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ABSTRACT

The present study deals with the analysis of three-dimensional binary objects whose structure is not obvious
nor generally clearly visible. Our approach is illustrated through three examples taken from biological
microscopy. In one of our examples, we need to extract the osteocytes contained in sixty confocal sections.
The cells are not numerous, but are characterized by long branches, hence they will be separated using a
directional wavefront. The two other objects are more complex and will be analysed by means of a spherical
wavefront. In the first case, a kidney of a rat embryo, the tissue grows like a tree, where we want to detect the
branches, their extremities, and their spatial arrangement. The wavefront method enables us to define precisely
branches and extremities, and gives flexible algorithms. The last example deals with the embryonic growth
of the chicken shinbone. The central part of the bone (or shaft) is structured as a series of nested cylinders
following the same axis, and connected by more or less long bridges. Using wavefronts, we show that it is

possible to separate the cylinders, and to extract and count the bridges that connect them.

Keywords: 3-D geodesy, branching, Euler-Poincaré constant, wavefronts.

EXPERIMENTAL CONTEXT:
THREE-DIMENSIONAL
MICROSCOPY

The approach we present here was born from
practical cases, more precisely from two separate
issues in three-dimensional optical microscopy which
were presented to me, independently, after a space of
one month.

FIRST ISSUE: THE KIDNEY

In February 2000, Dr. John Bertram,' nephrologist
and serving Chairman of the International Society for
Stereology, spent two days at the CMM, during which
he presented his current work. The subject of his
research is the embryonic development of the kidney
studied in animals such as the rat (Clark et al., 2001).
He takes advantage of the property of embryonic
kidney to develop in vitro, which enables him to study
the organ evolution by confocal microscopy without
animal destruction (Fricout et al., 2002).

Dr. Bertram left us the serial sections of two
kidneys, and proposed to work with a student from
the Ecole des Mines, for developing a morphological
approach to his problem. Hence the decision to launch
an internship for Gabriel Fricout.

Fig. 1. a) Kidney under study (micrograph of confocal
microscopy); b) other kidney specimen. The value at
each pixel represents the maximum grey tone, for this
pixel, over the 29 sections. How to extract the branches
and the extremities of such a tree?

We can see in Fig. 1 an image of each
kidney before binarization, showing that the structure
develops in the form of a tree. The expected
morphological description bears on the geometry of
the tree, and involves two objects:

— extremities: where are they located? how are they
arranged in space?

— branches: where are they located? according to
which hierarchy and length?

Confocal microscopy reveals here a highly
anisotropic sample. Each series contains 29 sections

1Dpt of Anatomy, Faculty of Medicine, Univ. of Melbourne, Parleville, Victoria 3052, Australia
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30 wm thick, in which the orientation is roughly
perpendicular to the trunk.

On each section, the pixels are arranged according
to a square grid, whose spacing is about 4 um. The
digital volume element (voxel) looks like a cylinder
with a square base, which is seven times as high
as it is wide. Each branch extremity is surrounded
by nephrons (i.e. the basic filtering structure of the
kidney), whose number is indicative of the future
capacity of the fully-grown kidney. The nephrons,
which cannot be seen here, will become visible
through a future double staining. Then, we will have
to study the relationship between the shape of the tree
and the number of nephrons it can receive.

The discussion that followed Dr Bertram’s talk
showed that F. Meyer, S. Beucher and I did agree
on avoiding 3-D skeletons, and on approaching the
problem by means of 3-D geodesy. Indeed, 3-D
skeletons are not made of lines, as in the 2-D case,
but combine lines with flat portions; in addition, they
are more sensitive to barbs and to irregularities than
in two dimensions. Nevertheless, the student adopted a
skeleton-based method, but in 2-D, and associated with
a 3-D back projection (Fricout et al., 2002), i.e. a tailor-
made approach for the images under study. However,
one month later, when the shinbone problem arose, it
became obvious that 3-D geodesy only could provide
a general framework.

