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ABSTRACT 

Water diffusion tensor magnetic resonance imaging (DT-MRI) is a non-invasive and sensitive modality that 
is becoming increasingly popular in diagnostic radiology. DT-MRI provides in vivo directional information 
about the organization and microdynamics of deep brain tissue that is not available by other MRI relaxation-
based methods. The DT-MRI experiment involves a host of imaging and diffusion parameters that influence 
the efficiency (signal-to-noise ratio per unit time), accuracy, and specificity of the information sought. These 
parameters may include typical imaging parameters such as TE, TR, slice thickness, sampling rate, etc. The 
DTI relevant parameter space includes pulse duration, separation, direction, number of directions (Ne), order, 
sign and strength of the diffusion encoding gradient pulses. The goal of this work is to present and compare 
different tensor encoding strategies used to obtain the DT-MRI information for the whole brain. In this paper 
an evaluation of tensor encoding advantage is presented using a multi-dimensional non-parametric Bootstrap 
resampling method. This work also explores the relationship between different tensor encoding schemes 
using the analytical encoding approach. This work shows that the minimum energy optimization approach 
can produce uniformly distributed tensor encoding that are comparable to the icosahedral sets. The minimum 
condition encoding sets are not uniformly distributed and are shown to be suboptimal and related to a 
commonly used heuristic tensor encoding set. This work shows that the icosahedral set is the only uniformly 
distributed set with Ne = 6. At equal imaging time, the Bootstrap experiments show that optimal tensor 
encoding sets can have 6 < Ne < 24.  

Keywords: analytical encoding, bootstrap, diffusion tensor encoding, icosahedron, minimum energy, spatial 
distribution. 

INTRODUCTION 

Recent advances in magnetic resonance based 
diffusion tensor imaging (DT-MRI) provide important 
in vivo information about water diffusion properties 
(direction, magnitude and anisotropy) of biological 
tissues (Basser et al., 1994; Le Bihan, 1995). A 
typical DT-MRI experiment is commonly acquired 
using a spin-echo prepared single-shot echo-planar 
sequence with bipolar diffusion encoding gradient 
pulses applied along the three physical gradient 
channels (Taylor and Bushell, 1985). The measured 
diffusion sensitized signal is a superposition of 
spatially dependent incoherent phases, acquired due 
to random translational Brownian motion during the 
spatially dependent diffusion encoding magnetic field 
(Stejskal and Tanner, 1965; Hoehn-Berlag, 1995). The 
diffusion magnitude and anisotropy may reflect the state 

of the cellular membrane permeability, myelination and 
axonal integrity, compartmentalization, and hindrance-
both intrinsic and geometric-to mobility (Norris 
2001; Cercignani and Horsfield, 2001; Gass et al., 
2001; Hoehn-Berlag, 1995). The DT-MRI technique 
is quantitative and has been compared with 
anatomical and histochemical findings (Makris et al., 
1997; Hsu et al., 1998; Axer et al., 2000; Wall et al., 
2000). The DT-MRI information is important in 
mapping deep white matter architecture (Mori et al., 
2001; Melhem et al., 2002) and can be useful in 
linking the geometric contributions to tissue ionic 
conductance (Haueisen et al., 2002). Although there 
are different acquisition strategies and interpretation 
flavors such as q-space and multi-tensors, the single 
tensor model approach is adopted here. It is assumed 
that the imaging parameters are selected such that an 
acceptable image spatial resolution and SNR has been 
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achieved. A recent analysis by Basser (2002) has 
shown that the single tensor model is a practical 
option in a clinical setup if the acquisition parameters 
are carefully selected. This paper reviews the 
fundamental aspects of the single tensor encoding and 
estimation problem. The tensor encoding theory is 
used to define figures-of-merit that can be used in the 
design and evaluation of different encoding sets. A 
Bootstrap statistical procedure is used to compare the 
performance of different diffusion tensor encoding 
strategies. This paper also presents some results of 
full human brain DT-MRI maps acquired at 3T, using 
optimally designed tensor encoding sets. 

