with an homogeneity
tolerance m ∈ R

+ on a criterion mapping h (based
on a local measurement such as luminance, contrast,
curvature, thickness or orientation related to the image
f ) belonging to the set C of mappings from D into R.
More precisely, for all point x ∈ D its associated AN
set V h

m(x) ⊆ D:

• depends on two parameters:
- h: analyzing criterion

- m: homogeneity tolerance

• fulfills two conditions:
- its points have a measurement value close to

that of the point x:
∀y ∈V h

m(x) |h(y)−h(x)| ≤ m

- the set is path-connected (with the usual
Euclidean topology on D ⊆ R

2)

Definition 1 (AN sets)
∀(m,h,x) ∈ R

+×C×D

V h
m(x) = Ch−1([h(x)−m,h(x)+m])(x) , (1)

where CX(x) denotes the path-connected component
(with the usual Euclidean topology on D ⊆ R

2) of
X ⊆ D containing x ∈ D.

Fig. 1 gives an impression, on a 1-D example, of
the computation of an AN set.

point line

measurement value

x

h(x)

[h(x)−m,h(x)+m] V h
m(x)

Fig. 1. One-dimensional computation of an adaptive
neighborhood set V h

m(x). For a point x, a tube of
tolerance m is first computed around h(x). Secondly,
the inverse image of this interval gives a subset of
the 1-D spatial support. Finally, the path-connected
component holding x provides its AN set V h

m(x).

Fig. 2 illustrates the AN set of a point x computed
with the luminance criterion or the contrast (defined
in the sense of (Jourlin et al., 1988; Pinoli, 1991))
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criterion, on an electrophoresis gel image provided by
the software Micromorph R©. In practice, the choice
of the appropriate criterion results from kind of the
considered application.

(a) original image (b) h1: luminance

(c) h2: contrast (d) seed point x

(e) V h1
10 (x) (f) V h2

30 (x)

Fig. 2. Original electrophoresis gel image (a).
The adaptive neighborhood set for the seed point
highlighted in (d) is respectively homogeneous (e,f),
with respect to the tolerance m, in relation to the
luminance criterion (b) or to the contrast criterion (c).

In the following, the notion of path is defined so
as to get a practical equivalent definition of these AN
sets, involving computing interests.

Definition 2 (Path)
A path of extremities x ∈ D and y ∈ D respectively,
denoted Py

x, is a continuous mapping (with the usual
Euclidean topologies on [0,1] and D) (Choquet, 2000):

Py
x :





[0,1] → D
0 7→ x
1 7→ y

. (2)

So, the AN sets Vh
m(x) are defined with the help of

a region growing process, which is of great computing
importance, where the aggregating condition is given
by: |h(.)−h(x)| ≤ m.

Definition 3 (AN sets - equivalent definition)
∀(m,h,x) ∈ R

+×C×D

Vh
m(x) = {y ∈ D|y

h,m
−→ x} , (3)

where
h,m
−→ denotes the path-connectivity relationship:

y
h,m
−→ x ⇔ ∃Py

x|∀z ∈ Py
x([0,1]) |h(z)−h(x)| ≤ m .

Remark 1 This definition of the AN sets V h
m(x) is

similar to those of connected regions R f
m(x) defined by

Braga Neto (1996) but are more general in the sense
that they take into account a criterion mapping h.

These AN sets satisfy several properties as stated in the
following:

Properties 1 (AN sets)
Let (m,h,x) ∈ R

+×C×D

1. reflexivity:

x ∈ Vh
m(x) (4)

2. increasing with respect to m:
(

(m1,m2) ∈ R
+2

m1 ≤ m2

)
⇒ Vh

m1
(x) ⊆ Vh

m2
(x) (5)

3. equality between iso-valued points:



(x,y) ∈ D2

x ∈ Vh
m(y)

h(x) = h(y)


⇒ Vh

m(x) = Vh
m(y) (6)

4. addition invariance with respect to h:

c ∈ R ⇒ Vh+c
m (x) = Vh

m(x) (7)

5. multiplication compatibility with respect to h:

α ∈ R
+\{0}⇒ Vαh

m (x) = Vh
m
α
(x) (8)

Proof:

