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ABSTRACT

Composite materials containing aggregates of spherical inclusions are studied from 3D images obtained by
X-ray microtomography. Using two point statistics in different directions, and the empirical distribution of
orientations of pairs of inclusions, interesting details concerning the anisotropy of the distribution of inclusions
are obtained and are related to the method of construction for these materials. Some 3D morphological
properties, available on the 3D images, give new information on the shape and the distribution of aggregates:
tortuosity of shortest paths in the matrix, local volume fraction, geodesic distance function, local histograms
of numbers of objects.

Keywords: covariance, geodesic distance, local number, local volume fraction, mathematical morphology, pole
figures, second-order statistics, tortuosity.

INTRODUCTION

The aim of this work is to propose a
morphological analysis of anisotropic structures
containing aggregates of spherical inclusions. Such
microstructures are very common in materials, and
in the present case were studied in a joint research
project (Delarue and Jeulin, 2000; Delarue 2001a).
Composite materials were constructed from an
Aluminium or a PMMA matrix incorporating Zircon
or Zircon-Silica spherical inclusions. Materials were
prepared in the GEMPPM (INSA de Lyon) and in
the LTPCM (Grenoble). 3D images of these materials
were obtained by X-ray microtomography in the
Synchrotron of the ESRF (Grenoble) with a 2µm
resolution per voxel.

We studied these structures by measurements
on 3D images, such as the covariance and two
point correlation functions of separate spheres in
various directions, a tortuosity index obtained from
3D geodesic propagation, local volume fraction of
inclusions, distance functions and angular distributions
(to study the anisotropy of the neighborhood of
inclusions). Finally, local histograms of the number
of sphere centers in a given domain are estimated and
interpreted.

DESCRIPTION OF MATERIALS

The studied composite materials are made with a
PMMA or an Aluminum matrix and Zircon or Zircon-
Silica spherical inclusions with almost a single size
(with a 50

�
10 microns radius). Two processes were

used (Fig. 1). In the first process, a powder of PMMA
and Zircon-Silica is mixed in a turbula. It is heated
to 450 � C under a 20 MPa pressure for 1 hour. Some
of these composite samples (Fred materials) are then
deformed by a compression with a 3:1 factor along
the X axis, with a free extension along the Y axis. No
extension is allowed along the Z axis.

The second process is radically different.
Aluminum powder (the matrix) and Zircon
(inclusions) are mixed in a liquid environment.
Aggregates of inclusions are formed by this method.
This material is compressed along the Z axis (P �
70 Mpa, 450 � C, 20 min). Some of them are extruded
through a hole having a section with proportions 16:1
along the axis Z.

Fig. 1. Methods of preparation of materials.
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During the process, inclusions remain spherical,
since they are much harder than the matrix. They
may come in contact with each other, but do not
overlap (however, as a consequence of the limited
spatial resolution of images, some apparent overlaps
can appear). Depending on the process, some degree
of anisotropy in the arrangement of inclusions, as
well as the formation of aggregates, may be expected.
Morphological measurements were made to describe
these points. In what follows, we are using estimations
of some morphological functionals, which are defined
for stationary random sets.

In this paper, we study six materials (Table 1).
3D images obtained by microtomography have sizes

around 3003 voxels, with a resolution of 4 microns per
voxel and only two colors (images were binarised by
a standard thresholding), from which are estimated the
morphological properties.

Table 1. Studied materials.

Name Composition Transformation
Fred1 PMMA + 40% Zircon-Silica Homogeneous
Fred2 PMMA + 40% Zircon-Silica Deformed
Jmc2c Aluminum + 20% Zircon Compressed
Jmc2e Aluminum + 20% Zircon Extruded
Jmc3c Aluminum + 35% Zircon Compressed
Jmc3e Aluminum + 35% Zircon Extruded

Table 2. Visualization of studied materials

Material Fred1 Material Fred2

Material Jmc2c Material Jmc2e

Material Jmc3c Material Jmc3e
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GLOBAL ANALYSIS

In this part, the morphology of inclusions and
of aggregates is studied by measurements like the
covariance, two point probability functions of separate
spheres, distance function of inclusions in the matrix,
and by the tortuosity of the matrix. They are measured
on the whole 3D image.

