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ABSTRACT

The problem of estimatingthe EulerPoincaé characteristidEuler numberfor short) of a setin the 3d
Euclideanspaces consideredgiventhatthis setis obsenedin the pointsof alattice. In this situation,which
is typical in imageanalysis the choiceof anappropriatedata-basedliscretisatiorof the setis crucial. Four
versionsof a discretisatiormethodwhich is basedon the notion of adjaceng systemsare presentedthese
versionsarereferredio as(14.1,14.1), (14.2,14.2), (6,26), and(26,6). A comparatie assessmeraf thefour
approachess performedwith respecto the systemati@rroroccuringin applicationto Booleanmodels.It is a
surprisingresultthat, exceptfor (26,6), theestimatorgield infinitely large systematierrorswhenthe lattice
spacinggoesto zero. Furthermorethe measurementsf the Eulernumberfrom 3d dataof autoclaredaerated
concretellustratetheinfluenceof the choiceof adjaceng andthe behaiour of the estimators.

Keywords: EulerPoincaé characteristicdiscretisation binary image, neighbourhoodadjaceng, Boolean

model,systemati@rror.

INTRODUCTION

In materials’scienceaswell asin otherresearch
fields, the Euler number (or its density) is usedas
a characteristicdescribing the connectity of the
componentgconstituentspf a compositematerialor
the pore spaceof a porousmedium,seeLevitz (2002)
andOhserandM{icklich (2000).

Fromatheoreticapointof view theEulerPoincaé
characteristicy"(X), or Euler numberfor short, of
an n-dimensionalset X in the EuclideanspaceR" is
a basic quantity of integral geometry By meansof
Crofton’s intersectiorformulae thequermassintgrals
(Minkowski functionalsor intrinsic volumes)can be
expressedn termsof the Euler numbersy* defined
on sectionsof X with k-dimensionalplanes, k =
0,...,n—1, seeSchneideandWeil (2000).Thisis the
basisof the measurementf the quermassintgralsin
imageanalysis Definitionsandpropertiesof the Euler
numberarerecalledin section“The Eulernumberof a
set”.

In the context of image analysisit is usually
assumedhatthesetX is obsernedonapointlatticel.".
TheintersectiolX NIL" is themathematicaéxpression
for the obsenable information about X. In practical
applicationswe considerthe lattice I." restrictedto
a boundedwindow W C R". Let 1, denote the
characteristidunctionof X. Theset{(x,14(x)): x €
WNL"} is saidto bethe (binary)imageof X obsered
in W, andthe elementf theimagearecalledpixels.
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Therearetwo waysof consideringdigital images
of this type. One way is basedon discrete(lattice)
geometryin particularintegral geometryonthelattice
and introduction of discreteMinkowski functionals;
seeVoss(1993). In the presentpaperthe alternative
view is taken, namely that the analysis of the
discretisedimage aims at a good approximationof
parametersor features of the original (i.e. non-
discretisedketX in EuclidearnspaceseeSerra(1982)
for a systematigntroduction.

Thepropertief thediscretisatiordepencheavily
on the chosenconnectvity, thatis the rule according
to which the neighboursof a given foreground or
backgroundpixel arefound. In imageanalysis,object
and backgroundare usually endaved with different
connectvities (neighbourhoods)n order to ensure
a digital Jordansurface theorem. Typical pairs are
(6,26) and (6,18), see e.g. Kong and Rosenfeld
(1989); Lee et al. (1991); Lohmann(1998). In this
notation, the first componentof a pair indicatesthe
numberof neighboursa lattice point is connectedo
if this lattice point belongsto the foreground and
the secondcomponentdenotesthe number of used
connectiongo neighboursf the lattice point belongs
to the complement(the background)Most algorithms
for determiningthe Euler numberin 3d like Serras
marching cube algorithm Serra (1969); Lee et al.
(1991) work with 6 connectvity of the object and
26 connectvity of the backgroundor vice versa,see
(KongandRosenfeld1989,Section8) and(Lohmann,



1998, Section3.1.2)for surneys andthereferencesn
Ohseretal. (2002b).