DIFFUSION TENSOR PARAMETER 
SPACE 

The symmetric positive definite diffusion tensor 
(DT) has six independent elements, which can be 
diagonalized into three eigenvalues and three 
orthonormal eigenvectors (Fig. 1); therefore, a 
minimum of six independent encoded measurements, 
in addition to a reference image, is required to decode 
the diffusion tensor (Basser et al., 1995). In general, 
the total number of DT-MRI images, NT, is composed 

of a sum N N s N sT e d
s

N s

=
=

∑ ( ) ( )
1

, where Ne(s) is the 

number of encoding directions each averaged Nd(s) 

times at some diffusion weighting step (s). The 
diffusion weighting b-factor contribution for a 
bipolar gradient pulse is given by b = (δGγ)2(∆-δ/3) 
(Stejskal and Tanner, 1965), where γ is the nuclear 
spin gyromagnetic ratio and G is the amplitude of the 
diffusion gradient pulses. The two-step DT-MRI 
experiment is acquired by varying the direction, sign, 
order, strength (G), number of reference (Nref ; b~0) 
and diffusion weighted images (Nd), at fixed imaging 
parameters: repetition time (TR), effective echo time 
(TE), diffusion pulse duration (δ) and separation time 
(∆), slice thickness, and sampling parameters, etc. 
(Fig. 2). The total imaging time, T, for a two b-factor 
DT-MRI experiment (Ns = 2) can be expressed as 
T = (Nref + NdNe)TR. The error associated with the set 
of DT-MRI encoded measurements is a function of 
the tensor gradient encoding scheme (Conturo et al., 
1995) and the partitioning of the total diffusion 
imaging time, NT (Xing et al., 1997; Cercignani and 
Horsfield, 1999; Jones et al., 1999). 

 

Fig. 1. The diffusion tensor ellipsoid, the local tissue 
and physical gradient coordinate systems. Note that 
the positive definite and symmetric diffusion tensor 
can be diagonalized (Dei=λiei) into three eigenvalues 
and three eigenvectors. 

 

Fig. 2. Schematic of the spin-echo bipolar gradient 
diffusion tensor imaging pulse sequence and the DT-
MRI parameter space. 

SELF-DIFFUSION TENSOR ENCODING 
THEORY 

In this section we describe the single diffusion 
tensor estimation problem. The encoding theory is 
essential in the optimization of the encoding parameters. 
Additionally, it is convenient to recognize and use the 
mathematical analogy of the DT-MRI theory with the  
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theory developed to characterize the chemical shift 
tensor (Alderman et al., 1990) and the thermal 
expansivity tensor (Nye, 1957). Since the tensor is 
diagonally symmetric, a minimum of six non-
collinear encoding directions is needed to obtain the 
six independent elements of the diffusion tensor, D 
(Basser et al., 1995)  

 
D =

















D D D

D D D

D D D

x x x y x z

y x y y y z

zx zy zz

, (1) 

where Dxy = Dyx, Dxz = Dzx and Dyz = Dzy. 

Alternatively, the unique tensor elements can be 
represented be represented by the column vector 
(Nye, 1957) 

 [ ]�d D D D D D Dxx yy zz xy xz yz

t

= . (2) 

The single tensor model that relates the unknown 
tensor D with the encoding diffusion unit vector, 
�(k) = [gx(k) gy(k) gz(k)]t, the diffusion weighting b-
factor, b, the reference intensity image, I(0), and the 
measured diffusion weighted images, I(k), can be 
expressed as 

 I k I b g k g kt( ) ( ) ex p ( � ( ) � ( ) )= −0 D . (3) 

To enhance the SNR and reduce phase 
fluctuations, the reference and diffusion weighted 
images are repeated and magnitude averaged Nref and 
Nd times respectively. The scalar quantity  

 D k g k g km
t( ) � ( ) � ( )= D , (4) 

can be viewed as the projection of the diffusion 
tensor onto the measurement encoding unit direction 
g. Dm(k) can also be expressed as a matrix product 

 D k h k dm
t( ) �( ) �= , (5) 

where  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2ˆ 2

2 2

x y z x y

t

x z y z

h k g k g k g k g k g k

g k g k g k g k

= 


.(6) 

Define the column vector �, which is formed 
from the measured data, with components 

 y k
I I k

b
( )

ln ( ( ) / ( ) )
=

0
, (7) 

where k = 1...Ne. The relationship between � and �d  
can be expressed in matrix notation as 

