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ABSTRACT

Automated segmentation of medical images is a difficult task because of the complexity of anatomic
structures, inter-patient variability, and imperfect image acquisition. Prior knowledge, in the form of point-
based statistical shape models (point distribution models) of a structure of interest can greatly assist
segmentation to robustly find the structure in a patient’s image. Point distribution models are obtained
through sets of corresponding landmarks lying on surfaces of training structures. The key to the automated
construction of a three-dimensional (3D) statistical shape model is the identification of corresponding
landmarks on training shapes, which is a challenging task. This paper presents a novel method for automated
construction of 3D point distribution models. Corresponding surface points are obtained by two main steps: 1)
volumes of interest (VOI), each containing one training structure, are manually defined, a reference structure
is manually extracted from one training VOI and its surface is established and represented by a set of
(reference) points, 2) reference landmarks are propagated to other training VOIs by transformations that are
obtained by hierarchical elastic registration between the reference and each of the remaining training VOIs.
We illustrate our approach using computed tomography data of the lumbar vertebra.
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INTRODUCTION

Segmentation of medical images, which is the
task of partitioning the image data into contiguous
regions representing individual anatomic structures is
a prerequisite for further investigations in many
computer-assisted medical applications, e.g. diagnosis,
therapy planning and evaluation, simulation and
image guided surgery. Automated segmentation of
medical images is a very difficult task because of the
complexity of anatomic structures, inter-patient
variability, and imperfect image acquisition. Prior
knowledge, in the form of statistical models of shape
variability or point distribution models (PDMs), of a
structure of interest can greatly assist automated
segmentation to robustly and accurately find the
structure in a patient’s image. A PDM describes
shape variability across a set of training structures
through variations in positions of a set of corresponding
landmarks (Cootes et al., 1995). The ‘modes of shape
variation’ are obtained through principal component
analysis (PCA) of the covariance matrix of landmark
coordinates. Since their introduction, PDMs have

been applied to various anatomical structures, like the
vertebrae (Lorenz and Krahnstover, 2000; Kaus et al.,
2003), femur (Fleute et al., 1999), liver (Lamecker et
al., 2002), lung (Li and Reinhardt, 2001), heart
(Frangi et al., 2002) and brain structures (Duta and
Sonka, 1997).

In building statistical models, a set of
corresponding landmarks defined over the set of
training shapes is required. Manual determination of
point correspondences is a tedious, time-consuming,
and user dependent task. This is particularly true for
3D structures, where the amount of landmarks
required to describe the shape increases dramatically
in comparison to 2D structures. On the other hand,
automated identification of corresponding landmarks
on training shapes is a demanding task. The goal of
the present work is to automate the determination of
landmarks and correspondences between them. Several
authors have already proposed automated techniques
to find point correspondences for building PDMs. The
methods proposed by Fleute et al. (1999), Lamecker et
al. (2002), Kaus et al. (2003), Brett and Taylor
(2000), and Frangi et al. (2002) require segmented
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training objects. One segmented anatomical structure is
selected as the reference shape and its surface is
represented by a mesh (triangulation) consisting of
vertices and triangles. From this point on, the
methods differ in the way the vertices of the mesh,
which are the landmarks or points, representing the
reference structure are propagated to surfaces of other
training structures. Fleute et al. (1999) perform the
alignment and matching process using a multi-
resolution approach based on octree splines.
Lamecker et al. (2002) decompose the surfaces into
patches and map each patch onto a disk. Two
corresponding disks give a one-to-one mapping from
one patch to another, resulting in transferring one
triangulation onto the other surface. For each of the
remaining learning shapes, Kaus et al. (2003) first
estimate a preliminary pose and scaling that
approximately aligns the template mesh to the
learning shape and then adapt the template mesh to
the learning shape using a deformable model based
approach. The method of Brett and Taylor (2000)
uses the symmetric version of the iterative closest
point (ICP) algorithm to establish correspondences
between sparse vertices on the reference and each of
the learning shapes. Frangi et al. (2002) register the
reference and a training shape by the algorithm of
Rueckert et al. (1999) which manipulates a shape by
embedding it into a subsequently refined volumetric
mesh, which defines a continuous deformation field
through a set of B-spline functions. The corresponding
optimal deformation is obtained by maximizing a voxel
similarity measure on the basis of the corresponding
labels.

