Image Anal Stereol 2003;22:121-132
Original Research Paper

A PARALLEL ARCHITECTURE FOR CURVE-EVOLUTION
PARTIAL DIFFERENTIAL EQUATIONS

EvA DEINOZKOVA AND PETR DOKLADAL

School of Mines of Paris, Center of Mathematical Morphology, 35, Rue Saint Honoré, 77 300 Fontainebleau,

France
e-mail: {dejnozke,dokladal} @cmm.ensmp.fr
(Accepted May 20, 2003)

ABSTRACT

The computation of the distance function is a crucial and limiting element in many applications of image
processing. This is particularly true for the PDE-based methods, where the distance is used to compute various
geometric properties of the travelling curve. Massive Marching® is a parallel algorithm computing the distance
function by propagating the solution from the sources and permitting simultaneous spreading of component
labels in the influence zones. Its hardware implementation is conceivable as no sorted data structures are used.
The feasibility is demonstrated here on a set of parallely-operating Processing Units arranged in a linear array.
The text concludes by a study of the accuracy and the implementation cost.

Keywords: distance function, hardware for image processing, partial differential equations, parallel computing.

“Short preliminary study published in: Dejnozkova and Dokladal (2003b) (algorithm) and Dejnozkova and Doklddal

(2003a) (architecture)

INTRODUCTION

Recently, the image processing methods based
on Partial Differential Equations (PDE) have gotten
an ever increasing attention. The examples of
application can be found in numerous domains such
as filtering (non-linear diffusion), active contours used
for segmentation of either static images (Voronoi
graph, watershed, shortest path, object detection) or
sequences (object tracking) or more recent methods
as shape from shading. The implementation of the
PDE-based method requires the computation of non-
linear functions. They are often solved by iterative
and recursive algorithms characterized by a high
computational cost. Therefore, only a limited number
of real-time applications exists. The most common
existing custom chips implement non-linear filtering,
i.e. the non-linear diffusion (Perona and Malik,
1988; Gijbels et al., 1994). One can find some
experiments with super-computers (Sethian, 1996) or
some examples of PDE-based segmentation using the
level-sets implemented on graphic hardware (Rumpf
and Strzodka, 2001).

The design of a custom chip becomes meaningful
not only for the acceleration but also for the
implementability on embedded systems (Suri et al.,
2002). Many authors put forth a considerable effort to
reformulate existing sequential algorithms in a parallel
form or to speed up the convergence (Weickert et al.,
1998). However the number of necessary iterations
remains excessively high.

The motivation of our work is to define a general
type of parallel architecture fitting the needs of
the above-mentioned applications. There are several
reasons why few architecture propositions have been
made for interface (curve-based) algorithms. The
curve traveling in a continuous space R” is implicitly
described in a discrete space Z" by the distance to the
curve, as proposed first in Osher and Sethian (1988).
The distance function is the computation support of
the level-set methods. Its zero-level set represents the
traveling interface. Its accurate computation is very
important because its geometrical properties (e.g. the
curvature) are then used to describe its evolution in
the time. The interface evolution imposes frequent
and random memory accesses. Also, the numerical
solution of a classical variational formulation leads
to deformations of the implicit description of the
curve (Kimmel, 1995) imposing more or less frequent
reinitializations. In the work of Zhao et al. (1996) and
Gomez and Faugeras (1992) can be found propositions
of algorithm without re-initialization paid by the
necessity to search the propagation speed on the
zero-level set even for the points situated elsewhere.
Because of the complexity and high computational
cost, the classical re-initialization approach is still
leading (Paragios, 2000). Repetitive re-initialization
alternated with another type of processing increases
the requirements on the implementing architecture.

Other applications, where the distance function is
the result and not only a support, are the reconstruction

121

DEINOZKOVA E ET AL: A parallel architecture for curve-evolution PDEs

of 3D surfaces, minimal path search (Kimmel and
Sethian, 2001) or continuous watershed (Meyer and
Maragos, 1999).

In Gijbels et al. (1994) has been proposed a linear-
array, SIMD architecture for PDE-based filtering
by linear diffusion. An efficient hardware (parallel)
implementation of a (weighted) distance function
preserving the accuracy and the necessary sub-pixel
precision for the continuous interface evolution is still
needed. The goal of this paper is to show that the
same architecture type can also be used for interface
evolution algorithms.

This paper is organized as follows. After a brief
review of existing distance computing algorithms,
we analyse the principles of the Massive Marching.
Section “Hardware implementation” presents its
hardware implementation. Experiment results state
the achieved implementation parameters such as the
surface requirements, clock rate and necessary fixed-
point precision for a given error.

REVIEW OF EXISTING ALGORITHMS

The sub-pixel accuracy is one of the essential
features required from algorithms computing the
distance function for the level-set methods. The initial
condition, a closed curve % placed arbitrarily in R",
represents the zero-level set of the searched distance
function u(x,y). For n = 2 we have:

%o = {(x,y) € R | u(x,y) =0} . 1)

Recall that u is discrete, i.e. only u(i,), i,j € Z* is
known. Other necessary characteristics required from
the distance computing algorithms are the preservation
of the accuracy, computation on a narrow band for
the active contours and simultaneous propagation of
components labels.