SECOND ISSUE: THE SHINBONE

Dr. Staub studies the morphogenesis of long bones,
and works on the shinbones of chicken embryos. He
designed a dynamic model of the long central zone
(shaft), where the compact future bone appears as a
series of nested co-axial cylinders® (see Fig. 2). For
verifying the model, an experiment conducted by M.
Mendjeli has consisted in slicing the shinbone shaft,
perpendicularly to its axis, into a series of a hundred
semi-thin sections, roughly like slicing a sausage. It
results into a nearly cubic grid of voxels whose step
is close to 1 wm and whose size is approximately
300 x 300 x 100.

Unlike the previous example, the primary difficulty
here is to detect the object under study. The nested
cylinders are not directly visible, and one has no idea
of the number of tunnels and cavities they may contain.
However, the bone image is virtually binary. Finally,
as in the preceding case, the space is “oriented” from
a marker, and the central marrow space plays in this
second example the same role as the contact zone
between the kidney and the gelatine (bottom of the
tree) did in the in the first example. Is it possible
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to segment the concentric cylinders of the bone, and
to describe them in quantitative terms (thickness,
porosity, contacts between cylinders, etc ...)?

Fig. 2. Two horizontal sections of a shinbone epiphysis
(chiken embryo). They come from a series of one
hundred semi-thin sections. Is the shinbone made of
nested cylinders?

METHOD: WAVEFRONTS

CHOQUET'S THEOREM

When a stone is thrown into a lake and generates a
disturbance, a wave string is being created and spreads
out while going around the possible obstacles, until the
most remote points from the middle. The wavefront,
circular in the case of a lack of borders, laps the islands
and the lake contours and finally covers completely the
lake, as shown in Fig. 3. More formally, the wavefront
F(A.x) is defined as the zone of the space reached at
time A when the wave stemming from point x has a
unit speed (Serra, 1988).

Fig. 3. 2-D geodesics. Point x is the black point in the
small finger, and the reference mask Z is the hand. a)
Geodesic disc B(A,x) centered at point x; b) Geodesic
distance function from x.

In order to extract connected objects selected
by markers, Meyer (Meyer, 1976) and Klein
(Klein, 1976) were the first ones to transfer these
notions to mathematical morphology, and the very
first formalization, named “geodesic metrics” was
established by Lantuejoul and Beucher (Lantuejoul et

2Verbal communication of Dr Staub, Laboratoire de recherches orthopédiques, CHU Laroboisiere-St Louis, 75010 Paris, France.
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al., 1981). Indeed, in Fig. 3, the zone of the reference
set, or mask, Z, swept between instants 0 et A by the
wavefront born from point x at the original instant turns
out to be a disk B(A,x) of radius A for the geodesic
metrics. This disk is smaller than the Euclidean
one of the same radius and completely contained
in Z. When the reference set Z is compact, the
induced metrics {B(A,x),x € Z} satisfy the following
property, derived from Choquet’s Theorem 11-6 in
Choquet (1966)

Theorem 1 Let Z be an Euclidean compact set and
let x and y be two disjoint points of Z. If there exist
curves of finite lenghts with extremities at points x and
y respectively, and if A stands for the lower limit of
their lengths, then there exists an arc included in Z
whose length is A and whose extremities are x and y,
respectively.

Remember that in the Euclidean space, a set is
compact when it contains its boundary and when one
can include it in a square of finite side. In what
follows, we will always suppose that reference sets Z
are connected and compact, and that for any points x,y
selected in Z, there is an arc with a length bounded
by a Anw(Z,x) and linking these two points. This
precaution is meant to exclude compact sets such as,
for instance, a spiral which winds indefinitely around
a circle.

THE ULTIMATE ELEMENTS OF
THE WAVEFRONTS

This section takes up C. Lantuejoul’s and S.
Beucher’s results (Lantuejoul et al., 1981), but presents
them differently. When using geodesics, it becomes
possible to associate any point x € Z,Z € R*, with
the point or points y € Z which are the furthest away

from x. Indeed, let B (A.x) be the geodesic open ball of
radius A and centre x, and A, be the upper limit of the A

such that B (A,x) be strictly contained in Z. As the non
empty compact sets {Z\B (Ax), A < AO} decrease
and that R" is a separated space, the intersection

N [Z\lo-}()k,x)] (1)

A<hy

is itself a non empty compact set, whose points are all
at the maximum distance A, from x. This intersection

is named “geodesic ultimate eroded set”, and B (A, x)
is the “geodesic ultimate dilated set” of point x.

