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ABSTRACT 

The aim of this study is to estimate the velocity of fatigue crack growth (crack growth rate - CGR) from the 
texture in SEM images of crack surfaces. A simple and quick method is based on fitting training images as a 
linear combination of several small subimages selected from the images themselves. The size of basic 
subimages is derived from autocorrelation functions of the image in row and column direction. The selection 
of basic subimages is based on two indicators: "appeal" evaluating their shape content, and mutual 
coefficient of correlation. The method is easy to implement and quick in computations, while results of testing 
application are fully comparable with best ones obtained within textural fractography of fatigue failures.  
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INTRODUCTION 

Within the quantitative fractography of fatigue 
fractures (Beachem, 1968), the traditional source of 
information on the crack growth rate (CGR) is 
striations (Nedbal et al., 1989; 1997a,b, 2000; Siegl 
and Matocha, 1997). As an alternative solution of the 
reconstitution of fatigue crack history, textural 
methods are being developed (Lauschmann et al., 
2001). For the application of a textural method, the 
mesoscopic area with SEM magnifications between 
macro- and micro-fractography (about 30 ÷ 500 x) is 
especially suitable. These low magnifications were not 
frequently used in the past because of the absence of 
measurable objects in images. Examples of typical 
image textures are shown in Fig. 1. 

Three textural methods have been yet worked up 
to the practical application: 2D spectral analysis 
(Lauschmann et al., 2000), analysis of the texture as a 
Gibbs rando� ����� �	
����
�� 
�� ������ �����

and extraction and analysis of a fibre structure 
(Lauschmann, 2001). Very good results have been 
obtained also with 2D wavelet transform. Subsequently, 
other methods of textural analysis (Parker, 1997, see 
for an overview e.g.) are being tested.  

All methods based on decomposition of the image 
use pre-defined basic functions. In the case of Fourier 
transform, the trigonometric basis is used, in wavelet 
transform some type of wavelets, etc. The idea of this 
paper is to extract the basis directly from the training 
images. 

  
a b 

Fig. 1. Examples of typical textures in images of fatigue crack surface. Low  (a) and high (b) crack growth rate. 
Stainless steel AISI 304L. 
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METHOD 

Methods based on decomposition of image 
textures into a linear combination of basic objects 
(planar waves, wavelets, etc.) meet a problem caused 
by a large amount of output data. For example, the 
spectral matrix contains a number of values, which 
equals half the number of pixels of the original 
image. Consequently, a special task must be solved: 
to analyze and express the relation between this large 
set of spectral coefficients, and the known value of 
CGR. Within the wavelet transformation, the problem 
is similar. 

The idea of auto-shape decomposition is simple: 
The decomposition will be "tuned" especially for the 
given set of images so that the basis will not be 
enforced a priori but will originate from training 
images. Training images will be analyzed to find 
several special small subimages, so that the whole 
images could be fitted by linear combinations of 
them. A measure of the presence of single basic 
subimages within the decomposition will be taken for 
textural parameters. The advantage of this approach 
is that the output of the decomposition is a small set 
of coefficients, which can be simply related to the 
value of CGR. These coefficients reflect the occurrence 
of some inherent configurations of pixels in the set of 
images and so they are expected to reflect also the 
dependence on the CGR.   

The set of basic subimages cannot create an 
orthonormal basis in a strict algebraic sense. However, 
this is also not necessary. The approach ought to be 
expressed in terms related to regression instead of 
decomposition. Nevertheless, to keep the continuity 
with usual methods, we will hold the term basic 
subimages, but they should be understood as a 
multilinear regression function.  

The whole approach can be applied in the 
following steps: 

1. The image matrix should be resized into smaller 
dimensions. The care should be taken of 
conserving the main textural structure. 

2. Mean autocorrelation functions in the row and 
column direction of training images are 
computed. In both directions, the lengths of 
correlation, dx and dy, are estimated. They should 
be several pixel distances. If their values are not 
appropriate, the ratios of resizing images (step 1) 
can be changed. 