Here we follow Ohseret al. (2002b) and use
adjacenciesbased on tessellationsto describe the
connectvity unambiguouslylt was showvn in Ohser
et al. (2002b)that (14.1,14.1), (14.2,14.2), (6,26),
and (26,6) are pairs of complementaryadjacencies.
Thatmeanstheir usefor foregroundandbackground,
respectiely, ensuresthat the values of the Euler
numbersfor discretisedsets and their complements
fulfill aconsisteng relation,i.e.in 3dthatbothvalues
areidentical.

Fig. 1. Microstructuee of two specimensf autoclaved
aereted concrete (AAC). (a) 320x 330x 330 pixels,
arrangedin a simplecubic lattice of spacing31 um.

in theright one(b) 450x 500 x 230 pixelsof uniform
spacing 17um. Both visualisationsshow the solid

matterof the porousmedia.

OHSER JET AL: Euler numberof discretisedsets

In the present paper we consider pairs of
adjacenciesto be used for the object X and for
the backgroundX® (the complement)respectiely,
which ensurethat the valuesof the Euler numbers
for the discretisedsetsfulfill a consisteng relation,
i.e. in 3d that both values are identical. A pair of
adjacenciess called complementanyjf it providesa
pair of consistentestimatorslt was shovn in Ohser
et al. (2002b)that (14.1,14.1), (14.2,14.2), (6,26),
and(26,6) arepairsof complementanadjacenciedn
this notation, the first componentof a pair indicates
the numberof neighboursa lattice pointis connected
to if this lattice point belongsto X (the object) and
the secondcomponentdenotesthe numberof used
connectiongo neighboursf the lattice point belongs
to the complementX® (the background).The exact
definitions of the adjacenciesand the discretisations
which they inducearegivenin section“Discretisation
with respecto adjacenyg”.

In section“Approximationof the Euler number”
we shov how to approximatethe Euler number
of X using its discretisation. After recalling the
consisteng relation in section “Consisteng”, we
provide in section “Estimation of the density of
the Euler number” the estimatorfor the density of
the Euler number of a random closed set based
on the discretisationw.r.t. a pair of complementary
adjacencies.

The studyof realdatafrom samplesf autoclared
aeratecconcretd AAC) shavsthattheestimatedralue
of the Euler numbercan dependconsiderablyon the
choseradjacenyg (neighbourhood$ystem.Therefore,
in section“Booleanmodels”,the systematicerror for
the four estimators,appliedto a Booleanmodel, is
calculated.This follows the methodappliedby Serra
Serra(1982), who determinedthe errorsfor several
neighbourhoodm 2d andfor (26, 6) in 3d.He already
statedthat thereis a non-ngligible systematicerror
which does not vanish when the lattice spacingc
(i.e. the resolution of the equipmentfor imaging)
goesto zero. The resultsin the presentpapershov
that surprisingly the asymptoticbehaiour is much
worsefor (14.1,14.1), (14.2,14.2) and (6,26). The
systematierrorevendivergesto (minus)infinity for ¢
approachingero.Fig. 3 in section“Booleanmodels”
illustratesthat none of the four adjacencieyields a
uniformly best estimator It dependshighly on the
parametersof the Boolean model which adjaceng
performs best. In section “The connectvity of the
pore spaceof AAC” numeric results are presented
which shav thatfor practicableresolutionsof images
the Euler number can be estimatedreasonably In
particularfor theimagein Fig. 1btheestimatordased
on the four consideredpairs of adjacenciesdo not
differ considerably
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THE EULER NUMBER OF A SET

To begin with we recallsomefactsconcerninghe
Euler numberin orderto have a comprehensie but
alsomathematicallysolid base.

There are several equialent definitions of the
Euler numberof a set, seethe books of Hadwiger
Hadwiger (1957), Matheron Matheron (1975),
SchneiderSchneider1993), and SerraSerra(1982),
andWeil's paperwWeil (2000).

Oneway to introduceof the Euler numberx" in
R" is to fix thevalues

X"@©=0 and x"(%)=1

for any corvex body X,, andto definethe continuation
to finite unionsof corvex bodiesby additivity, namely

X" UXp) = X"(X0) + X" (%) = X" (X N Xo)
for corvex bodiesX;, X,.