Current algorithms used to find u given %, are
from the hardware implementation aspect optimal only
for a particular type of applications. Two types of
algorithms exist: the first type proceeds by scanning
the entire image and the second type propagates a
narrow-band solution from the initial interface.

The algorithms using successive scannings are
simple to implement. However, they suffer from a
serious drawback that the next scan cannot begin
before the previous one ends. Therefore, the scanning-
based methods are optimal only for those applications
where the solution on the entire image is required.
A classical example is the algorithm of Danielsson
(1980) which is based on two coordinates description
and its overall complexity is &'(N), where N is the
number of points in the image. It yields the square

of the distance function, which imposes to compute
the square roots before the distance can be used for
other computation, e.g. the curvature. Moreover, this
algorithm is not conceived to operate with a sub-pixel
precision. This problem is resolved in Tsai (2000)
which proposes a sweeping algorithm (inspired from
Boué and Dupuis (1999)). By using a new numerical
scheme, it yields the exact distance and not the square
and it reduces the numerical error of the classical
Godunov scheme. The complexity of this algorithm is
O (MN) where M is the number of data points and N
is the number of grid points. However it is not possible
to calculate the influence zones of different sources.

The algorithms operating in the narrow band are
more appropriate for the propagation of labels. Their
implementation is complicated by using sophisticated
data structures and the complexity is &'(Nlog(N)). The
Fast Marching introduced by Sethian (1996) is the
most often used propagation technique in combination
with the PDE-based methods. The algorithm allows
to compute the distance function by realizing the
principle of Huygens, as it is introduced in Verbeek
and Verwer (1990), by propagating equidistant waves.
For this, the Fast Marching algorithm needs to
use an ordered data structures with a real-number
priority. In every iteration can be processed only
the point with the highest priority. The maximum
priority represents a global information and makes
this algorithm sequential. Moreover, the hardware
implementation of data structures using a real-number
priority is difficult because of operations like insertion,
reading and re-positioning of elements.

This is not the case of the USP algorithm (Eggers,
1997) which does not use any sorted data structures.
However, the result it yields is the square of the
distance and it requires to memorize the current
iteration number. It does not operate in sub-pixel
accuracy and the complexity is &'(n®) for images of
1 X n points.

IMPLEMENTATION ISSUES

The filtering as well as the segmentation
algorithms respond to some function of geometrical
properties of the level-set function u such as gradient or
curvature. These geometrical properties are obtained
directly from the values of u or its derivatives
(Sethian, 1996; Sapiro, 2000). The computation of
the derivatives is an elementary operation. For every
point concerned, these operations are performed on
the nearest neighborhood and are independent each
of the other. Hence they can be executed in parallel
(Dejnozkova, 2002).

Since the PDE-based algorithms principally
consist in repetitive computation of the elementary

122

Image Anal Stereol 2003;22:121-132

operations, the SIMD (Single Instruction Multiple
Data Stream) architecture is the natural choice to
reduce the processing time. We propose a divide-
and-conquer approach in order to obtain a more
balanced processors’ activity and to limit the space
on the chip. Thus one can benefit from a quasi parallel
implementation by dividing the input data into blocks.

Recall that the SIMD architecture consists in an
array of processors with an interconnection network
for the communication. Each processor has its private
non-shared memory. A single controller broadcasts
instructions to all the processors. The processors then
execute the instructions simultaneously at a given time.

The choice of the algorithm to implement and
the architecture type come together. Compared to the
filtering, other techniques as the continuous watershed
or active contours require computation of a (weighted)
distance to the given markers. These algorithms
use sophisticated ordered data structures (such as
hierarchical queues or a sorted heap) which can
penalize the execution time on the SIMD architectures.
The processing of such data structures introduces a
sequential approach. Only one point (with maximal
priority) can be processed at a time. Another reason
why the SIMD architecture would be less efficient for
this type of algorithms is the random access to the
memory.

In the next section we show the implementation
of the Massive Marching algorithm used for the
computation of a distance function. This algorithm
is fully parallel. Hence the execution time on an
architecture with P processors is fparatiel = fsequential/ P-

MASSIVE MARCHING
ALGORITHM

Throughout this paper we use the following
notations. Let p = [x,,y,] be a point of an isotropic,
rectangular and unit grid. V(p) denotes the 4-
neighborhood of p defined as V(p) = {[x,,y, £ 1],
[x,£1,y,]}. The point g is a neighbor of p if g € V(p),
u(p) denotes the value of the distance function in p.

NUMERICAL SCHEME

Numerical schemes allow to obtain the value of
the distance function in a point according to the
values of the neighbors. The numerical scheme is a
discretization of the eikonal equation:

|Vu| = #, 2)

where % is the weight for a weighted distance. Some
propositions of numerical schemes can be found in

Sapiro (2000) or Tsai (2000). The most often used
scheme is, in the domain of the Level Set, the scheme
proposed by Godunov (Sethian, 1996).

[max {u(p) —u ([, % 1,y,]) ,0)* -
max {u(p) — u([xp,3, £11),0]* = Z(p) . ()

In order to obtain the maximum values of the terms, we
have to consider the neighbors with minimum values
of u. The Godunov scheme requires to determine the
maximal real solution of a quadratic equation (3).