1. x
h,m
−→ x, so x ∈ Vh

m(x).
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2.

m1 ≤ m2 ⇒ [h(x)−m1,h(x)+m1] ⊆

[h(x)−m2,h(x)+m2])

⇒ Ch−1([h(x)−m1,h(x)+m1])
(x) ⊆

Ch−1([h(x)−m2,h(x)+m2])
(x)

⇒ Vh
m1

(x) ⊆ Vh
m2

(x)

3. Let z be a point in Vh
m(x). So, there exists a path Pz

x
such that: ∀w ∈ Pz

x([0,1]) |h(w)−h(x)| ≤ m.
Moreover, x belongs to Vh

m(y), i.e., there exists a
path Px

y such that:
∀u ∈ Px

y([0,1]) |h(u)−h(y)| ≤ m.
Thus, there exists a path Pz

y such that Pz
y([0,1]) =

Px
y([0,1])∪Pz

x([0,1]).
Consequently, for all t in Pz

y([0,1]), if t belongs to
Px

y([0,1]) then |h(t)− h(y)| ≤ m else t belongs to
Pz

x([0,1]) and |h(t)−h(y)| = |h(t)−h(x)| ≤ m.
So, for all t in Pz

y([0,1]) |h(t)−h(y)| ≤ m and then
z ∈ Vh

m(y).
Conversely, if z belongs to Vh

m(y) then there exists
a path Pz

y such that:
∀w ∈ Pz

y([0,1]) |h(w)−h(y)| ≤ m.
Since x belongs to Vh

m(y) and h(y) = h(x), then
y belongs to Vh

m(x) (seen with the inverse path
Py

x(.) = P̂x
y(.) = Px

y(1− .)).
So, there exists a path Pz

x such that Pz
x([0,1]) =

Py
x([0,1])∪Pz

y([0,1]).
A similar reasoning leads to the expecting result,
i.e., z ∈ Vh

m(x).

4. (h+c)−1([(h+c)(x)−m,(h+c)(x)+m])
= {y ∈ D|(h+c)(y) ∈ [(h+c)(x)−m,

(h+c)(x)+m]}
= {y ∈ D|h(y) ∈ [h(x)−m,h(x)+m]}
= h−1([h(x)−m,h(x)+m])

5. (αh)−1([(αh)(x)−m,(αh)(x)+m])
= {y ∈ D|(αh)(y) ∈ [(αh)(x)−m,(αh)(x)+m]}
= {y ∈ D|h(y) ∈ [h(x)−(m

α ),h(x)+(m
α )]}

= h−1([h(x)−(m
α ),h(x)+(m

α )])

¤

To illustrate the nesting property (Eq. 5) with
respect to m, the AN sets of four initial points are
computed on the ‘Lena’ image (Fig. 3) with the
luminance as analyzing criterion.

(a) criterion: luminance (b) AN sets

m = 5

m = 10

m = 15

m = 20

m = 25

(c) color table

Fig. 3. Nesting of AN sets of four seed points (b) using
the luminance criterion (a) and different homogeneity
tolerances: m = 5,10,15,20 and 25 encoded by the
color table (c). An AN set defined with a certain
homogeneity tolerance could be represented by several
tinges of the color associated to its seed point.

Fig. 3 shows that the AN sets are, through the
analyzing criterion and the homogeneity tolerance,
intrinsically-defined with respect to the local structures
of the studied image, performing a real spatially
adaptive analysis.

So, morphological operations have to be adjusted
to these AN sets so as to develop Adaptive
Neighborhood Mathematical Morphology (ANMM).

ADAPTIVE NEIGHBORHOOD
MATHEMATICAL MORPHOLOGY

The origin of mathematical morphology stems
from the study of the geometry of porous media
by Matheron (1967). The mathematical analysis is
based on set theory, integral geometry and lattice
algebra. Its development is characterized by a cross-
fertilization between applications, methodologies,
theories, and algorithms. It leads to several processing
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tools in the aim of image filtering, image segmentation
and classification, image measurements, pattern
recognition, or texture analysis.