Generally for finite unions, this additvity is
expressedy a so-calledinclusion-clusionformula.
The classof finite unionsof corvex bodiesis referred
to asthe corvex ring or the classof polycorvex sets.

On the corvex ring, x"(X) can equialently be
introduced by Hadwigers recursve definition, see
Ohseretal. (2002b).This is the basisfor determining
the Euler numberby countingtangentpoints of the
setX. Let X¢ andX denotethe complemenbf X and
thetopologicalclosureof X, respectiely. Hadwigers
recursve definition can be usedfor defining x"(X°)
too, whereX is from the corvex ring.

For the Euler numberof a polytope P, i.e. the
convex hull of a finite set of points, see Schneider
(1993), the mentioneddefinitions are coherentwith
the EulerPoincaé formulain termsof numbersof the
lower-dimensionafacesof P. For k= 0,...,n denote
by #X(P) the setof all k-facesof P. In particular
ZO(P) is the setof vertices,#1(P) the setof edges,
Z"1(P) the setof facets,and.#"(P) is the polytope
itself, #"(P) = {P}. Furthermorelet #%*(P) bethe
numberof elementsn .%(P). Thenthe Eulernumber
of P canbewrittenas

i(—1)"#9k(|3) :
k=0

1)

For a polytope, the EulerPoincaé formula yields
that the right hand side equals 1, see (Webster
1994, Theorem3.5.1). Formula (1) can be additively
extendedto the casewhen P is a finite union of
polytopesj.e.whenP is apolyhedronseealso(Jernot
etal., 2001,Sectiord).
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Anotheraspectwhich is of particularimportance
in image analysis, is the relation between the
Euler numbersof the ‘object’, x"(X), and of the
‘background’,x"(X¢).

Undersomeweak conditionsfor the setX we get
theimportantrelationship

X"(X%) = (=)™X"(X). )

Theconsisteng relation(2) wasshown in Ohseretal.

(2002b)(andalreadyin (Langetal., 2001,Appendix)
for those boundedsets X for which both X N B

and X°N B belongto the corvex ring for all convex

bodiesB). A more generalversion of the assertion
of the theoremis proven in Ratajand Zahle (2002).
Finally, we remarkthat (2) is olbvious for compactX

with nonemptyinteriour. In this casex"(X) =1 and
X"(XE) = (~1)™™,

DISCRETISATION WITH RESPECT TO
ADJACENCY

Roughly speaking discretisationof a setX ¢ R"
meanghe approximatiorof X by a polyhedralsetdue
to obsenationson a pointlattice.

We considera cubic lattice 1.2 = cZ3 (where
7Z denotesthe set of integers) in the 3d space.
In our approach, the discretisationis based on
polytopes which are parts of the lattice cells. In
Ohseret al. (2002b)we developedthe corresponding
definitionssystematicallywith respecto certaintypes
of tessellationsof the lattice cells. Denoteby C =
[0,¢)%, ¢ > 0 the half-open unit cell of the lattice.
Obviously U, ;:(C+Xx) = R3, i.e.thecellsarespace-
filling. In order to define an adjaceng systemwe
endav C with asetof corvex polytopesP,,...,PhCC
with Z°(R) C L3, i.e. theverticesof P mustbelattice
pointsthatis points,wherethe setsX andX® canbe
obsened. All the othercellsC + x are endaved with
polytopeswhich are the translatesP; + X,...,Pn+ X
wherex € 1.3,

Theadjacencyystenbasednthesetof polytopes
P ={P,,...,Pn} is definedas

3
with

This formal expression means that an adjaceng
systemis formedby the polytopesP, + x andall their
lower-dimensionalfaces.Thus an adjaceng system



is alreadydeterminedby a set &2 = {P,,...,
polytopes.

Pn} of

Now we list four systemswhich are of particular
interest. We skip all considerationsof the question
which additional propertiesa reasonableadjacenyg
systemshouldhave, seeOhseret al. (2002b)for more
details. The verticesof the basiccell C are denoted
by Xo,...,%; given by x, = (0,0,0), x; = (c,0,0),
X, = (0,¢,0), X3 = (c,c,0), x, = (0,0,¢), x; = (c,0,c),
Xs = (0,¢,c), andx, = (c,c,c).