3. Training images are divided in a Cartesian 
manner into elementary subimages of the width dx 

and height dy. Let us denote the i-th elementary 
subimage of the j-th image xij. The sequence of 
elementary images is not relevant. Let the number 
of all elementary subimages within one image be 
p. Not whole subimages around margins of the 
image are excluded. 

4. From the whole set of elementary subimages of 
all training images, several ones are chosen to 
form the basis. The rules for selection of this set 
will be discussed later. A non-zero constant 
subimage of the same size should be added. Let 
us denote the set of basic subimages {bk}, k 
=1,2,…, nb.  

5. All elementary subimages are fitted as linear 
combinations of the basis {b} 
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Here δij denotes the error matrix of the same size 
dx x dy, arising from the fact that the 
decomposition is not total. 

6. For every training image, mean absolute values of 
regression coefficients are computed: 
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7. Within the whole set of training images, the 
relation between CGR (CGRj for the j-th image), 
and the image texture, may be expressed by linear 
regression: 
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where ck, k = 0,…, nb are regression parameters 
and εj denotes the residual deviation.  

For a special case of analysis of textures, the 
simple general algorithm is completed with particular 
data optimized for the collection of training images: 
the set of basic subimages, and values of parameters 
ck, k = 0,…, nb. Within fractography, CGR may be 
estimated from images of fatigue crack surfaces that 
originated under comparable conditions as training 
ones. In a general texture-based classification, the set 
of parameters αjk (related to the j-th training image 
and k-th basic subimage) can be used directly to 
distinguish classes of textures.  

Now, we can focus on the selection of basic 
subimages. The frequency of occurrence of any 
similar brightness structures is not a suitable indicator. 
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The most frequent structures do not contain shapes, 
being close to white noise. The intuitive requirement 
on basic subimages, that they should reflect typical 
inherent structures, may be expressed by two 
qualities: 

- the variation of brightness within the subimage is 
large (it means that it contains great differences of 
brightness, making possible the presence of any 
objects on a background), 

- the sum of differences between brightness in all 
neighbouring pixels is small (it means that pixels 
which are close in brightness are close in space – 
in other words, that the image contains rather 
objects than noise).    

To express both qualities together, an indicator 
called appeal was proposed. It is defined as 

 A ( )
( )

( )
�

�

�
=

Var

DiffΣ
. (4) 

Here Var(x) denotes the variance of brightness within 

image x and ΣDiff(x) denotes the sum of all 
absolute differences between brightness in the 
neighbouring pixels. The form of a ratio with the 
square root in the denominator was found empirically 
by testing a number of cases. 

The selection of the set of basic subimages should 
ensure that they are as much different as possible. 
Not only for the reason to generate a rich space of 
variability of their linear combinations, but also to get 
a linear system (1) that is far from being singular. It is 
obtained by checking mutual correlation coefficients 
of single basic subimages (in the sense of brightness 
in the corresponding pixels) while setting the basis 
together. 

Finally, the set of basic subimages may be set in 
two steps: 

1. Elementary subimages of all training images are 
sorted in decreasing order according to the value 
of appeal (4). The first one (with largest value) is 
accepted for the basis. 

2. Further elementary subimages from the sequence 
are tested. The subimage is added to the basis, if 
absolute values of correlation coefficients with all 
subimages accepted so far are smaller than a 
selected limit.  

With the increasing number of subimages involved 
in the basis, the quality of results becomes better. 
However, their number must not be larger than the 
number of pixels in the elementary subimage, nb ≤ dxdy.   

APPLICATION 

Three specimens (C16¸18) of stainless steel AISI 
304L were loaded in the same laboratory conditions and 
the process of fatigue crack growth was recorded. From 
each fracture surface, about 45 SEM images in the 
magnification 200 × (the field of view of 0.6 × 0.45 
mm) were obtained, and a value of the experimentally 
rated CGR was assigned to every image. Images were 
normalized (Lauschmann, 2000) to exclude large-scale 
fluctuations of mean brightness and contrast, by using 
the brightness transformation 
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where meanS(x) and stdS(x) are the mean value and 
standard deviation of the brightness in the 
neighbourhood S of the point [i,j]. The size of S has 
been set 33 × 33 pixels with [ i,j] in the middle. As an 
example of application, we select training images as 
every second image from the set C16 (23 images).  