Suppose that the distance u# in the point p
can be expressed by the following function of the
neighborhood V(p) of the point p and the weight

Z(p)
u(p) = umin(p) + fairr(V (p), Z (p)) - “4)

umin(p) is the distance value of the minimal neighbor:
Unmin(p) = mingey(p) {u(g:)}. The formulation of fai
depends on the choice of the numerical scheme. The
Godunov scheme can be rewritten in the form of Eq.
(4) where fgs reads as

wdp)-u(p)l | F ()P (up)—uy(p)\?
Saire= > + \/ > —(5) ,
S

and where u,(p) = min{u([x,£1,y,])} and u,(p) =
min {u([x,y, £1])}

In Eq. (5) the minimum real solution is considered.
If there is no real solution then the distance value is
computed only from the minimal neighbor and fy =

Z(p)-

INITIALIZATION

% is a closed curve which generally lies between
the points of the grid Z2. Its accurate inter-pixel
location is identified by the distance map u to %y.
However, if it is to be described implicitly on a
discrete support Z2, the curve %, may not be placed
arbitrarily. Its location is determined by the switching
function ¢(p) where sign(¢(p)) indicates whether a
given point p lies inside or outside %) (as introduced
in Sethian (1996)). Hence, %, is located between
adjacent points for which sign(¢(.)) differs. The exact
distance u of these points to %) is obtained by some
interpolation method.

The choice of the interpolation depends on the
requirements of the application. One can use either a
constant value or a bilinear or a more sophisticated
interpolation method allowing to detect more or

123

DEINOZKOVA E ET AL: A parallel architecture for curve-evolution PDEs

less complicated forms (for examples see Osher and
Shu (1991); Siddiqi et al. (1997)). The majority of
practical applications use a linear approximation. In
the following, consider a linear interpolation and || =
const. for all p € Z?. Since u can only have a finite
number of constant values for all points adjacent to
%), the initialization of the distance function reduces to
u:7Z*— {ci,ca,...,cn}, where all ¢; € R. The number
of the constants depends on the number of neighbors
from which the interpolation is calculated. The Fig. 1
shows all the possible 4-neighborhood configurations
for the linear interpolation.

e o, e
= =
—_ 1 =
e, 2 A
= =
[) % [] % [)
(a) (b (©)

(d (e)

Fig. 1. Configurations of the 4-neighborhood for the
initialization.

If the central point lies on the object’s edge, i.e. the
sign of neighbors changes with respect to the central
(interpolated) point only in one direction (see Fig.
1(a) or 1(b)), the interpolation is computed only from
¢(.) of these neighbors. If the sign changes in both
directions (corner or isolated point) the resulting value
is computed from ¢(.) of the two neighbors (Fig. 1(c)
to 1(e)).

Hence the initialization of u(p) can be realized
efficiently as a logical function of sign(¢(p)),
sign(¢(q1)), --., sign(¢(gs)) and the result of the
function is used to retrieve the corresponding value
from a look-up-table containing the constants c;.

PROPAGATION

We use the following sets to define the algorithm:
&/ is the set of points initialized by the interpolation,
2 is the set of points marked as active 2 = {g; |

ITo obtain u on the entire image let NB g =

qi ¢ & and V(q;) N/ # 0}. The algorithm reads as
follows:

Initialization

o [Initialize the neighborhood of the curve with a
signed distance (set .2¢)

o [Initialize the distance value u of the other points
to oo

e Mark the neighbors of &7 as active (set 2)
Propagation
while 2 # {}, do in parallel for all p € 2:

{

x Compute new distance value:

o Jacobi step:

W' (p) = upin(p)+
min{ fur(V (p),Z (p)), Z(p)} (6)

o Gauss-Seidel step:

W (p) = unk) (p)+
min{ far(V (p),Z (p)), Z(p)} ()

* Activation of new points to process:

e delete p from 2, insert p in &7
o if u(p) < NBy,gm then for all ¢;, g; € V(p) such

that u"*(q)) —u"*'(p) > e(q:) (®)

insert g; = <2

where NByiqm 18 the desired width of the narrow
band!. (The values of unprocessed points in #, are
automatically carried over to the next iteration and are
noted as values at £,41.)

At each iteration, the value is calculated for the
active points. The algorithm does not use any kind
of sorted processing. Consequently, the front of the
propagation is not equidistant to the initial curve. Two
situations exist where the points that are currently
being calculated will have to be reactivated later:

1. The value of the point is calculated on an
incomplete neighborhood which imposes a two-

step algorithm
2. The points are activated by a propagation front

coming from a source which is not necessarily the
closest one which is detected by activation rule.

124

Image Anal Stereol 2003;22:121-132

Two-step based algorithm

We say that the point value is computed on an
incomplete neighborhood since adjacent (mutually
dependent) points may be processed simultaneously.
The calculation is therefore performed in two steps.
The steps are named after their similarity with the
algorithm of Markov chain approximation by PDE as
introduced in Boué and Dupuis (1999). The first one,
the Jacobi step, calculates the value of the distance
function at 7,4, given only the values obtained at #,.
The second one, the Gauss-Seidel step, recalculates the
distance value at ,, | by using also the values obtained
atf,41.

The algorithm computes the value u(p) from the
least neighbor. Hence, the infinite values are not
considered for the computation. As mentioned above,
in the Jacobi iteration, the first estimation of u"*!(p)
is obtained by using the values of neighbors from the
previous iteration which is recomputed once more in
the Gauss-Seidel step.