 � � �Y d= +H η , (8) 

where H is the design encoding matrix, which is 
formed from the row vectors �(k)t. The least-squares 
optimization and the singular value decomposition 
methods (Hasan et al., 2001a) can now be used to 

estimate the diffusivity vector, �d , where the 
superscript -1 refers to matrix pseudo-inversion:  

 
�
d Yt t= −( ) �H H H1 . (9) 

ESTIMATION OF THE TENSOR MAPS 

The estimated diffusion tensor elements, 
�
d , can 

be used to estimate the magnitude, anisotropy and 
orientation of the local diffusion tensor. Define the 
three rotationally independent principal tensor 
invariants, I1 = Trace(D), I3 = Det(D), I2 = I3Trace(D-1) 
and the Frobenius norm ||D|| which is the root of 
I4 = Trace(D2)= I1

2 - 2I2. The mean apparent 
diffusivity coefficient is defined as ADC = µ(D) = I1/3. 
In addition, define the fractional tensor anisotropy 
index, FA (Pierpaoli and Basser, 1999).  

 2

4

( )
1

I
FA

I

σ∝ = −D
D

. (10) 

It has also been demonstrated by Hasan et al. 
(2001b) that the three principal invariants can be used 
in the computation of the eigenvalues and the 
orthonormal eigenvectors of the tensor and in relating 
different tensor anisotropy measures.  

ERROR ESTIMATION OF THE 
DIFFUSIVITIES AND ENCODING 
QUALITY FIGURES-OF-MERIT 

The covariance matrix of the estimated 
diffusivities (Peebles, 1993; Rust, 2001) is given by: 

 ( ) ( )-1t -1 t t -1 tˆ ˆcov(d) = (H H) H cov(Y) (H H) H  (11) 

Eq. 7 predicts that the cov( �Y ) depends on the b-
factor, the I(0) and I(k) SNR levels. The log-linear 

functional relationship also couples the cov( �d ) to the 

estimated unknown values �d  (Anderson, 2001). In 
the case where the noise is independent, we can write 

 co v ( �) ( ) ( �)d Yt≈ −H H 1 2σ . (12) 
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The structure of the encoding matrix is important 
in performing the inversion procedure as well as 
defining figures-of-merit, such as condition number, 
energy, variance, etc., to optimize the spatial 
distribution of the encoding vectors. We define the 
total tensor variance as 

 T V D D ijij
( ) ( )=

== ∑∑ σ
1

3

1

3 2
,  (13) 

and the encoding matrix condition number as  

 co n d
e ig va ls

e ig va ls
( )

m a x ( ( ))

m in ( ( ) )
H

H
H

= . (14) 

Borrowing from the analogy with the electrostatic 
repulsion problem of Ne identical unit charged pairs 
we compute the interaction energy, E, of Ne identical 
pair charges positioned at � on the surface of a unit 
sphere (Conturo et al., 1995; Jones et al., 1999; Hasan 
et al., 2001).  

 E
g k g rr

N

k r

N ee

=
−=>

∑∑ 1

1

22

� ( ) � ( )
 . (15) 

Note that since the unit charges are constrained to 
the surface of a unit sphere, ||�(k)||=1, we obtain the 
value for the relative distance matrix element 
Rkr = || �(k) - �(r) || = 2sin(γkr/2), where γkr is the 
angle between the two unit vectors �(k) and �(r). To 
attain an equilibrium state or configuration with 
minimum energy, the angle between any two 
encoding vertices of some encoding set has to be as 
large as possible.  

REVIEW OF OPTIMIZATION AND 
SPATIAL DISTRIBUTION METHODS 

In general, the distribution of tensor shapes and 
orientations are not known a priori for a given tissue 
of interest. Consequently, it is normally assumed that 
the optimum encoding set will have uniformly 
distributed (UD) directions over a sphere. Several 
optimization methods have been reported to distribute 
the encoding Ne vertices on the diffusion gradient 
encoding sphere (Hasan et al., 2001a). These 
methods can be classified into three main approaches: 
heuristic, natural (polyhedral), and numerical. The 
heuristic sets use combinations of the cubic vertices; 
these sets use the sides (orthogonal: x or y or z), 
corners (tetrahedral: x and y and z) (Conturo et al., 
1995; 1996) and edge bisectors of the cube (x and y, 
x and z, y and z) (Basser and Pierpaoli, 1998). 
Heuristic sets can provide Ne = 6, 7, 10, or 13 
directions; these sets are not generally uniformly 
distributed in space. The exception is a combination 