Inspired by Braga Neto (1996), the proposed
spatially-variant mathematical morphology approach
is based on the adaptive neighborhood paradigm
proposed by Paranjape et al. (1994). In this paper, only
the flat MM (ie with structuring elements as subsets in
R

2) is considered, though the approach is not restricted
and can also address the general case of functional MM
(ie with functional structuring elements from a subset
of D into R) (Debayle, 2005).

The space of images I is provided with the partial
ordering relation ≤ defined in terms of the usual
ordering relation ≤ of real numbers:

∀( f ,g) ∈ I f ≤ g ⇔ (∀x ∈ D f (x) ≤ g(x)) . (9)

Thus, the partially-ordered set (I,≤), still named I, is
a complete lattice (Serra, 1988a).

ADAPTIVE STRUCTURING ELEMENTS
To get the morphological duality (adjunction)

between erosion and dilation, reflected (or transposed)
structuring elements (SEs) (Serra, 1988a), whose
definition is mentioned below, should be used.

Definition 4 (Reflected subset) The reflected subset
of A(x) ⊆ D, element of a collection {A(z)}z∈D, is
defined as:

Ǎ(x) = {z ∈ D;x ∈ A(z)} . (10)

The notion of autoreflectedness is then defined as
following (Serra, 1988a):

Definition 5 (Autoreflected subset) The subset
A(x) ⊆ D, element of a collection {A(z)}z∈D is
autoreflected if and only if:

Ǎ(x) = A(x) , (11)

that is to say: ∀(x,y) ∈ D2 x ∈ A(y) ⇔ y ∈ A(x).

Remark 2 The term autoreflectedness is employed in
place of symmetry which is generally used in literature
(Serra, 1988a), so as to avoid the confusion with the
geometrical symmetry. Indeed, an autoreflected subset
A(x) ⊆ D belonging to {A(z)}z∈D is generally not
symmetric with respect to the point x.

Spatially-variant mathematical morphology using
adaptive SEs which do not satisfy the autoreflectedness
condition (Eq. 11) has been formally proposed

by Charif-Chefchaouni and Schonfeld (1994) and
practically used in image processing (Lerallut
et al., 2005; Cuisenaire, 2005). Nevertheless,
while autoreflectedness is restrictive from a strict
mathematical point of view, it is relevant for three
main reasons:

1. it is more adapted to image analysis for topological
and visual reasons (Rem. 3),

2. both dualities by adjunction and by involution for
dilation and erosion are satisfied,

3. it allows to simplify mathematical expressions
of morphological operators, without increasing
computational complexity of algorithms.

From this point, autoreflected adaptive structuring
elements are considered in this paper. Therefore, the
AN sets V h

m(x) are not autoreflected (Fig. 4).

point line

measurement value

x

h(x) = 7

y

h(y) = 5
h

[4,10]

[2,8]

Vh
3(x) Vh

3(y)

Fig. 4. The AN sets {Vh
m(z)}z∈D are not autoreflected:

x ∈ Vh
3(y) and y /∈ Vh

3(x). Consequently, ˇ(Vh
3) 6= Vh

3.

So, the adaptive SEs, denoted {Rh
m(x)}x∈D, are

defined while satisfying the AN paradigm and the
autoreflectedness condition.

Definition 6 (Adaptive structuring elements)
∀(m,h,x) ∈ R

+×C×D

Rh
m(x) =

⋃

z∈D

{V h
m(z)|x ∈V h

m(z)} . (12)

These adaptive SEs (Eq. 12) are anisotropic and self-
defined with respect to the criterion image mapping h.
They satisfy the following properties:

Properties 2 (Adaptive structuring elements)
∀(m,m1,m2,h,x) ∈ R

+3
×C×D

1. geometric nesting:

Vh
m(x) ⊆ Rh

m(x) ⊆ Vh
2m(x) (13)

2. symmetry:

x ∈ Rh
m(y) ⇔ y ∈ Rh

m(x) (14)
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3. reflexivity:

x ∈ Rh
m(x) (15)

4. increasing with respect to m:

m1 ≤ m2 ⇒ Rh
m1

(x) ⊆ Rh
m2

(x) (16)

5. addition invariance with respect to h:

c ∈ R ⇒ Rh+c
m (x) = Rh

m(x) (17)

6. multiplication compatibility with respect to h:

α ∈ R
+\{0}⇒ Rαh

m (x) = Rh
m
α
(x) (18)

Proof:
1. Since x belongs to Vh

m(x), Vh
m(x) is included as

subset in Rh
m(x).