Activation rule

The activation rule has two important roles: the
supervision of the propagation end and the detection
of the overlapping of the propagation waves (see Fig.
2).

Fig. 2. Example of an overlapping of the propagating
waves and zone of reactivation (in gray). Si, Sy are
the propagation sources. The dashed lines represent
the propagation waves after ny and n; iterations.

We calculate the distance function u(x) =
min[dist(x, S7), dist(x, S;)]. Let E denote the set
of points equally distant from S; and S;, E =
{x|dist(x, S;) = dist(x,S1)}. The points to the left
(resp. right) from E are closer to S; (resp. S»). Note
that in this example E is a parabola. A denotes the set
of points activated simultaneously by the two fronts
coming from the two sources. Since the propagation
front of Massive Marching is not equidistant to the
propagation source, the sets A and E do not coincide.
The zone delimited by A and E contains points that
were activated from S, whereas they are closer to S;.
These points will be reactivated again by the front

coming from S; in order to lower their value from
dist(x, S,) to dist(x,Sy).

Suppose that u"(p) has just been calculated and p
is deactivated. We search for an estimator of u"*!(g;)
to know whether the neighbor ¢; of p should be
activated in order to compute or to re-compute its
value. Since the goal is to obtain the minimal solution
the main idea is to test whether the value u(g;) could
be brought down by considering p as the least neighbor
of g;. Suppose that p is the least neighbor of g;. Then
in the next iteration g; will receive its value from p.
From Eq. (4), far(p) is the difference between the
distance value u(p) of a given point p and the least of
the neighbors ;s (p). The new value u(q;) will satisfy

u(gi) > u(p) +inf fai.
Let Kin be the lower bound of fjig:

Knin(p) = inf fair(V (p), Z (p)) -)]

Z(p) is an arbitrary but time invariant function.
Knin is a predictor of the least increment of u in
one iteration. All neighbors ¢; of p such that u(q;) —
u(p) > Kmin(p) should therefore be (re-)activated and
(re-)calculated since the new value u(p) may affect
u(g;) in the next iteration. Hence, € in Eq. (8) must
satisfy:

€(p) = Kmin(p) > 0.

Remark: The lower bound of fyg of the Godunov
scheme (from the section 2.1) is

F(p)* .

Kmin(p) = 2

(10)
Note that K, is constant whenever . is constant in
(2) and becomes a function of .% whenever % varies
over the image.

Setting € < K, is useless because it would
authorize the activation of points that will not be
updated and the propagation could go backwards.
By letting &€ > Ky, one can authorize fewer
reactivations (lower execution time) paid by some error
(proportional to €—Ky,;,) in the result (DejnoZkové,
2002).

LABEL PROPAGATION

The propagation of the region labels can be
realized simultaneously with the computation of the
distance function to obtain the influence zones for
Voronoi tesselation or continuous watershed. Suppose
that the region labels are initialized during the Massive
Marching initialization stage. The algorithm modifies
as the distance must be computed from neighbors
having the same label.

125

DEINOZKOVA E ET AL: A parallel architecture for curve-evolution PDEs

e Jacobi step
if u,(p) and u,(p) have the same label then use Eq.
(6)
else use u"*! (p) = up,(p) + F(p)

o Gauss-Seidel step

1. if u,(p) and u, have the same label use Eq. (6)
else use ! (p) = k) (p) + F(p)

2. preceives the label of u"*+!(p)

COMPUTATION ERROR

Two types of error exist: numerical scheme error
and incomplete neighborhood error.

Numerical scheme error

As the majority of first order schemes also the
Godunov scheme suffers from “shortsightedness” as
it uses only the nearest neighborhood. Moreover,
Tsai (2000) explains that when the propagation starts
from isolated points it creates diamonds instead of
circles. In Sethian (1999) Sethian proposes a switching
mechanism between the first and second order scheme
in order to improve the accuracy. Nevertheless, in co
the Godunov scheme converges to the exact solution.

Incomplete neighborhood error

This error is caused by the computation on
an incomplete neighborhood (see section “Two-
step based algorithm”). Massive Marching calculates
simultaneously the values of adjacent points, i.e.
values depending each on the others. Therefore the
calculation is performed in two steps.

Also all the methods referenced in the introduction
allow to recalculate the points several times in order to
obtain more accurate solution to Eq. (2). The scanning-
based methods recalculate during each scanning all
the points of the image. Successive scannings have
to be repeated until the convergence. Methods for the
narrow band use a variable number of recalculations,
implemented by using a sorted heap, depending locally
on the neighborhood of every particular point. At
every recalculation the point receives a new value
of the distance according to the new values of the
neighbors. Massive Marching authorizes to reactivate
the neighbor g; if the point p receives a new value u(p)
inferior to u(g;) — € (see condition Eq. 8).

An additive error (typically at the fourth decimal
place) may still appear in some special cases (as
corners etc.), see DejnoZzkova (2002). The experiments
have shown that the two-step calculation gives
sufficient accuracy for most practical applications (see
section “Experimental results”). Should more accurate
results be required then the Gauss-Seidel step can be
repeated.

COMPUTATION COMPLEXITY

In order to obtain the calculation complexity of
Massive Marching we first assume that % = const.
over the entire image.