The above methods require segmentation of all
training structures to derive a realistic model of shape
variations. However, accurate segmentation of complex
anatomical structures is not an easy task and is for the
purpose of model building usually performed manually.
In this paper a novel method for automated
construction of 3D PDMs is proposed, which requires
the segmentation of only one training structure.
Corresponding surface points are obtained by two
main steps: 1) volumes of interest (VOIs), each
containing one training structure, are manually defined,
a reference structure is manually extracted from one
VOI and its surface is established and represented by
a set of (reference) points, 2) reference landmarks are
propagated to other training VOIs by transformations
that are obtained by hierarchical elastic registration

between the reference and each of the other training
VOIs. We illustrate our approach using computed
tomography data of the lumbar vertebra.

AUTOMATED LANDMARKING
The input to our method are n manually defined

VOIs, each containing one training structure. For
each of the training structures (shapes) we seek a set
xi , i = 1, 2, … , n of m landmarks

xi = { pj = ( p1,j , p2,j , p3,j ) , j = 1, 2, … , m}, (1)

where the jth, j = 1, 2, … , m landmark corresponds
to the same surface location from one shape to
another. In medical images a landmark is usually an
anatomically characteristic point that can be uniquely
identified on a set of the same anatomic structures.
Because generally too few anatomic landmarks can
be uniquely identified to accurately describe the
shape of a 3D structure, we use pseudo-landmarks –
vertices of the triangulation of a reference structure's
surface. The dense triangulation of the isosurfaces
can be further decimated to reduce the amount of
vertices. We propagate the reference point set xref =
x1, defined by the reference training structure, to other
training structures by non-rigidly registering the
reference VOI to each of the remaining training
VOIs. Fig. 1 illustrates our automated landmarking
framework. The following sections describe in more
detail the main steps of establishing point
correspondences.

LANDMARKING THE REFERENCE
STRUCTURE
A typical 3D (set of sections) computed

tomography (CT) VOI containing a lumbar vertebra
is selected as the reference VOI (image). On this image,
we manually segment the vertebra to obtain its shape.
From the segmented vertebra, we build its surface
model by the isosurface method. An isosurface is a
spatial function that connects all the points in space
that hold the same function value, or isovalue. The
result is the shape model of the reference vertebra in
the form of a triangle mesh, consisting of m vertices
(Fig. 2). The vertices serve as the reference set of
points (landmarks) xref = x1. In the next steps, x1 has to
be propagated to other training VOIs (structures) to
obtain the corresponding point sets xi , i = 2, 3, … , n.
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Fig. 1. The automated landmarking framework. A set of reference landmarks are established from the reference
VOI (top row). By registering the other training VOIs (left column) to the reference VOI, transformations Ti are
determined (middle column) and used to propagate the set of reference landmarks to other training VOIs (right
column). Finally, the PDM is obtained by performing a statistical analysis on obtained sets of landmarks.

Fig. 2. Shape model of the reference vertebra: a) axial, b) sagittal and c) coronal views.

PROPAGATION OF REFERENCE
POINTS

Propagation requires the determination of n-1
transformations Ti, i = 2, 3, … , n , by which the
points in the reference point set x1 are transformed to
approximately the same locations on surfaces of
remaining training structures

xi = Ti ⋅ x1; i = 2, 3, … , n. (2)

The transformations Ti, i = 2, 3, … , n are

obtained by non-rigidly registering the reference VOI
with each of the other training VOIs. The hierarchical
approach to elastic registration (HER) is applied
(Likar and Pernuš, 1999; 2001). By this method, the
images to be registered are progressively subdivided,
locally registered, and elastically interpolated. Fig. 3
illustrates the 3D registration procedure. Each pair of
subimages is registered by finding those parameters
of the affine transformation that maximise the
similarity measure, which was the normalised mutual
information NMI(VOIref,T⋅VOI) (Studholme et al., 1999)
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where H(VOIref) and H(T⋅VOI) are Shannon entropies
of VOIref and transformed volume of interest T⋅VOI,
respectively and H(VOIref,T⋅VOI) is their joint entropy.