Let y be a point in Rh
m(x). So, there exists z in D

such that y belongs to Vh
m(z) (with the path Py

z) and
x belongs to Vh

m(z) (with the path Px
z).

Thus, the path Py
x such that Py

x([0,1]) = P̌x
z([0,1])∪

Py
z([0,1]) is well-defined.

Let w in Py
x([0,1]). If w belongs to Py

z([0,1])
then |h(w)−h(x)| ≤ |h(w)−h(z)|+|h(z)−h(x)| ≤
m+m = 2m, else w belongs to P̌x

z([0,1]) =

Px
z([0,1]) (P̌x

z and Px
z have same image) and

so |h(w)−h(x)| ≤ |h(w)−h(z)|+|h(z)−h(x)| ≤
m+m = 2m. Consequently, ∀w ∈ Py

x([0,1])
|h(w)−h(x)| ≤ 2m and therefore y ∈ Vh

2m(x).

2. If y belongs to Rh
m(x), there exists z in D such that

y and x both belong to Vh
m(z). So, Rh

m(y) holds x.

3-6.These properties are inferred from the
corresponding ones of AN sets (Prop. 1).

¤

The ASEs satisfy the AN paradigm through the
geometric nesting (Eq. 13). Fig. 5 compares the shape
of usual SEs Br(x) as disks of radius r ∈ R

+ and
adaptive SEs Rh

m(x) as sets self-defined with respect to
the criterion mapping h and the homogeneity tolerance
m ∈ E+.

Remark 3 Autorefletedness is argued to be more
adapted to image analysis from both topological
and visual reasons. In fact, it allows a symmetric
neighborhood system Rh

m(x) to be defined at each point
x belonging to D. Topologically, it means that if x is in
the neighborhood of y at level m (x ∈ Rh

m(y)), then y
is as close to x as x is close to y (y ∈ Rh

m(x)) (Prop
2.2). In terms of metric, this is a required condition
to define a distance function d, starting from all the
Rh

m(.), satisfying the symmetry axiom: d(x,y) = d(y,x)

(Cech, 1966). Indeed, symmetry is needed to introduce
a non-degenerate topological metric space (the authors
are currently working on topological approaches with
respect to the AN paradigm). From a visual point of
view, the symmetry property appears closely linked
to the human visual perception (Gestalt theory, . . . )
(Wertheimer, 1938; Dakin and Hess, 1997).

D

� x1

Br(x1)

�

�

�

� x2

Br(x2)�

�

�

� x3

Rh
m(x3)

	




�

� x4

Rh
m(x4)



�

�

r,m

Fig. 5. Example of adaptive Rh
m and non-adaptive Br

structuring elements with three values both for the
homogeneity tolerance parameter m, and for the disks
radius r. The shape of Br(x1) and Br(x2) are identical
and {Br(x)}r is a family of homothetic sets for each
point x ∈ D. On the contrary, the shape of Rh

m(x3) and
Rh

m(x4) are dissimilar and {Rm(x)}m is not a family of
homothetic sets.

The next step consists in defining adaptive basic
operators of MM in the aim of building adaptive
morphological filters.

ADAPTIVE ELEMENTARY
MORPHOLOGICAL OPERATORS

The elementary dual operators of adaptive dilation
and erosion are defined accordingly to the flat ASEs
Rh

m(x). The formal definitions are given as following:

Definition 7 (Adaptive dilation/erosion)
∀(m,h) ∈ R

+×C

Dh
m :

{
I → I
f 7→ Dh

m( f ) , (19)

where Dh
m( f ) :

{
D → R

x 7→ sup
w∈Rh

m(x)
f (w) (20)

Eh
m :

{
I → I
f 7→ Eh

m( f ) , (21)

where Eh
m( f ) :

{
D → R

x 7→ inf
w∈Rh

m(x)
f (w) (22)
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Next, the lattice theory (Serra, 1988a) allows to define
the most elementary (adaptive) morphological filters
(Serra, 1988b). More precisely, the adaptive closing
and opening are respectively defined as:

Definition 8 (Adaptive closing/opening)
∀(m,h) ∈ R

+×C

Ch
m :

{
I → I
f 7→ Eh

m ◦Dh
m( f )

, (23)

Oh
m :

{
I → I
f 7→ Dh

m ◦Eh
m( f )

. (24)

These adaptive elementary morphological
operators satisfy several properties stated in the
following. Properties 1 through 6 are standard, that
is to say analogous to those of the usual morphological
operators:

Properties 3 (Adaptive morphological operators)
Let (m,h, f , f1, f2) ∈ R

+×C× I3.