The existence of extreme points may also be
considered in a regional framework, and not a global
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one anymore. We must suppose that, Z and x being
given, it is possible to find a u(Z,x) < A,(Z,x) such

that each connected component of Z \ IOB(QL,x), U<
A < A, decreases without subdividing. Then, the
previous analysis should simply be applied to sets

KN [Z\é(l,x)] LA <A

where the K;,i € [ refers to the connected components

of Z \ B(u,x). Therefore, we obtain the farthest
connected components from point x, such as, for
instance, the fingers tips for x taken around the middle
of the wrist.

Both algorithm families about geodesics
correspond to both our points of view. Invasion by
geodesic balls led to all the particles reconstruction
variants (deletion of the grains crossing the field
border, hole filling, individual analysis, etc ...) and the
search for extreme residues led to the ultimate eroded
points, to the objects limits and to the length of a
connected component (as a supremum of the distances
between pairs of extreme points).

DIGITIZATION

The digitization of geodesic operations may cause
errors, but limited ones; indeed, it is advisable to
choose, as a circle or unit sphere, the closest shapes
to their Euclidean homologues. Therefore, in 2D the
hexagon, whose six vertices are equidistant from the
center is better than the square, and, for the same
reason, the cube-octahedron is better than the cube in
3D Meyer (1992).

Fig. 4. Cube-octahedron.

This Z ball is very easy to build, when a numerical
data network in square grid is available (Serra, 1997).



It suffices to shift all even planes by half a diagonal of
the unit cube (any diagonal, but always the same one).
In practice, data are of course not moved, but only
structuring elements. For example, the substitute for
the 13 voxels of the regular cube-octahedron (Fig. 4)
is calculated by dilating the central point according to
the staggered unit cube-octahedron presented in Fig. 5.
It requires three successive planes and differs whether
the center lies in an even plane or in an odd one.

upper and lower planes  central plane
11 1.
a) 11 . 111
1
S .1
b) .11 111
11 1

Fig. 5. Staggered successive planes, for simulating a
unit cube-octahedron on a cubic grid. When the serial
number of the central plane is odd (resp. even), the
corresponding unit cube-octahedron is provided by
configuration a) (resp. b).

The wavefront emanating from this central point
starts with the point’s 12 neighbours; when the
interplane equals a/ V2 (a = square grid spacing of the
horizontal planes), the structure becomes completely
isotropic and the 12 neighbours are equidistant from
the center. This will be our assumption (section 5)
about the shinbone, but this hypothesis is not essential,
and, in any case, cannot be ventured for the study about
embryonic kidneys (section 3).

The switch from the unit ball C(x) of Z3
(octahedron, prism or cube) to its geodesic version
B, (x) inside a mask Z is

B(x)=C(x)NZ

and the geodesic ball B, (x) of the size is obtained by n
iterations of the previous one:

B,(x)=B,[B,_,(x)]NZ

The corresponding wavefront, or geodesic sphere
equals

Fy(x) = B,y () \ Ba (%)

WAVEFRONTS AND TREE DIAGRAMS

Let Z be a compact set in R” and x € Z be a point in
Z. We propose to study the evolution of the connected
components number of the wavefront F (4,x) when,
as A increases, the compact space Z is swept. The two
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types of branching, division or confluence, supposedly
remain in finite number when A € [0, A,.x], so that for
any branching at A = A < Amay, it is always possible to
find an open interval |A,, 4, [ containing A,, and inside
which there are no other branching. The number of
branches which may gather in A, is supposed to be
finite. Finally, as the branching may take the two dual
shapes (division or confluence) when A increases, it
is conventionally agreed in the proof below that the
passage A, — A, corresponds to a division.

Fig. 6. Example of branching.

Therefore, we are led to the situation described in

Fig. 6, where point x is in black, the open ball B(4,,x)
in light grey, its complement K (A,) in Z in dark grey,
and where the white wavefront indicates the precise
moment of the branching. So, the compact set

K(A) =Z\B(A.x)

has a unique connected component, when A < 4,,, and
more when A > A,. In order to determine what happens

when A = A, we first observe that for compact sets, we
have N{K (1), A <Ay} =K (4,).