(i) For the 6-adjaceng (well known as the 6-

neighbourhoodh 3dimageanalysis).#; = {C}.
(i) Forthe 14.1-adjacent &, = {P,,...,Ps} with

thesix congruentetrahedravhicharecorvex hulls
of verticesof C:

l = com({XOaX17X37X7}) )
PZ = Com({Xle,XSaX?}) )
Py = COI’V({XO,XZ,Xs,X7}) )
Py = Con/({XO,XZ’Xf}’X?}) )
P = COI’V({XO,X4,X5,X7}) )
P6 = Com({X07X4,X65X7}) )
seeFig. 2a.

(iii) Forthel4.2-adjaceng: #,,,=1{P,,-..,
thesix tetrahedra

:L = conv {X07X17X3’X5}
P2 = conv({Xg, X,, X3, X7}

( )
( )
3 - COW%{XO,XZ,le, };
( 73)
( )

P} with

4 = conv {X07X3,X5ax7}
Ps = corv {Xzax4ax65X7}

which tessellatghe unit cell asshown in Fig. 2b.

bl
7
bl
?
?
bl

(iv) For the 26-adjaceng (correspondingto the
26-neighbourhood): 2,5 = {cow(¥) : ¥ C
{Xg:---,%;}}, i.e. the systemof the corvex hulls
of all subset®f the setof verticesof C.

AN \

b)

Fig. 2. Thetessellatiornof the unit cell defining(a) the
14.1and(b) the 14.2neighbourhood.
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For short,we will write F insteadof F(%%), and
analogouslyfor the otheradjacencieskor a givenset
& theadjacenyg systemF(&?) providesthe elements
(‘bricks”) for discretisation.The discretisation of X
with respecto theadjacencyF(&?) is definedas

F(P)NX = {F e F(P) : FOF)C X}, (4)

i.e.a'brick’ F of theadjaceng systembelongsto the
discretisatiorof X if andonly if all the verticesof F
(andnot necessarilghewhole setF) belongto X.

APPROXIMATION OF THE EULER
NUMBER

Our approachto the definition of adjaceng
systemginsteadof the neighbourhoodjraphsusedin
imageanalysisiandof thecorrespondingliscretisation
of setds suitedto theapplicationof the EulerPoincaé
formula(1) to polygonalsets The Eulernumberny"(X)
can be approximatedby the Euler number of the
discretisation

n

= 3 (DS @)X),

K=
seealso(Jernotetal., 2001,(4)).

For several considerationst is usefulto have a
‘local version’ of this approximationbasedon the
singlecellsC+x, x € LL". In orderto ensurghateachk-
faceis countedonly once,we have to apply somekind
of edgecorrection.We chooseweighting eachk-face
with % Herem is the numberof closedlattice cells
containingthe k-face.Formally, for £ > k let Z& X
bethesetof all k-facesk € .#X(2) X with:

(i) Thereisan¢-faceF, € #¢(C) suchthatF C F, and

(if) thereis no j-faceF; € ZF1(C), <, F; #F such
thatF C F

Then(5) canberewrittenas
n

FEPN) =5 5 (-

X"(F(2)nX) (5)

;sz WK X)),

(6)
with X_, = X — X, thetranslationof X by —x. For the
3d cuboidallattice the interpretationof the weightsis
asfollows: All verticesZ %11 X getweight1/8. The
edges#' M X (edgesof the cubes),#;-*M X (face
diagonals),and #)-* 1 X (spatial diagonal)get 1/4,
1/2,and1, respectiely. Thefaces#*rX and.#2°m
X are equippedwith 1/2 and 1, respectiely, and all
cells Z3*M X with 1. The formula can be proven

rigorously with the help of the inclusion-exclusion
principle(i.e. theadditiity of the Eulernumber).