1. increasing:

f1 ≤ f2 ⇒





Dh
m( f1) ≤ Dh

m( f2)

Eh
m( f1) ≤ Eh

m( f2)

Ch
m( f1) ≤ Ch

m( f2)

Oh
m( f1) ≤ Oh

m( f2)

(25)

2. adjunction (morphological duality):

Dh
m( f1) ≤ f2 ⇔ f1 ≤ Eh

m( f2) (26)

3. extensiveness, anti-extensiveness:

Oh
m( f ) ≤ f ≤ Ch

m( f ) (27)

4. distributivity with
∨

,
∧

:

∀( fi) ∈ IK





∨

i∈K

[Dh
m( fi)] = Dh

m(
∨

i∈K

[ fi])

∧

i∈K

[Eh
m( fi)] = Eh

m(
∧

i∈K

[ fi])
(28)

where K is an index set (finite or not).

5. duality with respect to the involution .̄:
{

Dh
m( f ) = Eh

m( f )
Ch

m( f ) = Oh
m( f )

(29)

6. idempotence:
{

Ch
m(Ch

m( f )) = Ch
m( f )

Oh
m(Oh

m( f )) = Oh
m( f )

(30)

7. increasing, decreasing with respect to m:

(
(m1,m2) ∈ R

+2

m1 ≤ m2

)
⇒

{
Dh

m1
( f ) ≤ Dh

m2
( f )

Eh
m1

( f ) ≥ Eh
m2

( f )
(31)

8. addition invariance with respect to h:

c ∈ R ⇒





Dh+c
m ( f ) = Dh

m( f )
Eh+c

m ( f ) = Eh
m( f )

Ch+c
m ( f ) = Ch

m( f )
Oh+c

m ( f ) = Oh
m( f )

(32)

9. multiplication compatibility with respect to h:

α ∈ R
+\{0}⇒





Dαh
m ( f ) = Dh

m
α
( f )

Eαh
m ( f ) = Eh

m
α
( f )

Cαh
m ( f ) = Ch

m
α
( f )

Oαh
m ( f ) = Oh

m
α
( f )

(33)

Proof:

1-6.These properties are inferred from the lattice
theory of increasing mappings (Serra, 1988a;b).

7-9.It is directly inferred from the properties 4-6 of the
adaptive structuring elements (Prop. 2).

¤

The usual and adaptive morphological operators of
erosion, dilation, opening and closing are illustrated in
Fig. 6. Note that Er, Dr, Or and Cr denote the classical
erosion, dilation, opening, closing with the disk Br of
radius r as isotropic structuring element.

Moreover, with the ‘luminance’ criterion (h = f ),
the adaptive dilation (Eqs. 19-20) and erosion
(Eqs. 21-22) satisfy the connectedness (Serra and
Salembier, 1993) condition (Prop. 4) which is of great
morphological importance. On the contrary, the usual
dilation and erosion fail to this property.

Definition 9 (Connectedness) An operator φ : I 7→ I
is connected if and only if:
∀ f ∈ I ∀(x,y) neighbors

f (x) = f (y) ⇒ φ( f )(x) = φ( f )(y) . (34)

Properties 4 (Connectedness of adaptive operators)

∀m ∈ R
+

{
f 7→ D f

m( f )
f 7→ E f

m( f )
are connected operators.

151



DEBAYLE J ET AL: Adaptive neighborhood mathematical morphology

(a) original image f (b) E1( f ) (c) D1( f ) (d) O1( f ) (e) C1( f )

(f) E f
20( f ) (g) D f

20( f ) (h) O f
20( f ) (i) C f

20( f )

Fig. 6. Usual vs adaptive morphological operators on a blood vessels (a) image f : usual erosion (b) / dilation (c)
/ opening (d) / closing (e) with a disk of radius 1 as isotropic SE - adaptive erosion (f) / dilation (g) /opening (h)
/ closing (i) with adaptive SE computed with the luminance criterion f and the homogeneity tolerance m = 20.