The value of an active point p is obtained in a
constant time &(1) after which the point deactivates
itself. The point activates all its neighbors that verify
the condition (8). The function (4) is strictly positive,
no point can therefore reactivate the neighbor from
which it has received the activation. If the propagation
starts from one point representing the source, the
algorithm complexity is & (N), with N be the number
of points in the image.

For sources having more complicated geometrical
forms or more than one source the complexity may
exceed &'(N) since some points may be activated more
than once. We show that the number of reactivations is
bounded. Consider two isolated points @ and b such
that there is a point ¢, ¢ € V(a), c € V(b) and a ¢
V(b). Suppose that the two propagation fronts arrive
respectively via a and b and meet in c. The two fronts
have different speed and in the iteration » the distance
values in @ and b verify |u"(a) — u"(b)| > 2K,in. The
faster front will stop in ¢ whereas the slower one will
continue. It can be shown that its propagation will stop
after { iterations, where

1)~ (@)

—1.
2I(mt'rl

In images with # = const., the waves propagate with
unit increment of u in one iteration in vertical and
horizontal direction, whereas in the diagonal directions
the increment is obtained only after two iterations. See
illustration at Fig. 2. The waves arriving from S; and
S> meet first on the intersection of A and E since both
waves have the same speed on the horizontal direction.
Later, see the iteration n, for example, the waves meet
outside the skeleton since the wave arriving from S
arrives diagonally and is therefore slower. The slower
wave will continue its propagation up to the skeleton
of the distance E where it stops.

For images with bounded support, the term
|u"(a) —u"(b)|is upper bounded and hence the number
of reactivations also. For images where % # const.,
this term is also limited and depends on .%#.

HARDWARE IMPLEMENTATION

The main implementation issues are outlined in
the section “Implementation issues”. In this section we
present the implementation details and we discuss the
possible extensions of the proposed architecture.

126

Image Anal Stereol 2003;22:121-132

GLOBAL ARCHITECTURE

For the simulation and validation, we have chosen
the division of the input image into the columns, i.e.
one processing unit per column of the image. In a
given moment the processing units process in parallel
all the points in a row. We give below a description of
the proposed (and tested) access to the neighbors. The
processing units are controlled by the single Global
Control block. It reads high-level instructions from the
Code Memory. Each high level instruction indicates
the action executed on the entire image in one scan
and the code does not have to be decomposed in the
elementary operations. The algorithm for computing
a distance function on the entire image (given in
section “Propagation”) resumes to these high-level
instructions:

interpolate

loop (if any point is active)

{ Jacobi_Step
Gauss-Seidel_Step }

The condition any point is active is the OR operation
over all the activation flags.

The Global Control block not only controls the
execution of the algorithm but also allows to change
the values of the approximation registers inside
each processing unit. Thus we can implement the
approximation of almost any non-linear function.

.
|
| CODE
I GLOBAL CONTROL H CODE MEMORY I<;:|
[TT T T -] E
Processing Unit PU 2l
g
LOGAL FGTNATIOq " &
1
SURTECE B appROXIVATION] |1 8
BLOCK 5 &
I GONSTANT I || |tz
REGISTERS GTIVATIO 5;
B
8
-8
INTERPOLATION add /sub o &
i T ‘ .
= |[E
L [FpaTa - = DATA
MEM 2
) =4
1 = 28 —>
5=
... 9
l 3
BUS
GONTROL

Fig. 3. Global architecture with replicated Processing
Units (PUs).

PROCESSING UNIT

The Processing Unit (see Fig. 3) contains specific
blocks implementing different stages of the algorithm:
the INTERPOLATION BLOCK ensures the initialization
of the algorithm, and the APPROXIMATION BLOCK
computes new pixel values. Each PU has a register
containing the ACTIVATION FLAGS for its part of the

image. The activation flag is used as a mask controlling
the PU activity. All the Processing Units, whose
currently processed point is active (the activation flag
is set) execute the instructions, otherwise they are idle,
except of sending their values to the east- and west-
side neighbors.

Note that the input data are stored in a non-
shared data memory. Therefore, all the units can access
to its data simultaneously at the given time. The
memory is a double-port memory; before the execution
of the algorithm, the data are uploaded by using a
global access port (not given in the schematics) and
read after. Recall that the Massive Marching uses
the 4-neighborhood. In order to reduce the number
of interconnections, we use bi-directional buses for
the communication with the adjacent PUs. The bus
direction is controlled by the signals t_east and t_west
derived from clk/2.

Neighborhood retrieval

The complete neighborhood of a point (cf. Fig.
4(b)) is obtained in two clock cycles in the following
way (Fig. 4(a)). With a rising edge of the clock a
new SOUTH value is read from the local data memory
whereas the old values SOUTH and CENTER are shifted
upwards (e.g. 112, 113, 114). The values EAST and
WEST are read from the bus on the falling clock
edges. First, the WEST value is read from the west-
side adjacent PU while the SOUTH point value is being
sent to the east-side adjacent PU. On the next falling
edge is read the EAST point while the CENTER point is
being sent to the west-side adjacent PU. The complete
neighborhood is ready immediately after the reading
of the EAST point (indicated by the dashed line). The
same communication protocol also applies to filtering.