Eq. (6) caneasilybe implementedFor detailsof
thealgorithmseeOhseretal. (2002b).
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CONSISTENCY

It is a usual requirementin image analysisthat
ary adjaceng for the ‘object’ X hasto be consistent
with an appropriateécomplementaryadjaceng’ used
for the ‘background’ X°. In 2d image analysisit is
well known that the ‘background’ hasto be treated
with the 4-neighbourhoodf the 8-neighbourhoods
used for the ‘object’, and vice versain order for
a discreteJordancurve theoremto hold. In 3d, the
6-neighbourhoods usually combinedwith the 26-
neighbourhoodbut (6,18) is consistentvith adiscrete
Jordansurfacetheorem too, seee.g. Herman(1992).
Our criterionis consisteng (2) for theapproximations
of the Eulernumberin 3d.

Assumethat the adjaceng systemsF andF, are
usedfor thediscretisatiorof X andof X¢, respectiely.
Then methodsof approximatingthe corresponding
Euler numberscan be illustrated by the following
scheme:

X = XNLE 5 Fnx & 3 Enx) ~ x3(X).

X¢ s xenL2 25 B nxe & 13(F nXC) ~ x3(X).

The pair (F,F;) of adjaceng systemsis called
complementaryf for all boundedsetsX ¢ R®

) FNF,=0forallF e Fr1 X andF; € F. M X®and
(i) X3(FrX) = ¥x3(F, r1X°).

An adjaceng systemF(4?) is said to be self-
complementarf

X (E(2)NX°) =X (F(2)NX)

for all X. Self-complementaritymplies that ‘object’
and ‘background’ are discretisedwith one and the
same method. As it has been showvn in Ohser
et al. (2002b) the following pairs are pairs of
complementanadjacenyg systems:
(IF67F26)’ (Fl4.17F1441)a (Fl4.27IF1442)a (F267IF6)'
In Ohseret al. (2002b)sufficient conditionshave
beengivenfor asetX whichguarante¢hat®(F(2) M
X) = x3(X), i.e. thatthe discretisedset hasthe same
Euler number as the original set. These conditions
imply that X hasto be morphologically open and
closed (see Serra (1982) for these concepts)with

respectto the segmentsoccurring in the adjaceng
systemsused.

Complementaryadjaceng systemsof L" are
consideredn Ohseretal. (2002b).

ESTIMATION OF THE DENSITY
OF THE EULER NUMBER

Considemow arandomclosedset= in R" which
is assumedo be macroscopicalljhomogeneousi.e.
stationary).Thedensityy,, of theEulernumbercanbe
introducedby

Ex"(=Nrw)

vol(rw) 0

= lim
XV r— oo

wherevol(-) denotesn-dimensionalvolumeandW a
compactorvex obsenationwindow with vol(W) > 0.

Assumenow thata pair (T, F.) of complementary
adjaceng systemss usedo estimatehe Eulernumber
of a realisationof = and that the ‘local version’ of
thealgorithmaccordingto formula(6) is applied.The
densityof the Eulernumbercanbe estimatedrom the
set= obsenedin W using

_ 1
A= M AW vol(©)

B ki“”kiﬁf‘”#@o” =) (®

whereW, is thereducedvindow, W, =W o C, andC =
—C, thereflectionin 0. Noticethat#(IL" NW) vol(C) ~
vol(W,). Furthermorewe remarkthatthe estimatory,,
maybebiasedbut it is free of edgeeffects.

The expectation of X, (=) is, due to the
homogeneityof =,

1
vol(C)

n n

—DRy 2 FOUF)NZ*=0).
k;( )gk FEZ%P( (F)n )

From the complementarityof F andF., in particular
(ii), andfrom (2) it follows that

Exy =

X

—~

-1 n+1
Exy = =D

vol(C) %

n n

~DEy 2 Y P(FOUF) N==0
I(ZO( )g Fg@g;( ()ﬂ )

wherethe #§, aredefinedanalogouslyo . butwith
respecto F..

As the study of sandstonémagesin Ohseret al.
(2002b) shaws, there are relevant applicationswhere
the structureis so tiny, comparedto the resolution
of the discretisedimage, that the approximationof
the Euler number does not provide the true value
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andconsiderablydepend®nthechoserdiscretisation.
Therefore,it is importantto assesshe estimatorsare
basedon differentadjaceng systemsOneimportant
criterionof quality is the systematierror (bias).Until
now, there are no results concerningthe error for
arbitraryrandomsets.