Proof:
Let g be in I. For all (x,y) neighboring points (with
the usual Euclidean topology on D ⊆ R

2), if g(x) =
g(y) then V g

m(x) = V g
m(y). In addition, for all z ∈ D,

x ∈V g
m(z)⇒ y ∈V g

m(z) since x and y are neighbors with
the same gray tone.So, Rg

m(x) = Rg
m(y). Consequently,

Dg
m(g)(x) = Dg

m(g)(y) and Eg
m(g)(x) = Eg

m(g)(y).
Thereafter, the closing and the opening are connected
operators by composition of connected operators
(Serra and Salembier, 1993). ¤

This property is an overwhelming advantage in
comparison to the usual ones which fail to this
connectedness condition. Besides, it allows to define
several connected operators built by composition or
combination with the supremum and the infimum
(Serra and Salembier, 1993) of these adaptive
elementary morphological operators, as adaptive
closings (Eq. 23) and openings (Eq. 24). Thus,
the operators OCh

m = Oh
mCh

m and COh
m = Ch

mOh
m,

called adaptive opening-closing and adaptive closing-
opening respectively, are (adaptive) morphological
filters (Matheron, 1988), and in addition, connected
operators with the luminance criterion.

ADAPTIVE SEQUENTIAL
MORPHOLOGICAL OPERATORS
The families of adaptive morphological filters

{Oh
m}m≥0 (Eq. 24) and {Ch

m}m≥0 (Eq. 23) are generally
not a size distribution and anti-size distribution
respectively, due to the notion of semi-group which
is generally not satisfied (Serra, 1988a). Nevertheless,
such families are built by naturally reiterate adaptive
dilation or erosion. Explicitly, adaptive sequential
dilation, erosion, closing and opening, are respectively
defined as:

Definition 10 (Adaptive sequential dilation/erosion)
∀(m, p,h) ∈ R

+×N×C

Dh
m,p :





I → I
f 7→ Dh

m ◦ · · · ◦Dh
m︸ ︷︷ ︸

p times

( f ) (35)

Eh
m,p :





I → I
f 7→ Eh

m ◦ · · · ◦Eh
m︸ ︷︷ ︸

p times

( f ) (36)

Definition 11 (Adaptive sequential closing/opening)
∀(m, p,h) ∈ R

+×N×C
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Ch
m,p :

{
I → I
f 7→ Eh

m,p ◦Dh
m,p( f ) , (37)

Oh
m,p :

{
I → I
f 7→ Dh

m,p ◦Eh
m,p( f ) . (38)

The morphological duality of Dh
m,p (Eq. 33) and

Eh
m,p (Eq. 34) provides, so among other things, the

two sequential morphological filters Ch
m,p (Eq. 35) and

Oh
m,p (Eq. 36). Moreover, these last ones generate size

and antisize distributions:

Properties 5 (Size/antisize distribution)
∀(m,h) ∈ R

+×C

1. {Oh
m,p}p≥0 is a size distribution

2. {Ch
m,p}p≥0 is an antisize distribution

Proof:
Let f ∈ I and (p,q) ∈ N

2 such that p ≥ q.

Oh
m,p ≤ Dh

m,q ◦Dh
m,p−q ◦Eh

m,p−q ◦Eh
m,q

≤ Dh
m,q ◦Oh

m,p−q ◦Eh
m,q

≤ Dh
m,q ◦Eh

m,q

≤ Oh
m,q.