PU PU, PU, . .
—' 1 — ¥ —i's *7 falling and rising edge of clk
N ‘(A\‘. “/\\.m S
‘ w|clE ‘ ‘ w| ¢ E‘ ‘ w|clEe ‘ —direction of data flow
[sd 7 [s{ —"|s]4
(@)
ek 1 Fo L F LT | —
k2 _ [1 [| 1 =
t_east | | L
t_west | L
bus_e” Thz 13 KE 114 14 115
bus_w_Thi2 13 113 14 114 215
north — #fin afiie & 113
center__kf11z__ 7 [Afs | i | A e]
south — "fy3 e | I s |
east | L& | [lg | I { e
west 213 [L s
s40ns Tesons mons 7ooms
(b)

Fig. 4. Timing diagram of reading of the point
neighborhood.

127

DEINOZKOVA E ET AL: A parallel architecture for curve-evolution PDEs

Note that the choice of the image division
affects only the communication procedure between
the adjacent processing units and not their internal
architecture.

Approximation block

Instead of computing the exact value of Eq. (5),
requiring computation of a square and square root, we
propose to use an approximation. The approximation
allows to preserve the necessary sub-pixel precision
while reducing the implementation cost. Two types
of approximations have been tested, the piecewise
linearization and look-up-table (LUT). The functional
scheme of the tested approximation blocks is given by
Fig. 5. The Eq. (5) is rewritten in the form

u(p) +uy(p
u(p) =PI 4 e ()~) A1)
which is, for the hardware implementation,

approximated by either a linear approximation or a
look-up-table

ﬁLin.Approx(P) = M +ai(|”)€ - uy|) + bi
(12)
dLur(p) = M +a (13)

The number of operations to obtain #igin Approx(P)
reduces to three additions, one subtraction and
two multiplications and for dryr(p) only two
additions and one multiplication (paid by higher
memory requirements for comparable accuracy). The
computation is done with a fixed-point precision.
A comparative study of the implementation cost is
presented below.

The implementation of the approximation is given
by Fig. 5. The input signals are |u, — u,| and u, +
uy. (The terms u, and u, are obtained by two
comparators in the MIN block (Fig. 3)). The former
enters also in the Interval Search block generating the
address (interval number) of the register containing the
corresponding approximation constants a; and b; (cf.
Fig. 6(a)). The SELECTION CONTROL block is testing
whether the values u,, u, are finite. If both values
are finite (pixels have already been activated) then the
distance is computed by using Eq. (11). If only one of
the values u,, u, is finite then the distance computation
reduces to addition of one to the finite value: the
approximation constants are replaced in order to add 1
to the minimal neighbor. Recall that both values cannot
be infinite in the same time since such a point would
not be activated.

INTERVAL
SEARGH
[th—ts|

INTERVAL
NUMBER

CONSTANT
REGISTERS
23
a
B | e—

-

CONSTANT
EGISTERS.

by

b,
b,

—
| =

(a)
g
| INTERVAL
lu—u) i NUMBER
H
CONSTANT |
REGISTERS !
a, i
A,
a,
lutu)i2

Fig. 5. Internal block architecture of the
Approximation Block; (a) Piecewise linearization, (b)
Look-Up-Table.

Ju,— Uy/ INTERVAL

Fig. 6. Interval Search and Activation Request block.

The computation process is completely pipelined.
After an initial latency of 10 clock periods, the result is
obtained in one clock period. The approximation block
as it is given here can calculate the distance in one
clock cycle only for # = 1. For .% # 1, the multiplier
must perform two additional multiplications. The
overall bandwidth of the architecture will be lower
unless two additional multipliers (or approximations)
are used.

Pixel activation

Each pixel has its own flag controlling the activity
status of the processing unit. It indicates whether the
new value is to be computed or not. The activation
flag of the point x gets active whenever the condition
Eq. (8) is verified. The active points are testing their
activity for the next iteration by using the condition
Eq. (8) and may also activate their inactive neighbors
by sending them an activation request (see Fig. 6(b) for

128

Image Anal Stereol 2003;22:121-132

signals ARN, ARS, ARE, ARW - Activation Request
to North, South, etc.). As soon as all the flags are
inactive the algorithm ends.

EXPERIMENTAL RESULTS

In order to prove the validity of the algorithm,
we illustrate the behaviour of Massive Marching on
computation of the Voronoi tesselation for a given set
of points in a 2D euclidian space. In this case, we
consider .#(p) =1 for Vp € & (see Fig. 7). Note
that if needed, the propagation of labels can be done
simultaneously with the propagation of the distance.

(a) Exact, computed on Delaunay
triangulation

2

(b) Massive Marching

o

(c) Fast Marching

Fig. 7. The Voronoi tessellation obtained by Massive
Marching, compared to Fast Marching.

The result achieved by Massive Marching is
compared to the exact result and to the result obtained
by the sorted heap algorithm (Sethian, 1996). Slight
differerence is due to i) an error of the Fast Marching
induced by the direction of the scanning and ii) an
approximation error of Massive Marching.

We have tested the accuracy of the result with
respect to two factors: i) the approximation type of
the Godunov numerical scheme and ii) the number
of fractional bits of the fixed-point implementation of
the approximation block. We have observed the error
in /., in the result with respect to the exact solution
simulated with “double” precision in C. Recall that the
norm 4., corresponds to the maximum of the vector
elements. Here, it represents the upper bound of the
error.

o 0.2 0.4 1 : 0.2

1 (pP5u o1 O pPupon 05!