The optimal affine transformation Topt brings VOI
into Topt⋅VOI, containing as much information as
possible about VOIref

( ) .  VOIT,VOImaxNMIargT ref
T

opt ⋅= (4)

Once all VOIs are locally registered at a certain
level, the globally consistent registration is achieved
by using the elastic thin-plate spline interpolation TTPS
on registered centers ci = (xi, yi, zi) of subimages

( ) ( )∑
=

−⋅++⋅=
n

1i
iiTTPS   pc  Uw  t  pApT         , (5)

where p = (x,y,z) are the coordinates of points in VOI,
wi are weights of the radial interpolation function
U(r) = |r|, AT is the affine transformation matrix and t
is the translation vector.

The result of HER are the transformations Ti, i =
2, 3,…,n, required to propagate the reference point set
to other training structures (Eq. 2).

POINT DISTRIBUTION MODEL

Point distribution models describe shape variations
using statistics of positions of corresponding
landmarks defined on training shapes (Cootes et al.,
1995). By aligning n shape samples, consisting of m
landmarks, and applying the principal component
analysis on the sample distribution, any sample x of
the distribution can be expressed as a linear
combination of eigenvectors q (Eq. 10). In our case,
the samples xi, i = 1, 2, …, n are composed of the 3D
coordinates of the landmarks (see Eq. 1), with a one-
to-one correspondence between the vector elements
of a given index (kth element of vector xi corresponds
to the kth element of vector xj) due to point
correspondences. In a 3D model n-1 eigenvectors
generally form the principal basis function, because
the number of training shapes is usually smaller than
the number of components of sample x. The
eigenvalues, to which eigenvectors correspond, provide
a measure of the compactness of the distribution
along each axis defined by the eigenvectors. Prior to
PCA, to maximize the specificity (compactness) of
the model, the shapes, i.e. vectors xi are aligned by
translation, rotation, and scaling using the Procrustes
Analysis (Goodall, 1991; Dryden and Mardia, 1998).
The eigenvalues and eigenvectors are obtained as
follows. First, the mean shape vector x  and the

Fig. 3. The hierarchical approach to elastic 3D registration.



Image Anal Stereol 2004;23:111120

115

covariance matrix C that describes the correlation
between vector elements are defined

∑
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By building a matrix X of centered shape vectors
x -xi , the covariance matrix is simply determined as

C = X · XT . (8)

Performing PCA (Dryden and Mardia, 1998),
also known as Karhunen-Loeve transformation, on
the covariance matrix C results in 3m eigenvalues λ1

≥ λ2 ≥ ... ≥ λ3m ≥ 0 and 3m corresponding
eigenvectors qk; k = 1,2,...,3m. The eigenvector q1

that corresponds to the largest eigenvalue λ1 contains
the largest portion of shape variations. If the number
of training set vectors n is smaller than the shape
vector dimension, the decomposition is simplified
into finding n eigenvalues of the implicit covariance

matrix XX  C T ⋅=
~ . The first (n-1) eigenvalues and

eigenvectors of the matrix C are determined as
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where iλ
~  are eigenvalues and iq~  are eigenvectors of

the implicit covariance matrix C~ . By using these
eigenvalues and eigenvectors, it is not only possible
to reconstruct original shape vectors, but also to
generate new shape vectors (eigen shapes) ix′

iii q w x  x ⋅+=′  , (10)

where wi are weight vectors. By applying limits to the
variation of weight vectors, for instance iλ3  iw ±≤ ,
it can be ensured that a generated shape is similar to
those contained in the training set.