Ch
m,p ≥ Eh

m,q ◦Eh
m,p−q ◦Dh

m,p−q ◦Dh
m,q

≥ Eh
m,q ◦Ch

m,p−q ◦Dh
m,q

≥ Eh
m,q ◦Dh

m,q

≥ Ch
m,q

¤

Thus, the extension of the well-known alternating
sequential filters (ASFs) (Serra, 1988c) can be defined:

Definition 12 (Adaptive alternating sequential filters)
∀(m,n,h) ∈ R

+ × N\{0} × C ∀(pi) ∈ N
J1,nK

increasing sequence
ASFOCh

m,n :
{

I → I
f 7→ OCh

m,pn ◦ · · · ◦OCh
m,p1

( f )(x) (39)

ASFCOh
m,n :

{
I → I
f 7→ COh

m,pn ◦ · · · ◦COh
m,p1

( f )(x) (40)

These adaptive ASFs are similar to those defined by
Braga Neto (1996) using the AN paradigm.

RESULTS

Adaptive morphological processes are now applied
and illustrated in the field of image filtering and
segmentation. The results are all achieved with the
luminance criterion (mapping h).

MULTISCALE DECOMPOSITION

In this subsection, a multiscale representation
of the ‘cameraman’ image (Fig. 7) is constituted
following a specific kind of morphological operators:
the alternating sequential filters (ASFs) which satisfy
relevant multiscale properties (Serra and Salembier,
1993). Usual ASFs, usual ASFs by reconstruction
(Crespo et al., 1995) and adaptive ASFs, are applied,
supplying results which are compared and discussed.

Note that ASFCOm,p and ASFRCOm,p stand for
the usual ASF and the ASF by reconstruction of order
p, respectively, with a disk of radius m as uniform SE.
As regards the filter ASFCO f

m,p, it denotes the adaptive
ASF of order p using the adaptive SEs with the
luminance criterion mapping f and the homogeneity
tolerance m.

These results show that the connectedness of
adaptive ASFs and usual ASFs by reconstruction is
an overwhelming advantage. Indeed, the edges are
quickly damaged by the usual ASFs, while they are
preserved with the connected ASFs. Moreover, the
filters by reconstruction remove fine details so far, as
revealed in the scene upon the camera (Fig. 7e) and
the eye of the human face (Fig. 7e), although they
are connected. On the contrary, the decomposition of
the original image with ANMM-based filters, does not
decimate relevant structures from fine-to-coarse scales
(Fig. 7h-j).

BOUNDARY DETECTION

A real example in the field of image segmentation
is now illustrated on a metallurgic grain boundaries
image (Fig. 8). Several methods have ever been
introduced (e.g., Chazallon and Pinoli, 1997) requiring
most of the time complex processes. Elementary
ANMM-based processing is then suggested and
compared with the corresponding usual MM approach.
Seeing that the crest lines of the original image fit with
the narrow grain boundaries, the watershed transform,
denoted W , is directly applied on smoothed images
(processed with closing-opening filters) in order to
avoid an over-segmentation. Note that COr (resp.
COh

m) stands for the usual closing-opening using a disk
of radius r as uniform SE (resp. using the adaptive SEs
with the homogeneity tolerance m, and the criterion
mapping h).
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(a) original f (b) ASFCO1,4( f ) (c) ASFCO1,7( f ) (d) ASFCO1,10( f )

(e) ASFRCO1,4( f ) (f) ASFRCO1,7( f ) (g) ASFRCO1,10( f )

(h) ASFCO f
5,4( f ) (i) ASFCO f

5,7( f ) (j) ASFCO f
5,10( f )

Fig. 7. Multiscale decomposition with usual ASFs (b-d), usual ASFs by reconstruction (e-g), and adaptive ASFs
(h-j) of the original image (a).

The adaptive approach overcomes the usual one,
achieving an efficient segmentation of the original
image, with the expected result for m = 20 .

Indeed, the adaptive filters, contrary to the usual
ones, do not damage the boundaries and well smooth
the image inside the grains. This event is a direct
consequence of the connectedness of the adaptive
morphological operators. Besides, the minima of the

(adaptively) filtered images provide markers, for the
watershed transformation, all the more significant
so the parameter m increases. This argument leads
to the well-segmented image W (CO f

20( f )). In their
current research works, the authors take an interest
in the difficult task of automatically picking the fair
parameter m.
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(a) original image (b) CO1( f ) (c) CO2( f ) (d) CO3( f )

(e) S( f ) (f) W (CO1( f )) (g) W (CO2( f )) (h) W (CO3( f ))

(i) CO f
5( f ) (j) CO f

10( f ) (k) CO f
20( f )