COVARIANCE
The covariance C � h � (Matheron, 1965, 1975;

Serra, 1982) is the probability for two points, separated
by the vector h (with a modulus expressed in microns
in the present case), to belong to the same stationary
random set A. We have:

C � h ��� P � x � A � x 	 h � A 
�� P � x � A � A  h 
��
which is estimated from the measurement of the
volume fraction (deduced from the number of voxels in
one set) of the intersection of the set A and the translate
of A by the vector h. This measurement is sensitive to
the heterogeneity of the spatial distribution (like the
presence of aggregates) and the anisotropy, provided
the sample is representative of the investigated
microstructure. When h � 0, we have C � h ��� p, the
volume fraction of the set A (here inclusions). If the
events � x � A 
 and � x 	 h � A 
 become independent as
the magnitude of h becomes large, then C � h � converges
to p2as h increases. The way C � h � changes from p to
p2 is indicative of the structure of the material. Fig. 2
shows the sample covariance for the materials prepared
according to the first process (Fred1 and Fred2). These
materials should be isotropic, but material Fred2 shows
a slight anisotropy, which is indicated by a different
empirical covariance in the direction of the Y axis.
From Fig. 2, it seems that the sample correlations
disappear when the separation reaches the average
diameter of inclusions. Hence, we can conclude that
there is no dependence of arrangement of inclusions
to a scale larger than their diameter; that is, the spatial
arrangement of the inclusions involves a single scale,
namely that of the individual inclusions.

Fig. 2. Empirical covariance for homogeneous
materials

Compressed aggregates materials have a very
different behaviour. Fig. 3 shows the covariance of
the materials Jmc2c (20% of inclusions) and Jmc3c

(35% of inclusions). We can discern a second scale
of order, introduced by aggregates. It is interesting to
notice that they are elongated orthogonally to the Z
axis. This anisotropy is induced by the compression
of the composite along this axis.

Fig. 3. Empirical covariance for aggregate materials

The extruded materials show a completely
different covariance (Fig. 4). Aggregates disappear, a
slight gap appears on the Z axis and a long distance
order appears on the structure. The gap is the sign of a
repulsion between neighbor inclusions. We can expect
that the extrusion destroyed aggregates and aligned
inclusions along the extrusion axis Z. The alignment
can involve a long range order.

Finally, all experimental covariances reach their
sill for a distance, or correlation length, much smaller
than the size of the studied field. As a result, we
can accept the assumption that the studied 3D images
are realizations of stationary random sets. We could
also use the covariance to estimate the variance of
estimation of the volume fraction of particles, as
developed in geostatistics (Matheron, 1965).

Fig. 4. Empirical covariance for extruded materials

TWO POINT PROBABILITY FUNCTION
OF DISTINCT SPHERES

For this kind of composite material, where
the structure is made of inclusions and aggregates
of inclusions, it is interesting to obtain two
point probability functions P2 � h � involving distinct
inclusions A1 and A2:

P2 � h ��� P � x � A1;x 	 h � A2 
��

This probability does not depend on x for a
stationary random distribution of inclusions, which
is assumed below. It can be estimated on images by
an algorithm where inclusions are labelised (Jeulin,
2001). But there is a simpler method applicable for
structures with convex elementary grains. In that case,
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the probability P � h ��� P � h � A 
 for the full segment
h to be included in inclusions is the same as the
probability for points x and x 	 h to be in the same
inclusion. Therefore, the probability P2 � h � can be
directly estimated as the expression C � h ��� P � h � .

For all populations of non overlapping objects,
P2 � 0 ��� 0 (the probability for one point to be in two
separate inclusions is zero). When h increases, P2 � h �
moves to p2, exactly like the covariance. The way
P2 � h � changes to p2 is, like for the covariance, typical
of the arrangement of inclusions in space (while the
function P � h � is only sensitive to the size distribution
of inclusions).

We present now some experimental results. For
homogeneous materials, like Fred1 (Fig. 5 left), the
empirical P2 � h � increases monotonously from 0 to
p2. We can conclude surely that there is no large
scale dependence of inclusions in that case. P2 � h �
measurement for the deformed material Fred2 (Fig.
5 right) is different. A slight attraction is detected
between grains, even for a long distance for the axis
X and Z. For h parallel to the Y axis, the empirical
two-point probability has the expected p2 asymptote.
This phenomenon can be explained by the anisotropy
of the deformation. Inclusions compressed along the X
axis cannot expand along Z (for which no extension
is permitted), but can expand along the Y axis. In this
case, inclusions support attraction and local alignment
because of the high density (40%), but the structure
remains disordered along the free axis Y .