(a) Original function of
the Godunov scheme

(b) Linear approximation
with 4 intervals

1
0.95] —l 0.95]

09) 99

s
F 08

0.8 0.8

o 02 1 0 02

O P on 4 tu (p)241 p1 08 !

(¢c) Inequally spaced (d) Inequally spaced
LUT approximation LUT approximation
with 5 intervals with 15 intervals

0.4 ‘“,(p)&?‘ﬂ’)‘ 0.8 1
(e) Inequally spaced
LUT approximation

with 30 intervals

Fig. 8. Different approximations of fgi.

129

DEINOZKOVA E ET AL: A parallel architecture for curve-evolution PDEs

(e)

Fig. 9. Iso-distance lines obtained with various

approximations (8+8 bits of precision); (a)
Original function of the Godunov scheme,
(b) Linear approximation with 4 intervals,

(c) LUT approximation with 5 intervals, (d)
LUT approximation with 15 intervals, (e) LUT
approximation with 30 intervals.

15 20 25
Number of decimal bits

Fig. 10. Error (in {.) of the look-up-table
approximation compared to the exact solution
depending on the fractional part width. Rectangles:
LUT 5 intervals, circles: LUT 15 intervals, triangles:
LUT 30 intervals, asterisks: piecewise linearization.

Two approximation types of the function ggi were
used: a piecewise linearization with four intervals
and look-up-table approximation with five, fifteen and
thirty steps, see Fig. 8. The first and the last elements in
the look-up-tables are exact (equal to 1/4/2 and 1) in
order to minimize the error in the left, right, up and
down and diagonal directions. The other values are
obtained as to distribute the error evenly over the entire
interval]0, 1[. The distance results can be visually
assessed in Fig. 9 on the iso-distance lines given in
the same figure for 8+8 bit precision. The test image
contains three sources: a letter M, straight line and a
point. The approximation error (in 4.) with respect to
the exact result is given in Table 1.

Table 1. Error of approximation of the Godunov
scheme given by Fig. 9.

Approx. type || Linear. | LUT | LUT | LUT
(interval no.) 4 5 15 30

[Error 2. (%)]| 03 [39 | 12 [09 |

The implementation of the approximation block
(cf. Fig. 5) was tested in fixed-point precision with 8
bits for the integer part and 4, 6, 8, 10, 12, 16, 20 and
24 bits for the fractional part. Note that the eight-bit
integer part limits the distance to 0 to 255 and has to be
increased if needed more. The overall (approximation
plus rounding) error is given by Table 2.

130

Image Anal Stereol 2003;22:121-132

Table 2. Overall (approximation plus rounding) error
in L., of the result in Fig. 9(b, ¢, d and e) to the exact
result Fig. 9(a).

Approx. type Linear. | LUT | LUT | LUT
(interval no.) 4 5 15 30
Error 4., 8 bits 0.64 | 245 | 092 | 0.54
(%)

Error 4., 16 bits 0.81 274 | 0.70 | 0.53
(%)

Simultaneously with the error introduced by the
approximation and rounding error, see Fig. 10, we
have observed the implementation cost in terms of
the number of equivalent NAND gates in the netlist,
reported by the compilator, before the optimization
and routing on a specific chip (only for precision 8+8
and 8+16 bit integer+fractional part). For the surface
estimation cf. Tables 3 and 4 below.

Table 3. Surface estimation of the approximation block 8+8 bits of precision (integer+fractional part).

Approx. type Piecewise lin. | LUT | LUT | LUT
(interval no.) 4 5 15 30
Surface after optimization (NANDs) 10132 4031 | 6920 | 13856
Memory bits 128 80 240 480

Table 4. Surface estimation of the approximation block 8+ 16 bits of precision (integer+fractional part).

Approx. type Piecewise lin. | LUT | LUT | LUT
(interval no.) 4 5 15 30
Surface after optimization (NANDs) 20044 5743 | 9056 | 16592
Memory bits 192 120 | 360 720

Note that when using the piecewise linearization
the surface requirements increase considerably (about
twice of equivalent NANDs) if the accuracy increases
from 8+8 to 8+16 bits (integer plus fractional part).
On the other hand the surface occupation grows
linearly when the look-up-table is used: increase by
some 20% to 40% of equivalent NANDs and by one
third of memory bits. The nonlinear increase of the
implementation cost between the 848 and the 8+16
accuracy is due to the use of a highly optimized
multiplier/accumulator.

CONCLUSIONS

This paper proposes a SIMD-type architecture for
curve-evolution PDEs. This architecture has already
been used for filtering by linear diffusion, see Gijbels
et al. (1994). In this paper is shown that the same
architecture type can also be used for the narrow-band
like algorithms.

Obviously, the activity of Processing Units
arranged in a linear array is unbalanced for
narrow-band like algorithms. The activity distribution
depends on the geometric form of the objects. This
inconvenience is the price paid for the advantage

that without major modifications this architecture
can run algorithms consisting of several stages, e.g.
filtering followed by watershed or voronoi tessellation
computation. The only modification consists in
reconfiguration of the approximation blocks by
uploading new values in the look-up-tables or the
linear approximation registers. The algorithm is then
executed by broadcasting corresponding high level
instructions to the Processing Units.