BOOLEAN MODELS

For the specialcaseof a Booleanmodel, explicit
formulasand numericalvaluescanbe derived, which
describethe systematicerror of the estimatorsof the
Euler numberwith respectto the chosenadjacengy.
SerraSerra(1982) studiedthe asymptoticbehaviour
of the biasfor the (8,4)-adjaceng andthe hexagonal
grid in two dimensionsandfor the pair (26,6) in 3d.
Using Serras ideas,we comparethe (14.1,14.1)-and
(14.2,14.2)-with the (26,6)-andthe (6,26)-adjaceng
systems.

Homogeneous Boolean models in R"

Let ® = {x;,X,,...} denote a homogeneous
Poissonpoint field in R" with point densityA > 0
(the point field of ‘germs’) and=,,=,,... asequence
of independentand identically distributed (i.i.d.)
randomcompactcorvex sets(‘grains’ or ‘particles’)
with nonempty interiour and independentof ®.
The corresponding(macroscopically)homogeneous
Booleanmodelis definedastherandomclosedset

8

Ei+%)-
i—1

For more detailed definition and explanation see
Matheron (1975), Ohser and Mucklich (2000),
SchneideandWeil (2000),Serra(1982),Stoyanetal.
(1995).

Notice that with probability one the intersection
of two grains is either empty or has nonempty
interiour, i.e. Eq. (2) canbe appliedand(9) holds.The
probability occuringon the right-handside of (9) can
be calculatedon the basisof the well known formula
for Booleanmodels(seethe bookscitedabove),

P(KNZ =0) =exp{—AEvol(Z,®&K)}  (10)
for all compactK C R", where® denotesMinkowski
addition.Thisyields

_1\n+1
B (5) = oy
éo(_l)kizl_: ;fxp{—)\EVO| (éleaﬁ‘O(F))} '

(11)

OHSER JET AL: Eulernumberof discretisedsets

It seemsto be very tediousto perform an exact
calculationof

vol(Z, ® Z°(F)) = vol ( U (El+x)>
xeZFO(F)

if F hasmorethantwo vertices,evenin the simplest
casethat =, is a ball with randomdiameter In order
to make the calculationfeasible we follow SerraSerra
(1982)in usingtheapproximation

P(F°(F)N==0)~P(FN==0) forF eF,

(12)

i.e. thesetof vertices#°(F) is replacedy its convex

hull, the setF itself. The probabilitiesP(F N = = 0)

can be calculatedeasily with the help of the Steiner
formula (seee.g. Serra(1982), Schneiderand Weil

(2000)). The approximation(12) seemsratherrough
atfirst glance However, we will seethatatleastin the
caseave examinedhere,the error inducedby (12) is

negligible. To assesghe overall approximationerror
in (9) we have to examine

;
30 vol(C)

[P(F°(F)N==0)-P(FN==0)],
(13)

which e.g.doesnot tendto O if F is a line sggment.
Neverthelessin the 3d casefor (26,6), (14.1,14.1),
(14.2,14.2), and(6, 26) we have

S k3 {—3
—1ky 2
VRS,

~-P(FN==0)] =0.
(14)

Cmm [P(F°(F)N==0)

The proof consistsof three steps. First, we split

the contritution to the approximationerror of each
element(edge,face or polyhedron)of an adjaceng

into a part due to its edgesand a ‘true’ facial part.

Second,obsene that only the linear terms in the

seriesexpansionof (13) have to betakeninto account.
Finally, due to the specialpropertiesof tessellations,
the individual contritutions cancel when plugged
into the alternatingsum. See (Ohseret al., 2002a,
AppendixB) for the detailedproof.
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The 3d case

Thereare explicit formulasfor the densityof the
Euler numberof the Booleanmodel first published
in Miles (1976). However, it shouldbe notedthatin
particularfor theisotropic3d case theformulasgiven
in the literaturediffer (dueto errorsin calculation).In
(Schneiderand Weil, 2000, Korollar 5.4.5),onefinds
for 3d Booleanmodels

A2 mAdL

_ AV

Xv==¢€ A— (15)

In this formulaV, SandM denotethe meanvalue of
the volume, of the surfacearea,andof the integral of
themeancurvature respectiely, of thetypical particle
=,. For the particular casewhere the ‘particles’ are

ballsof constandiameter, =; = B, we obtain
Xv =€ [A —UAAV 4+ uA 372 (16)
with
32 T
U2:3, u3:§’ Vzgd3

The particular caseof a 3d Booleanmodel with
balls of constantdiameteris studiednow in detail.
Explicit but ratherlong formulasfor the expectation
Ex, basedon the approximation(12) are given in
(Ohseret al., 2002a,Appendix A.3). As it is shown
there,Ex, canbe expressedn termsof the volume
density\,, of theBooleanmodelandtheratio 8 of the
diameterandthelattice spacing,

5 d

—AV
VV:]._e ) C.