Fig. 5. Empirical two point probability function P2 � h �
of homogeneous materials

Compressed structures are rather different (Fig. 6).
The estimated probability to find an inclusion close to
a second one is quite larger than p2. It is an attraction
effect, typical of aggregates and here, it is possible
to discern more clearly than with the covariance the
size of aggregates and the anisotropy. Aggregates have
a 150 microns length along the Z axis and a 200
microns (Jmc2c) or 300 microns (Jmc3c) length along
the X and Y axis. They are flattened as a result of the
compression.

Fig. 6. Empirical two point probability function P2 � h �
of aggregated materials

Extruded materials present another behaviour (Fig.
7). The estimate of P2 � h � monotonously grows to an
asymptote (close to p2 for the axis X and Y ), higher
than p2 for the axis Z. This is caused by the alignment
resulting from the extrusion, destroying aggregates and
aligning inclusion along the Z axis with an attraction
effect and a slight repulsion for the X and Y axis.

Fig. 7. Empirical two point probability function P2 � h �
of extruded materials

TORTUOSITY

The tortuosity in every point x of the matrix can be
defined from the distance of shortest paths through x in
the matrix (inclusions have to be avoided) connecting
two opposite faces of the 3D block, normalized by the
distance between the faces (it is always larger than or
equal to1) (Decker et al., 1998). The Fig. 8 is a 2D
representation of the tortuosity of one point:

Tortuosity � x ��� d1 � x ��	 d2 � x �
D

�

Fig. 8. Shortest path containing a point x in the matrix,
connecting two opposite edges of the image

Measurements presented here are obtained for
every voxel of the grid in 3 dimensions in the three
main directions (X , Y , Z). For Fred materials (Fig.
9) the empirical distributions of tortuosity show a
nearly Gaussian shape centered on 1.05. This is the
characteristic value for a homogeneous distribution
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of spheres in space with a 40% volume fraction.
The compressed and extruded materials with 20%
of inclusions are too low density material for this
study, showing a very high proportion of points
with a tortuosity equal to 1., as a result of a
majority of straight paths through the matrix. The
other compressed and extruded materials, with a 35%
volume fraction of inclusions are more interesting to
study. The compressed one (Jmc3c) shows a tortuosity
lower than 1.03 for the X and Y axis and slightly higher
than 1.03 for the Z axis (Fig. 10). This can be explained
by the shape of aggregates, elongated orthogonally
to the Z axis. The tortuosity is larger on the Z axis
because it is more difficult to go round flat domains in
the Z direction than along them on the X or Y direction.

Fig. 9. Histogram of tortuosity for heterogenous
materials

This difference is more spectacular with extruded
materials. The tortuosity along the X and Y axis is
slightly higher. This is the result of the aggregates
destruction by extrusion. Homogeneous structures
have a higher tortuosity than compressed structures.
The extrusion involves also an alignment along the Z
axis. Its effect on the tortuosity measurement appears
clearly. A large part of the matrix points own a straight
path connecting the two faces orthogonal to the Z
direction (tortuosity equal to 1).

Fig. 10. Histogram of tortuosity for aggregated and
extruded materials

CONCLUSION

With only two types of measurements, the two
point probability function of separate inclusions
(showing here more details than the covariance), and
the tortuosity, we clearly make the difference between
homogeneous structures, compressed structures and
structures with alignments in one direction. For the
six studied materials, these measurements help us to
understand the consequence of the process, mainly
the deformation of aggregates under compression and

the aggregate destruction followed by an alignment of
inclusions by the extrusion.

LOCAL ANALYSIS

Local measurements are presented in this part. A
method based on Voronoï zones of influence is used to
obtain local volume fractions. A comparison between
2D and 3D measurements is presented. The second
paragraph presents the geodesic distance function
of inclusions. The last paragraph gives an angular
empirical distribution function of pairs of inclusions,
which helps to understand local rearrangements
occurring during the manufacturing process.