For implementation on a FPGA, the maximum
clock frequency we have obtained is 150MHz. One
point is processed in two clock cycles (Jacobi plus
Gauss-Seidel) which gives a theoretical bandwidth of
one Processing Unit 75 x 10° points~!. The worst
execution time estimation for the QCIF format (176
pixels wide by 144 high) with the distance source in a
corner is 400 ps.

We have observed that even if implemented
sequentially in some situations (for denoised filtered
images) the Massive Marching outperforms algorithms
using ordered structures. For heavily noised input
images, the Massive Marching performance remains
comparable to other algorithms despite frequent
reactivations.

Future work: Extension of Massive Marching
to 3D seems promising. The execution of other

131

DEINOZKOVA E ET AL: A parallel architecture for curve-evolution PDEs

algorithms on big 3D images is penalized by excessive
memory requirements of large, real-number-priority
ordered structures. The use of Massive Marching may
be advantageous because of the absence of any ordered
waiting structures.

A better activity distribution would be achieved
with processing units retrieving points waiting
in a FIFO-like queue. Suppose a completely
pipelined, random-access capable prefetch so that the
neighborhood is retrieved in one clock cycle. The
theoretical execution time will be &(N)/P cycles,
where P is the number of pipelined processing units.
The surface activity will be more balanced. An
efficient neighborhood prefetch therefore needs to be
found so that several pipelined processing units could
be used.

REFERENCES

Boué M, Dupuis P (1999). Markov chain approximations
for deterministic control problems with affine dynamics
and quadratic cost in the control. STAM J Numer Anal
36:667-95.

Danielsson P (1980). Euclidean distance mapping. Comput
Vision Graph 14:227-48.

Dejnozkova E (2002). Massive marching : A parallel
computation of distance function for PDE-based
applications. Tech. Rep. N-17/02/MM, ENSMP, Center
of Mathematical Morphology.

Dejnozkova E, Doklddal P (2003a). A multiprocessor
architecture for PDE-based applications. Visual
Information Engineering, VIE 2003. Proceedings.

Dejnozkova E, Doklddal P (2003b). A parallel
algorithm for solving eikonal equation. In: IEEE
International Conference on Acoustics, Speech and
Signal Processing, ICASSP. Proceedings.

Eggers H (1997). Fast parallel euclidian distance
transformation in Z". SPIE Proceedings 3168:33—40.

Gijbels T, Six P, Gool LV, Catthoor F, Man HD, Oosterlinck
A (1994). A VLSI architecture for parallel non-linear
diffusion with applications in vision. IEEE Workshop
on VLSI Signal Processing .

Gomez J, Faugeras O (1992). Reconciling distance
functions and level sets. Tech Rep No: 3666, INRIA.

Kimmel R (1995). Curve Evolution on Surfaces. Ph.D.
thesis, Technion Israel Institute of Technology.

Kimmel R, Sethian JA (2001). Optimal algorithm for shape
from shading and path planning. J Math Imaging Vis
14:237-44.

Meyer F, Maragos P (1999). Multiscale morphological
segmentations based on watershed, flooding, and
eikonal PDE. In: Nielsen M, Johansen P, Olsen O,
Weickert J, eds., Scale-Space Theories in Computer
Vision, no. 1682 in Lecture Notes in Computer Science.
Springer-Verlag, 351-62.

Osher S, Sethian J (1988). Fronts propagating with
curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. J Comput Phys 79:12—
49.

Osher S, Shu CW (1991). High-order Essentially Non-
oscillatory schemes for Hamilton-Jacobi equations.
SIAM J Numer Anal 28:907-22.

Paragios N (2000). Geodesic Active Regions and Level Set
Methods : Contributions and Applications in Artificial
Vision. Ph.D. thesis, Université de Sophia Antipolis.

Perona P, Malik J (1988). A network for multiscale
segmentation. Proceedings IEEE International
Symposium Circuits and Systems CISCACS88 :2565-8.

Rumpf M, Strzodka R (2001). Level set segmentation in
graphics hardware. In: Proceedings ICIP 2001.

Sapiro G (2000). Geometric Partial Differential Equations
and Image Analysis. Cambridge: Cambridge University
Press.

Sethian JA (1996). Level Set Methods.
Cambridge University Press.

Sethian JA (1999). Fast marching methods. SIAM Review
41:199-235.

Siddiqi K, Kimia B, Shu CW (1997). Geometric shock-
capturing ENO schemes for subpixel interpolation,
computation and curve evolution. Graph Model Im Proc
59:278-301.

Suri J, Singh S, Reden L (2002). Computer vision
and pattern recognition techniques for 2-D and 3-D
MR cerebral cortical segmentation: A state-of-the-art
review. Int J Patt Anal Ap 5:46-76.

Tsai Y (2000). Rapid and accurate computation of
the distance function using grids. Tech. Rep. 17,
Department of Mathematics, University of California,
Los Angeles.

Verbeek P, Verwer B (1990). Shading from shape,
the eikonal equation solved by grayweighted distance
transform. Patt Recogn Lett 11:681-90.

Weickert J, ter Haar Romeny BM, Viergver MA (1998).

Efficient and reliable schemes for nonlinear diffusion
filtering. In: IEEE Trans Image Proc, vol. 7. 398-410.

Zhao H, Chan T, Merriman B, Osher S (1996). A variational
level set approach to multiphase motion. J Comput Phys
127:179-95.

Cambridge:

132