IE:')/(\\/ ~ f(VV7B) ’
We usethe symbol= to indicatethatthe computation
of f(\{,,B) is basedontheapproximation12). These
calculationsallow a comparisorof the four estimators
(correspondingto the four pairs of adjacencies
consideredhere) with respectto the approximate
systematicerror |f(\,,,8) — xv| = |EXy — Xv|- The
graphin Fig. 3 shavsin whichregion of theparameter
spacewhich of thefour estimatordbehaesbest.

1.0 A

05 4+

01 4+

0.05 H

@I

0.01 +

0.005 +

0.002 - :

Fig. 3. Bestestimatos of x,, for the Booleanmodels
with balls of fixed diametes d and varying volume
density \,,. This graph shows the regions of the
parameterspace{(\,,1/B) : 0 < W, < 1,0.002 <

1/B < 1} wheretheestimatos of x,, havethesmallest
bias; red for (6,26), greenfor (14.4,14.1),blue for

(14.2,14.2),and yellow for (26,6). In the shaded
regions, the relative bias [Exy, /x, — 1| is larger than
20% if Ex, is approximatedusing(17).

Theapproximation(12) alsoallows to considerof
thelimit of the systematicerrorfor thelattice spacing
¢ — 0. Taylor expansiorof f(\,,d/c) for c provides

Y, 2 ay21 , 9(c)
Exy ~ eV [A = (uB+U,)A V+u3/\V]+?
17)

wherenumericalvaluesfor the coeficientsu,, u,, and
u; aregivenin Tablel. Noticethattheright-handside
of (17) is of a similar structureas the one of (16).
Detailson the derivation of (17) aswell asanalytical
expressiongor thecoeficientscanbefoundin (Ohser
et al.,, 2002a,AppendixA). Furthermorewe remark
that the resultfor (26,6) coincideswith that of Serra,
see(Serra, 1982, p. 557), up to a differencein the
coeficientu,.

Tablel. Numericalvaluesof the coeficientsu,, u,, andu, for Egs.(16) and(17).

Equation| adjaceng | u, U, Ug
(16) - - 3 0.925277...
a7 (26,6) 0 4.5 1.767147...
a7 (14.1,14.1) | 0.023515... 3.942039... 1.444278...
a7 (14.2,14.2) | 0.062098... 4.809625... 1.782345...
a7 (6,26) 0.007718... 3.284248... 1.068663...
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The limits of Ex, asc — 0 are surprising.lt is
easyto seethatfor u, > Otheright-handsideof (17)is
divergent.More preciselyfor theadjacenyg (26,6)the
limit of the biasof the estimatoryy, is

lim [EXy —xv] = e [-v AV +v;AVZ] - (18)
wherev, andv,; canbecomputedrom thevaluesgiven
in Table1, v, = 3, v; = 0.841870... This meanghat
thefor (26,6)the estimatorof x,, is notasymptotically
unbiasedFor (14.1,14.1),(14.2,14.2),and (6,26) we
evengetaworseresult

lim [Exy — xy] = —. (19)

c—0

The considerationsit the endof 1.6.1show thatthese
resultsarenot affectedby the approximation(12).

THE CONNECTIVITY OF THE
PORE SPACE OF AAC

As an applicationwe considerthe densityof the
Euler numberof the pore spaceof autoclared aerated
concretg AAC). Thedataof thetwo specimenshowvn
in Fig. 1 are given as 3d imagesobtainedby X-
ray microtomography{XCT). The porespaceof these
microstructureganbe modelledasa macroscopically
homogeneousandomset=.