The compact K(A4,) is composed of only one
connected component. Otherwise, they would be
separated by a minimum distance d; but this is
incompatible with the fact that, for any dilation of
size €, with 0 < & < d, the geodesic dilate of K(A,)
becomes connected. Therefore, the front F (A, x) itself
is connected, as otherwise, to switch from one of its
components to another one, it would be necessary to
cross a K(A) with 4 > A, but these K(A) are not
connected anymore.

When Z has several branchings, the same
description applies for each branch, upwards or
downwards from the propagation from point x, which
consequently partitions the set Z into a series of
successive pieces.

The case of the X branching has also to be
considered. It occurs when at least two branches stop
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at the critical front, and at least two of them start from
there. In this case, the intermediary connected region
is reduced to the front in A, for, if it was larger, we
would come back to the previous case; and if the front
was not taken into accout, we would no longer have
a critical element, but only separated branches. By
gathering these results, we can state:

Proposition 2 Let Z be a compact of R". If, for any
point x € Z, the wavefront F (A,x) emanating from x
admits a finite number of connected components, with
a finite variation, then, as radius A varies, F (A,x)
partitions Z into a finite number of connected sections,
corresponding to open intervals of A, and separated by
connected components of the front which are located at
the critical points of the branchings.

It is easy to prove that this partition has the largest
possible that satisfies the properties of the proposition.
Therefore the wavefront decomposition segments set X
into its branches (Serra, 1998; 2001).

Clearly, the mapping x — P{x) which associates
with any point x € Z the tree diagram characterized by
the proposition, depends on the choice of point x, even
if, when considering the common meaning of a tree,
the partition remains almost the same for all the points
selected low enough in the trunk. Besides, in this case,
the tree may be defined as a partition for which there
is no confluence for a suitably selected origin x (i.e. in
the trunk).

Note that we are talking about connectivity here,
and not about homotopy: in R® particularly, the
sections may show closed pores or toric holes.

USE OF THE TREE DIAGRAM
FOR EMBRYONIC KIDNEYS

In order to illustrate the above matter, we propose
to segment the first one of the two kidneys of Fig. 1.
The analysis contains four steps:

1. set construction from the initial data;

2. geodesic distance function of a marker in the set;
3. extremities;
4

branches.

BINARIZATION

This simple operation only requires a thresholding
between 60 and 255, followed with the fill-in of the bi-
dimensional internal pores by geodesic dilation. Still,
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the main connected component has to be extracted.
In order to do this, we take as marker x one point at
the beginning of the trunk. The reconstruction shows
that the kidney tree diagram is broken into two disjoint
parts at the level of section no. 14 (see Fig. 7b). This
is caused by the inaccuracy of confocal microscopy. In
order to put it right, both parts have been reconnected
by a small closing that generates the flat zone visible
on Fig. 7a.

Fig. 7. a) Perspective view of the binarized kidney; b)
confocal section no. 14.

GEODESIC DISTANCE FUNCTION

We take for marker X the base of the tree, i.e. in
the bottom-up sense, the content of the first section
that is not empty. The geodesic distance function starts
from marker X at the base of the kidney and progresses
inside the tree according to unit cube-octahedra (see
Fig. 8)

Fig. 8. Geodesic distance function from the anchorage
set X (negative view of the supremum of the sections).

EXTREMITIES

The extremities are nothing but the region maxima
of the previous geodesic function. These ultimate
eroded points are depicted on Fig. 9a, where number of
quite unsignificant maxima can been observed. They
correspond to some roughness of the 3-D surface
rather than to actual extremities. Their areas are very



small and they can be removed by a small surface
opening (Fig. 9b). When using this algorithm in
routine, we would better start with a regularization
of the set under study by means of an isotropic
tridimensional opening of size 1 or 2, providing that
it does not break the connectivity.

Fig. 9. a) All extremities of the kidney; b) Remaining
extremities after a small area opening (surrounded
zones), in superimposition with a perspective view of
the kidney tree.

BRANCHINGS

The extraction of branchings, which is
conceptually simple, may lead nevertheless to a
consequent computing time. Considering the quite
visible structure of the projected tree, the algorithm
used below is slightly less precise, but faster and easier
to implement.