Fig. 11. Voronoï zones of influence of a composite
material with hard spheres

LOCAL VOLUME FRACTION
The local volume fraction is defined by ratio

between volumes of each inclusion and of its zone
of influence in 3D. The most difficult part of the
work is to obtain the zone of influence of every
inclusion. These zones are obtained in three steps. The
first step completely separates inclusions, which may
show slight overlaps due to the low spatial resolution
of images. This is obtained by a small 3D cubic
erosion. Its size is selected in such a way that the
smallest inclusions are prevented to disappear. The
right size of erosion is obtained when we get the
experimental maximum of the connectivity number,
since it increases when separating overlapping objects,
and it decreases when suppressing objects. Separate
inclusions are labelised in a second step. Finally a label
propagation is applied on inclusions to obtain their
Voronoï zones of influence (Fig. 11). Each obtained
polyhedron is a zone of influence of a single inclusion.
Then, the empirical distribution function of the volume
of each inclusion gives us a size distribution (Fig. 12).
In addition, the histogram of the local volume fraction
of inclusions is compared to the analogously defined
local area fraction in zones of influence on 2D sections.
Notice that the Voronoi zones of influence which refer
to the 2D section profiles do not coincide with the
intersections of the 3D zones of influence.
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Fig. 12. Granulometry of Jmc and Fred materials

For homogeneous materials (Fig. 13), we
get a unimodal histogram centered on the 40%
volume fraction. For compressed materials (Fig.
14), aggregates involve a change of the histogram,
which becomes skewed or bimodal. Grains included
inside aggregates have a very high volume fraction,
as opposed to inclusions present on the surface
of the aggregates, showing a low volume fraction.
Extruded structures with inclusion alignments show a
skewed histogram (Fig. 15). It is easy to understand
that the destruction of aggregates by the extrusion
limits the range volume of volume fractions. It is
interesting to notice than 3D measurements can be
quite different from 2D measurements, mainly for
these last materials. The difference between 2D
and 3D, more pronounced on anisotropic structures,
mainly appears on the tails of the histograms, longer
in 3D than in 2D.

Fig. 13. Histograms of local volume fractions of
homogeneous materials

Fig. 14. Histograms of local volume fractions of
aggregated materials

Fig. 15. Histograms of local volume fractions of
extruded materials

GEODESIC DISTANCE FUNCTION

This measurement is obtained by 3D geodesic
dilatations of inclusions in the matrix. We use the

empirical distribution function of distances, which
is sensitive to the distribution of sizes of the zones
of influence. For homogenous structures, a one
scale histogram appears on Fig. 16, inclusions being
separated by distances with a low dispersion. For
compressed and extruded materials (Fig. 17), the
histogram of distances covers a wider range of values.
For aggregated (compressed) materials (Fig. 17 left),
two modes appear (the second one being rather weak),
as a result of a structure presenting arrangements on
two different scales, which confirms results of second
order statistics. Extruded materials (Fig. 17 right)
show a slightly more regular histogram, showing an
intermediate structure situation between compressed
and homogenous materials.

Fig. 16. Histogram of the distance function of a
homogeneous material

Fig. 17. Histograms of the distance function of
aggregate and extruded materials

ORIENTATION OF PAIRS OF
INCLUSIONS

Another type of measurement, which reflects the
anisotropy on a very small scale, is obtained by the
detection of the distance and of the angle made by each
pair of centers of inclusions with a fixed direction. For
every inclusion, the coordinates of its barycenter and
its radius (as a function of its volume) are calculated.
For each pair of centers of inclusions in contact
(detected by comparing the distance between their
centers to the sum of their radii), spherical angles φ
and θ are measured (Fig. 18). A pole figure is obtained
from the projection of each vector representing every
pair of inclusions on a given plane. To get more details,
the empirical distribution function of the angle φ can
be plotted.

158



Image Anal Stereol 2003;22:153-161

Fig. 18. Angle convention and pole figure of the
orientation of pairs of grains

For the compressed materials with 35% of
inclusions (Jmc3c et Jmc3e), this measurement is very
interesting. The Figs. 19, 20 and 21 show that the
structure does not present a high local anisotropy.
There is a slightly higher population of pairs of
inclusions oriented along the Z axis, as a result of the
compression.