(l) W (CO f
5( f )) (m) W (CO f

10( f )) (n) W (CO f
20( f ))

Fig. 8. Usual (b-d) and adaptive (i-k) closing-opening filters of the original image (a) and their corresponding
segmentation (resp. (f-h) and (l-n)) using the watershed transformation, denoted W. The original image is
primarily filtered in order to avoid an over-segmentation (e).
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(a) original image (b) C f
4,5( f ) (c) C f

4,10( f ) (d) C f
4,15( f )

(e) S( f ) (f) S(C f
4,5( f )) (g) S(C f

4,10( f )) (h) S(C f
4,15( f ))

Fig. 9. Hierarchical pyramidal segmentation of the ‘Tools’ (a) image. First, the original image is decomposed
using adaptive sequential closing filters (b-d). Secondly, the application of the morphological gradient followed
by the watershed transformation, denoted S, achieves the images (f-h). The original image is decomposed so as to
avoid an over-segmentation (e). The process S(C f

4,n( f )) provides a well-accepted segmentation for n ≥ 15 (g,h).

ADAPTIVE MORPHOLOGICAL
HIERARCHICAL SEGMENTATION

In this last application example, the ‘tools’ test
image (Fig. 9) is hierarchically segmented. The
process is achieved in three steps:

1. firstly, the original image is smoothed with
adaptive sequential closing filters (Eq. 35) which
satisfy relevant properties (anti-size distribution
and connectedness), supplying a multiscale
representation,

2. secondly, the morphological gradient is computed
on decomposed images,

3. finally, the watershed transform is applied to the
previous images.

In this way, it leads to a hierarchical
segmentation (Vachier, 2001) without any operators
by reconstruction.

The resulting hierarchical segmentation supplies
nested partitions of the spatial support of the

original image, which could induce a graph
representation (Serra and Salembier, 1993; Vachier,
2001). Thereafter, the process C f

4,n offers the expected
result for n = 15 or n > 15. Indeed, this operator is
saturated from this value:

∀n > 15 C f
4,n( f ) = C f

4,15( f ) .

This characteristic has been studied and promises
relevant topological properties (Debayle, 2005).

Furthermore, the resulting hierarchical
segmentation, where flat zones are nested, is achieved
without any operators by reconstruction (Crespo et al.,
1995). Filters by reconstruction require geodesic
transformations, so as to define connected operators,
which are traditionally used for this kind of multiscale
segmentation (Serra and Salembier, 1993; Salembier
and Serra, 1995; Vachier, 2001).

So, the connectedness of the elementary ANMM-
based operators is an overwhelming advantage: all
operators built by composition or combination with the
supremum and the infimum of the adaptive dilation and
erosion, define connected operators.
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IMPLEMENTATION ISSUE

The algorithms of the proposed morphological
operators are built in two steps. Firstly, the AN sets
are computed and stored in random access memory
(RAM). The equality property (Prop. 1.3) between
iso-valued points is used so as to save memory and
reduce computation time. Secondly, the operators are
run with the stored AN sets. In this way, AN sets are
computed once time even for advanced operators, such
as adaptive ASFs. Nevertheless, this methodology
requires a large random access memory (RAM) so as
to store all the AN sets. Moreover, the computational
time of AN sets is rather long, about 2-3 minutes for
of a 256 × 256 image, with a Pentium IV (3GHz /
2Go RAM) using the software Aphelion

TM
and C++

language. Conversely, the running of morphological
operators is faster (for example 4-5 seconds for a
dilation).

CONCLUSION

The proposed spatially-variant morphological
approach provides adaptive operators without any a
priori knowledge of the studied image. Theoretically,
such transforms possess several strong advantages
such as the connectedness of the operators, contrary to
the usual ones which fail to this property. In practice,
it yields good results in the field of image filtering and
segmentation. The idea of building spatially adaptive
operators using intrinsic operational windows which
locally fit to the features of an image is very promising
and can suit different image processing tools, more
particularly in multiscale image analysis as studied in
(Debayle and Pinoli, 2005b).

Currently, the authors are interested in AN sets
taking into account physical and psychophysical
settings allowing to be consistent with several
image formation models and with the human visual
perception. In addition, other analyzing criteria are
actually being studied.
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