Table2 shavsthatexperimentalaluesfor x,, can
dependhighly on the chosenadjaceny. Differences
in the measurementaluesare a consequencef the
tiny parts(comparedo the resolutionof the imaging
equipment)of the microstructuresThis meansthat,
e.g.,thereoccurpairsof adjacentattice pointswhich
both belong to the complement=°¢ but they are
separatedy a small connectionof solid matter= in
between.This propertycanbe formally expressedas
morphologicalnon-regularity of the set=, seeOhser
etal. (2002b).

In practicalapplicationsthe Euler numbershould
be measuredwith respectto several adjacencies.
Then the differencesbetweenthe resultsprovide an
impressiorof the biasof themeasurements.

OHSER JET AL: Eulernumberof discretisedsets

DISCUSSION

Thegeneralapproacho the discretisatiorof a set
X C R3, whenobsenationson a lattice L aregiven,
is basedntheconstructiorof a polyhedronin eachof
the lattice cells. Intuitive argumentssuggestthat the
approximationis improved, if the elementsusedfor
this constructionare smallerpartsof the cells. Thus
one can expect a betteradaptationof the discretised
setto the original one,if (asit is donein (14.1,14.1)
or (14.2,14.2),respectiely) tetrahedraand triangles
are used as elements,rather than the whole cells
andfaces.Moreover, the bestfit of the discretisation
of the complementaryset X® seemsto be provided
by (6,26) wherein eachcell the corvex hull of the
complementargetis used.Thiswasamainmotivation
(additionalto self-consistenyg) for usto introducethe
new 14-neighbourhoodm Ohseretal. (2002b).

This intuition is supportedby considerationsn
two dimensions:There the systematicerror when
estimatingthe Euler number of the complementof
a Boolean model (with discs of constantradius)is
reducedif the 6-neighbourhoods used instead of
the4-neighbourhooaf the complementarget.(Serra
(Serra, 1982, pp. 493/494)had similar resultswhen
he comparedhe 4-neighbourhoodvith the hexagonal
grid.) Thus the asymptoticresultspresentedn (18)
and (19) are quite surprisingfrom an intuitive point
of view: Therather‘rough’ discretisatiorwith the 6-
neighbourhoodof the complementarget)is the only
one of the consideredadjacenciesvhich providesan
asymptoticallyfinite systematicerror. The otherthree
adjacencieteadto largerandlargererrorsif thelattice
constant decreaset zero.Neverthelessfor realistic
lateralresolution(c = d/10...d/5, i.e. about5 to 10
pixels per diameter),the useof 14.10r 14.2canlead
to betterresultsthanthat of the otheradjacenciessee
Fig. 3.

Table2. Experimentaldata for the solid matterof AAC specimensestimatesf the volumedensity\,, andthe
densityof the Euler numbery,, w.r.t. four pairs of complementaradjacencysystems.

—

AAC specimen| \,, Xy [mm=3]

(porespace) | [%] | (Fg, o)  (Fig1,Fia1)  (Figp,Fran)  (Fog,Fo)
s171bFig. 1a 59 4.58 -0.17 -2.32 -4.57
s177bJFig. 1b 86| -58.13 -58.36 -63.83 -59.11
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Our resultsshedsomelight on the structureof
the complementof a Boolean model in R®. This
structure is complicated,tiny, and far from being
morphologically regular w.r.t. the lattice cell, see
Ohseret al. (2002b). The presentstudy shows that
for this type of set there can occur unexpected
effects when the Euler number is estimated.The
‘rough’ 6-neighbourhoodnissesa lot of the features
of the structure. The more sensitve 14- and 26-
neighbourhoodsmiss less. However, this can still
worsentheestimatoiof theEulernumberFig. 3 shavs
thatit is not possibleto choosean optimal adjaceny.
Even for small rangesfor the parametersall four
adjacenciesan occur as the optimal one. Moreover,
evenwhentheoptimaladjacenyg is usedtheerrorcan
beconsiderableNeverthelessnoticethatformula(17)
canbeunderstoodhsa ‘discreteadaptation’of Miles’
formula(15) or (16), respectiely, andthusit links the
estimatory, with othercharacteristicef the Boolean
model.
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