EXPERIMENTS AND RESULTS
The image database consisted of 10 3D CT

images of the lumbar spine (L1-L5) of the same voxel
sizes (0.488×0.488×2 mm3) of 10 individuals, which
underwent scanning due to abdominal aortic aneurysm.
Fig. 4 shows axial, sagital, and coronal views of some
of the CT images. Twenty five VOIs (sizes from
242×187×31 to 261×217×41 pixels) were manually
defined, each containing one whole vertebra (4 L1, 7

L2, 6 L3, 5 L4 and 3 L5). These VOIs served as the
training set (n = 25). Fig. 5 shows the axial, sagittal,
and coronal views of some of the VOIs. A VOI
containing vertebra L2 was selected as a reference
VOI, manually segmented and its surface triangulated
by using the isosurface routines in mathematical
software (Matlab, MathWorks). Fig. 2 shows the
segmented reference vertebra with the overlayed
triangular mesh. The original number of vertices was
120000 and was decimated to 12000 vertices, which
represented the reference landmarks. We have chosen
the 10% decimation to speed up the computation,
while the number of landmarks remained big enough to
reliably describe shape characteristics. The landmarks
were propagated to other training VOIs as described
in Section 2. The number of levels in the hierarchical
approach to elastic registration was 3.
Table 1 illustrates the portions of shape variability
(the individual and relative cumulative shape variance)
within the training sample captured by the first 5
eigenmodes.

Table 1. Individual and relative cumulative shape
variance captured by the first 5 eigenmodes.

eigenvalue λi

% of capturei value
individual cumulative

1 12.05 52.03 52.03
2 3.63 15.70 67.73
3 3.03 13.11 80.84
4 2.03 8.79 89.63
5 1.46 6.33 95.96

The first eigen shape 1x′  is determined by the
largest eigenvalue λ1 = 12.05 and the corresponding
eigenvector q1, and is equal to

0,1,2  k  ;  qλkx q w x  x 11111 =±=⋅+=′ . (11)

The use of PCA as a statistical description
provides a compact way to model variations of the
structures. The first eigen shape captures about 52%
of the variations of the structures present in the image
database. By varying the parameter k (Eq. 11), the
mean shape is transformed in the direction that is
described by the most significant variation mode, i.e.
first eigen mode, captured by the PCA. The obtained
new shape instances retain as much statistical
information of the structures in the training set as it is
included in this most significant mode. The resulting
propagation and contraction of the vertebra, dictated
by the first eigen mode, is clearly visible in each view
(Fig. 6).

Further eigen shapes are determined similarly to
the first one, where the second eigen shape 2x′  (λ2 =
3.63) captures about 16% of variation (Fig. 7) and the
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third eignen shape 3x′  (λ3 = 3.03) about 13% of
variation (Fig. 8). Eigen shapes that follow do not

capture significant variations as their eigenvalues are
too small in comparison to the largest eigenvalue.

Fig. 4. Axial (left), sagittal (middle), and coronal (right) views of three training images.

Fig. 5. Axial (left), sagittal (middle), and coronal (right) views of three VOIs containing a single vertebra.
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Fig. 6. The effect of varying the first eigen shape by varying the parameter k in Eq. 11.

Fig. 7. The effect of varying the second eigen shape.
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Fig. 8. The effect of varying the third eigen shape.

DISCUSSION AND CONCLUSION

In this paper, we have presented a method to
automatically construct 3D PDMs from unsegmented
3D images. Corresponding landmarks on surfaces of
training structures are established automatically by
transformations of reference landmarks defined by a
triangular mesh of the segmented reference structure.
Transformations are obtained by hierarchical elastic
registration between the reference and each of the
other training VOIs. The results presented in the
previous section are of preliminary nature. For a
statistical shape model that would describe all
significant variations of vertebra shapes, a larger
database would be needed. Especially interesting
would be the issue, whether the eigenvalues converge
for an increasing number of images. Consequently,
the sufficient number of images in the training set
could be determined. Moreover, because vertebrae
L1-L5 show quite large shape differences, not all
vertebra L1-L5 should be modelled by a single
model, but probably 5 training databases, one for
each of L1-L5 vertebra, should be formed to derive
statistical shape models for individual vertebrae L1-
L5. Despite the preliminary nature of the results, the
described method of generating the statistical shape
deformable model is promising. The model well
describes the characteristics of the training set of