of orthogonal and tetrahedral encoding with Ne = 7 
directions (Shimony et al., 1999; Hasan et al., 
2001a). The analytical solution for uniformly 
distributing unit vectors on the sphere is an unsolved 
problem in mathematics for an arbitrary number Ne 
required for tensor encoding (see references in Hasan 
et al., 2001a). The solution exists only for the 
icosahedron (20-faces, 12-vertices, 30 edges) and its 
dual the dodecahedron (12-faces, 20-vertices). The 
icosahedral vertex, face and edge centroids can thus 
provide 6,10 and 15 directions. Face triangularization 
can also provide more discrete sets with Ne = 5n2 + 1, 
n = 1,2,3,.… (Hasan et al., 2001a).  

For an arbitrary number of encoding directions 
Ne > 6, the spatial distribution problem can be solved 
by numerically optimizing and ordering tiles of equal 
solid angles on a unit sphere (Hasan et al., 2001a). 
The optimization cost function can be minimized 
using the constrained least squares method subject to 
the scalar figure of merits discussed earlier. A 
comparison of numerical optimization criteria, 
including minimum condition number (MC) (Skare et 
al., 2000), minimum tensor variance (MV) 
(Papadikas et al., 1999), minimum force (MF) (Jones 
et al., 1999) and minimum energy (ME), has been 
investigated previously (Hasan et al., 2001a). The 
minimum force and energy approaches establish an 
analogy with the electrostatic interaction problem of 
Ne identically charged pair dipoles constrained on the 
surface of a sphere. The minimum energy approach 
proved to be the fastest to converge, and it was able 
to give the natural icosahedral set for Ne = 6 (Hasan 
et al., 2001a). The numerical sets generated have to 
be further balanced to minimize the linear cross term 
couplings. The balancing adjusts the sign of each 
encoding diffusion gradient vector and seeks to 
minimize the magnitude of the net sum 

� ( )g k
k

Ne

=
∑

1

 = 1. The balanced numerical sets can then 

be called UD tensor encoding isotropic sets.  

MATERIALS AND METHODS 

DIFFUSION TENSOR IMAGE 
ACQUISITION EXPERIMENTS: 
PARAMETERS AND SUBJECTS 

Full human brain DT-MRI measurements were 
acquired with General Electric SIGNA (Waukesha, 
WI) 1.5 Tesla and 3 Tesla MRI scanners. The data 
were acquired in accordance with IRB approved 
protocols, and signed consent forms were obtained. 
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The imaging and diffusion tensor parameters were 
TR /TE /δ/∆  =  9000/65/16/21 ms with Gmax = 40 
mT/m at 3Τ.  The sequence was a spin-echo prepared 
EPI (see Fig. 2) that utilized a ramp and partial ky 
sampling. The image matrix = 256 × 256, 
FOV = 240 mm, # slices/slice thickness/space 
between slices = 39/3 mm/0 mm. The gradient strength 
was tuned to achieve a b-factor of b = 1000 s.mm-2. 
An optimum tensor encoding scheme with Ne = 12 
directions (numerically balanced minimum energy - 
ME12) was used. At 1.5T, full brain DTI data was 
acquired with the ME23 (Ne = 23) tensor encoding 
set and with TR /TE /δ/∆  =  4000/72/16/21 ms and 
Gmax = 40 mT/m. The number of b ~ 0 images, I(0), 
used was Nref = 4.  

IMAGE AND DTI PROCESSING 

The DW magnitude images (after complex k-
space 2d-fft construction) were averaged by the 
scanner. The data were then corrected for motion and 
distortion using the Automated Image Registration 
Package (AIR) (Wood et al., 1998). The registration 
template, for each diffusion weighted image, was 
selected based on a diffusion weighted image that 
shows the least distortion and sensitivity to the 
diffusion along the phase encoding direction. The 
diffusion tensor decoding, anisotropy computation 
and visualization of the raw and diffusion tensor 
model were constructed according to the formalism in 
the theory using a custom developed IDL-MATLAB 
DTI toolbox.  