In a first step, bidimensional branchings on the tree
projection (i.e. on the 2D set of Fig. 10) are found, by
following the progression of the 2D wavefront from
the base of the trunk, and extracting each portion
that has just been disconnected. The operation leads
to Fig. 10. Then, we get back to the 3D space by
building vertical cylinders whose bases are located
at the 2D branchings (i.e. the white zones of Fig.
10), and slightly dilated (size 2). Finally, we take the
intersection between these cylinders and the 3D tree.

Fig. 10. Projection of the 3D branchings.
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RESULTS

Altogether, starting from the connected kidney
tree, we got to its segmentation into disjoint branches
separated by thin branchings. Some branches contain
one or more, of the tree extremities. From such a
segmentation, it becomes now possible to replace the
object under study by a “’tree” in the meaning of graph
theory, where the edges can be weighted geometrical
characteristics (volume, length, location of its center,
possible end points ... etc).

EULER-POINCARE NUMBER AND
SPACE GRAPHS

Historically, the Euler-Poincaré constant (in brief:
EPC) appeared in two slightly different domains
of mathematics. Firstly, there was Euler’s reasoning
about the relations between the polyhedrons vertices,
edges and faces, which was formalized in terms
of planar graphs by Cauchy. This way of thinking
leads to counting algorithms, which are based on
the elementary edges, squares and triangles (in the
hexagonal grid). It extends to various cubic, cube-
octahedron and rhombo-dodecahedron of R?, without
any particular theoretical difficulty, but with a growing
heaviness of the elementary operations to be carried
out.

The second way, Poincaré’s, and Hadwiger’s later
on, links the successive definitions of EPC thanks to
an induction holding on the dimensions of the space
(Hadwiger, 1957; Bertrand, 1999). When transposed
to a digital grid, this approach is limited to cubic (or
to parallelepipedic) grids, but, in return, leads to a
much simpler and faster expression than the graphs
one. Thus, for a bounded digital set A, we have:

- InZ!,
v, (A) = N (vertices) — N (edges) = N (¢) — N (-)
— In Z?2, for the square grid:
v, (A) = N (vertices) — N (edges) + N (faces)
=N(e)-N(=)-N())+N(O)

Still in Z2, if we agree on calling V; (A) the sum of
the constants v, of the horizontal lines of A, we can see
that

v,(4) =vi(A) -4 ),

where A© | stands for the Minkowski substraction of
A by the unit vertical segment.
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vild)y= N(*) - N(—) -

-neh+ e+ .-'\fﬂ) - .\(@J

N(~7) + N(—=)

Fig. 11. Euler-Poincaré Constant in TR®.

In Z3, this is the same, and Euler’s number v, (A)
defined as

v;(A) = N (vertices) — N (edges) +

N (faces) — N (blocks)

is expressed by the same increment as before, for we
have (see Fig. 11)

v3(A) =V, (A) =V, (Ao ]) )

where V,(A) is the sum of Euler bidimensional
numbers of the horizontal sections of A, and where ©
stands for he Minkowski substraction of A by the unit
vertical segment (equation (2) can easily be extended
to R* by recurrence). Here the word “block” means
“elementary cube of 8 voxels”, as depicted in Fig.
11. Constant v, is independent of the choice of the
“vertical” direction.

From an experimental point of view, the equation
(2) is very convenient, for in image processing
systems, Euler bidimensional constants are generally
rapid to get and the unit linear erosion between two
consecutive planes is a simple operation, too. It is this
equation (2) that has been implemented in the shinbone
example below.

Finally, remember that the EPC of a simply
connected object (i.e. homeomorphic to a cube) equals
1, that of a torus (typically, a donut) equals 0, and that
of a hollow sphere (such as a football) equals 2. More
generally, in 3D the EPC is equal to the number of the
connected blocks, minus the number of tunnels, plus
the number of cavities. Moreover, the constant v is C-
additive, which means that

v(A)+v(A) =v(AUA)+Vv(ANAY),

is an equation that allows one to reduce complex
figures to the most simple ones. Thus, the EPC of
lampshade pierced by 1000 pin holes equals —1000.