shapes. The deformations included in eigenvalues and
corresponding eigenvectors are smooth. Therefore,
the model is general for the training set in question,
and is at the same time specific enough for the shape
class of lumbar vertebrae.

A key step in building a point distribution model
involves establishing correct correspondences between
points, describing shape boundaries, over an adequate
number of training images. If the correspondences are
not correct an inefficient parameterisation of shape
will be determined. What is even worse, false
correspondences will hamper the extraction of new
knowledge related to diseases and normal development
if these are based on shape analysis. Unfortunately,
there is no generally accepted definition for anatomically
meaningful correspondences. It is thus difficult to
judge the correctness of an established correspondence.
The question that arises is how the incorrect
correspondences might affect the following PCA
analysis for which a strict homology of landmarks is
required (Bookstein, 1997). In the proposed method,
the correspondences of landmarks are obtained
automatically via non-rigid registration. However, if
we assume that the inaccuracies in correspondences
are distributed randomly over the shapes in the
training set, which is also the case when the
correspondences are defined manually, the effect on
the subsequent PCA shape analysis could be neglected.
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These inaccuracies are captured by least significant
eigen modes as they are poorly correlated. The
problem would be if non-rigid registration would
induce systematic errors that would be captured by
more significant eigen modes, which is however not
very likely for non-rigid registration methods.
Nevertheless, the problem should not be
underestimated and calls for extensive evaluation,
which is far from trivial and beyond the scope of this
paper. Very recently, however, Styner et al. (2003)
have proposed four different measures to measure
correctness of correspondences. They have analysed
the direct correspondence via manually selected
landmarks as well as the properties of the shape
model implied by the correspondences, regarding
compactness, generalisation, and specificity. We have
judged the correctness of correspondences indirectly,
by visually assessing the quality of non-rigid
registration. The more accurate the registration is, the
better the generated model. In our case, the
registration results were estimated to be of a medium
accuracy. Reasons for this can be found in the non-
rigid registration method itself and in possible
abnormal – disease or age affected vertebrae shapes
that were not noticed while selecting the training
image database. The proposed method avoids
segmentation of each training image in the database.
Such an approach reduces manual interventions as
only the reference structure has to be manually
segmented. However, the consequence of registering
original shapes is that we model shape variations less
well. Thus, there is a trade off between goodness of
correspondences and time needed to obtain the
training structures and point correspondences.

The proposed method can be used for constructing
models of arbitrary structures and not only vertebrae.
The statistical shape deformable model can then be
applied in a relatively new approach to image
segmentation, where the model is put in the vicinity of
the structure in the image undergoing the segmentation
process and then deformed in such a way that it fits the
structure as good as possible. For instance, Davatzikos
et al. (2002) have used a deformable shape model of
the spine to automatically find the shape transformation
that places patient data into a stereotaxic space. The
main application of their method is in lesion-deficit
analysis for determining associations between
structural damage and clinical symptoms. Benameur
et al. (2003) registered the 3D statistical shape model
expressing variations of the pathological deformations
observed on a representative scoliotic vertebra
population to two conventional radiographic views
(posteroanterior and lateral) to provide knowledge of

the 3D structure of the whole scoliotic spine.
Automatic image segmentation has also a promising
role in image-guided surgery. For instance, Fleute et
al. (1999) have used statistical shape models to assist
anterior cruciate ligament reconstruction.

Further work will include the generation of a shape
model by using a larger image database. As individual
vertebrae L1-L5 are planned to be modeled, the models
will be more specific, increasing the applicability of the
model to segmentation and registration procedures.
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