To get a reasonably small elementary subimage, 
we have resized the images into the size 300 × 400 
pixels. The autocorrelation functions for row and 
column directions are plotted in Fig. 2. The lengths of 
correlation defined by | �x (d > dx | < 0.05, 
| �y (d > dy | < 0.05 are dx = 3 and dy = 5 pixel 
distances. Therefore, the dimension of elementary 
subimages is 5 × 3 pixels and images are divided into 
(300/5).integer(400/3) = 7980 elementary subimages. 
The operation "integer" expresses excluding of not 
whole ones around margins. 

The condition for selecting a subimage for the 
basis was set by the limit of correlation coefficients 
|�| < 0.44.  Twelve basic subimages were selected 
from the training images. Their position in the 
sequence of the largest values of appeal A is evident 
from Fig. 3, and they are shown in Fig. 4. The basis 
was supplemented with a non-zero constant image to 
the total number of nb = 13 basic subimages. 
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Fig. 2. Mean autocorrelation function of image 
brightness in row and column direction. 
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Fig. 3. The sequence of the largest values of appeal 
A; cases selected for the basis (see Fig. 4 by rows). 

 
Fig. 4. Basic subimages selected from training images. 

  
(a) (b) 

Fig. 5. Comparison of an original (a) and recomposed (b) image (sections 256 × 256 pixels). 
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A comparison of an original image and its 
recomposition by elementary subimages according to 
(1) is shown in Fig. 5. The agreement is very good. 

Final results are documented in Fig. 6. The accuracy 
of estimates is fully satisfactory for a practical 
application. The width of the strip of the estimated 
values of the CGR is comparable to results of textural 
methods that are much more sophisticated and have 
significantly greater requirements on computational 
time. 
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Fig. 6. Comparison of crack growth rates measured 
experimentally and estimated on the basis of training 
images. One point represents one image. The line y = 
x represents the ideal agreement. 

DISCUSSION 

Two indicators were chosen for the selection of 
basic subimages: appeal defined by the formula (4) as 
the measure of shape content, and mutual coefficient 
of correlation as the measure of independence. They 
were found empirically by testing many variants, as 
the pair giving the best results. It regards also the 
selection of the limit value of correlation coefficient, 
which generates finally the number of subimages 
creating the basis. To complete the set of optional 
parameters, the size of the mask S for normalization 
should be mentioned. It has been set according to 
previous experience. Of course, we cannot say how 
far the empirical optimisation of the algorithm would 
be valid for different data sets.  

The method of auto-shape decomposition is 
oriented entirely to the dominant component of the 
image texture, characterized by the largest characteristic 
dimensions. The information contained in smaller 

dimensional components of the texture (high 
frequencies) is more or less lost. 

The division of the image into a set of elementary 
subimages, which are analyzed separately, introduces 
special limitations. The number of subimages must be 
large, so that they can be regarded as a random 
sample. It means that the dominant texture must be 
small in relation to the image dimensions. 

CONCLUSIONS 

The method of auto-shape decomposition is very 
simple, easy to implement and quick in computations. 
Results obtained are fully comparable with other 
textural methods used within fractography of fatigue 
failures, which are usually much more complicated 
and time-consuming.  

The auto-shape decomposition performs one of 
ways which could be used to solve a future task of 
fractography: the generalisation of the traditional 
concept of fractographic feature into its randomized 
analogy - fractographic textural element. The definition 
of textural elements by means of basic subimages 
will be investigated. 

From the point of view of image analysis, the 
core of this paper consists in its main idea. Over and 
above it we did not want to exceed the scope of an 
example. Consequently, the algorithm was optimised 
empirically, and its variants giving worse results were 
not discussed.  

The basic idea is general to such a degree that it 
could give good results also out of frames of the 
textural fractography. For general application, 
theoretical grounds of the method should be derived, 
and the algorithm should be optimised generally.  
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