SHAFT OF CHICKEN EMBRYO
SHINBONES

PURPOSE

The bone zone under study is situated in the central
part of a chicken embryo shinbone, whose axis defines
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the vertical. The experimental data form a series of
98 rectangular slices of 320 x 310 pixels each. The
uniform grey of the shinbone phase allowing an easy
thresholding (see Fig. 12a), the two problems to be
solved are then the following:

1. Implementing and checking Dr Staub’s model,
that is to say switching from the model of nested
cylinders to an effective segmentation of the bone
into nested structures thanks to some convenient
quantitative criterion (to be found);

2. Once the segmentation is achieved, extracting
more specifically the bridges that link two
successive cylinders, and calculating the homotopy
of both bridges and cylinders.

ALGORITHM

For the sake of pedagogy, we work, on the one
hand, on all 98 slices, and on the other hand, on
the first 14 ones only. We call “bone” the first file,
and “bonel” the second one. Thanks to reduced
thickness file bonel, some structures are made more
easily visible; moreover, the comparison between the
wavefronts of bone and bonel will inform us about the
representativity of sample bonel.

Fig. 12. a) Perspective view of bonel; b) Central
cylindric marker M.

If the nested cylinders model is correct, the
wavefront stemming from the central medulla zone
and penetrating into the bone should propagate more
rapidly when it floods a cylindrical crown than when
it crosses the narrow isthmuses that link the crowns
altogether. Therefore, we have to:

— generate a relevant central marker M;

— plot the curve of the wavefront surface F (A, M)
versus distance A, which should show oscillations
with more or less periodic minima;

decompose the geodesic wave into sections limited
by minima values (bone segmentation);



— extract the wavefront at each minimum, which will
result into bridges;

— calculate Euler constant for bridge sets, and
cylinders;

... all operations that will now be executed.

RESULTS

The central marker M is obtained by working one
section after the other, and by extracting the central
pore as a large connected particle that misses the edges
(algorithm bonel), see Fig. 12b.

The measurement variation of the wavefront
surface, for both files bone and bonel is plotted in
Fig. 13. Their minima are approximately on the same
abcissae, for instance 16 instead of 13 or 6 instead
of 5, which is an auspicious start. Bone and bonel
segmentations, carried out from the following minima
abcissae

0;22:44 ;5 oo for bone
5;18,24;41,65; ..ccccccciieeiiene for bonel

lead to the results shown in Fig. 14.

3 & 80 10x 12 140

Fig. 13. Plot of the wavefront surface versus the
propagation steps.

Fig. 14. 3D segmentations of two slices.
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In order to extract the branchings between
cylinders, a stronger and partially false hypothesis has
to be made: the wavefronts corresponding to each
minimum of the plot are supposed to be exclusively
located in these narrows. Based on this approximation,
the bridges between cylinders no. m and m + 1 match
with the set difference between the m 41 and m sized-
geodesic dilates, where m is the abcissa of a minimum.
The contact zones between the first two cylinders, for
both files bone and bonel are displayed in Fig. 15.

Fig. 15. Views from above of the dilated bridges, for
“bone” and “bone 1.

We now treat the last point, about countings on
the various extracted sets. As one can note on the
following table, the bone is quite pierced and broken.

Region Euler Poincaré number
bone bonel

initial bone —1536 —237

connected  component, —1885 —275

adjacent to the marker

bridges between the first 1447 205

two cylinders

same bridges, followed 32 10

by a unit dilation

Broken, for when reducing the object to its
part adjacent to the central marker, at least 1885 —
1536 = 349 small isolated parts are removed
(experimental artifacts?). Pierced, for this main
connected component has 1885 holes, if it is admitted
that it does not contain internal closed pores (this
seems realistic when we consider the thicknesses).

The EPC of the bridges (1447) seems quite high.
In fact, more than a single thick wire linking one
cylinder to the following one, a joint rather looks like
a bundle of fine fibers. This is the reason why an
elementary dilation (the 13 voxels of the unit cube-
octahedron) brings Euler-Poincaré number down from
1447 to 32.
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CONCLUSION

Remarkably, the same wavefront concept in R" or
Z" allows one to describe:

— the connected components, via its surface

measurement;
— the bottlenecks, via the minima of its variation;
— the branches, via the variation of its connectivity;

— and the extremities, via its ultimate locations;

and its application to complex 3-D histologic
structures proves the outstanding power of this
tool.
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