Fig. 19. Pole figure and projection, orthogonally to the
X axis (compressed 35% material Jmc3c)

Fig. 20. Pole figure and projection, orthogonally to the
Y axis (compressed 35% material Jmc3c)

Fig. 21. Pole figure and projection, orthogonally to the
Z axis (compressed 35% material Jmc3c)

Pole Figs. 22, 23 and 24 show that the extrusion
enhances local orientation effects, due to the alignment
of inclusions along the Z axis: during the compression,
inclusions turned around the axis X towards the Y
axis. From other figures given in (Delarue and Jeulin,
2000), the compressed material with a 20% content
of inclusions (Jmc2c) has almost the same empirical
distributions as the 35% material. It shows a slight
peak along the Z axis, due to the compression, while

for the same Z axis there is a deficit of pairs of
inclusions for extruded material Jmc2e. This slight gap
can be explained by the inclusion removal when they
were aligned during the extrusion.

Fig. 22. Pole figure and projection, orthogonally to the
X axis (extruded 35% material Jmc3e)

Fig. 23. Pole figure and projection, orthogonally to the
Y axis (extruded 35% material Jmc3e)

Fig. 24. Pole figure and projection, orthogonally to the
Z axis (extruded 35% material Jmc3e)

For the homogeneous Fred1 material, we discern
that the process involves a slight compression along
the Z axis. The deformed material Fred2 shows the
same effect along the Z axis, but it appears that the
compression along the X axis forced inclusions to turn
around themselves towards the Y axis, which is the
only free direction.

CONCLUSION

This part presented the results of local
measurements. Local volume fractions and geodesic
distance functions have confirmed the results of the
global measurements presented before. The empirical
distributions of orientations of pairs of inclusions
bring more details about the manufacture process
like collective movement of inclusions during the
compression, the extrusion or the deformation under
the influence of the density.
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LOCAL HISTOGRAMS OF THE
NUMBER OF SPHERE CENTERS

In this part, we present a 3D analysis of granular
arrangements based on the the histogram of the
number of spheres included in a randomly located test
set. To account for the anisotropy of the structure,
this set is a parallelepiped with different orientations.
Different sizes of parallelepiped are used to obtain
information at various scales.

Fig. 25. Histogram of local grain number. At this scale,
the structure is isotropic

In Fig. 25, histograms of local grain numbers are
the same in both directions X and Y . But, if a longer
parallelepiped is considered (Fig. 26), histograms
indicate anisotropy. In this last case, it is possible
to find the main direction of aggregates (here the
horizontal direction). With parallelepipeds showing
different orientations, it is possible to study the size
and orientation of aggregates.

Fig. 26. Histogram of local grain number. At this scale,
the structure is anisotropic

This measurement is quite fast because, for
example, for an image of 1 � 2 � 1 � 2 � 1 � 2mm3, with
a resolution of 2µm and results with parallelepipeds
with dimensions 64 � 64 � 128µm3 and 64 � 64 �
256µm3 every 32µm returns a measurement more
than 105 faster than covariance. The main advantages
of this type of measurement are the description of
heterogeneity and anisotropy, and the very low cost of
calculation.

For illustration, Figs. 27 and 28 show
measurements obtained on two different structures,
materials Fred1 and Jmc3c (Delarue and Jeulin, 2000).
The first structure (Fig. 27) shows unimodal empirical
distributions, as the result of the absence of aggregates;
no anisotropy is detected from this figure.

Fig. 27. Histogram of local grain number on an
homogeneous and isotropic structure (Fred1)

The second structure (Fig. 28) on a material which
was compressed along the Z axis shows an apparent
heterogeneity for the two types of histograms. The
first one (left) is isotropic and corresponds to the
smaller dimension of aggregates. The histogram with
the larger parallelepiped (right) is sensitive to the
larger dimension of the aggregates, and has a lower
dispersion along the Z axis. As with the covariance,
this measurement can detect that aggregates are
elongated orthogonally to the Z axis. In a further study
(Delarue and Jeulin, 2001), this kind of information is
used to generate constrained simulations of spherical
aggregates

Fig. 28. Histogram of local grain number on
anisotropic aggregates (Jmc3c)

CONCLUSION

By means of X-ray microtomography, 3D images
of materials are available. This makes it easier to
study the anisotropy induced by the manufacturing
process involved in the preparation of materials. Some
of the characteristics studied in this paper (covariance,
two point probabilities), could be measured from
lower dimensional section (1D). Other morphological
properties of interest introduced to study the shape and
the distribution of aggregates (tortuosity, local volume
fraction, geodesic distance function, orientation of
pairs of inclusions, local histograms of numbers of
objects) require a direct measurement on 3D images.
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