BOOTSTRAP EVALUATION 
EXPERIMENT 

A single section DTI data set was acquired for 
Bootstrap statistical analysis. Data were acquired by 
repeating the measurements for different encoding 
schemes according to NT = Nref + NdNe. The 
Bootstrap is a computer-intensive, non-parametric 
statistical method that is done by randomly 
resampling the original data pool (with replacement) 
for the Bootstrap number of trials, NB > 1000 (Efron 
and Tibshirani, 1993). The advantage of the 
Bootstrap analysis over Monte Carlo simulations is 
that the latter assumes that the measurement noise 
distribution is normally distributed; whereas, the 
former works on experimentally measured data with 
no a priori assumptions on the noise distribution 
(Pajevic and Basser, 1999). Here the comparison was 
done at equal imaging time (Hasan et al., 2000) for 
different tensor encoding schemes and different 
signal-to-noise levels. The Bootstrap method is used 

 to provide the distribution of any DTI metric on a 
single voxel basis as well as the variance of the DTI 
scalar and vectorial maps. The Bootstrap iteration 
was performed efficiently, using the analytical 
diagonalization approach (Hasan et al., 2001b). To 
reduce memory usage, the Bootstrap variance in 
some scalar function f is estimated using the real-time 
expression: σΒ

2(f) = E(f)2 - E(f2), where E(f) refers to 
the expected value <f>. 

RESULTS 

THE RELATIONSHIP BETWEEN 
TENSOR ENCODING SCHEMES  

To study the relationship between different 
encoding schemes, the analytical encoding method 
suggested by Hasan et al. (2001a) was used. The 
method constructs the simplest encoding vector 
matrix for Ne = 6 from cyclic permutations of the 

normalized vector [ ]�( )g x
x

x
t=

+
± ±1

1
1 0

2
, which 

can be constructed from the rows of the generating 
encoding set  

E m

t

x
x

x x

x x

x x

( ) =
+

−
− −

















1

1

0 0 1 1

1 1 0 0

0 0 1 1
2

, (16) 

where x is a variable that allows analytical 
computation. The H matrix is given by (Eq. 6) 

H ( )x
x

x x

x x

x x

x x

x x

x x

=
+

−

−

−



























1

1

1 0 2 0 0

1 0 2 0 0

0 1 0 0 2

0 1 0 0 2

1 0 0 2 0

1 0 0 2 0

2

2

2

2

2

2

2

 (17) 

This analytical and general encoding matrix gives 
three familiar cases. For x=1 we obtain the cube edge 
bisectors described by Basser and Pierpaoli (1998); 
this encoding scheme is referred to here as the double 
oblique gradient scheme (ODG). The principal 
icosahedral encoding scheme is obtained for 

x =  xicosa = 2cos(π/5) = 
5 +1

2
and x = τ   = 

1/xicosa = 
5 -1

2
, with condition number = 

10

2
.   

The minimum condition set (Skare et al., 2000) is 
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obtained with x = mc

5 ± 21
x =

2
, with condition 

number = 
7

2
. The icosahedral family is the only 

uniformly distributed set with Ne = 6. The minimum 
energy spatial distribution algorithm will also provide 
uniformly distributed sets for arbitrary Ne including 
Ne = 6. In Fig. 3, we plot four scalar functions versus 
x for the minimum energy, variance, condition 
number and minimum angle between any two pairs 
constrained to the unit encoding sphere. Notice that 
1) the minimum energy and minimum variance 
scheme is provided by the icosahedral set, 2) the 
encoding sets at x = 1 and x = xmc have the same 
tensor variance and are biased as illustrated by the 
minimum angle plot, 3) the minimum condition 
criterion does not yield uniformly distributed 
encoding directions, nor does the commonly used 
(ODG) encoding scheme for x = 1, and 4) the 
icosahedral solution at x = τ  is expected to be more 
stable to small perturbations or errors in the design 
diffusion gradient directions. 

 

ENCODING SCHEME MINIMUM ANGLE 
TEST 

Fig. 4 compares the minimum angle computed from 
the vector dot product of all pairs in a family of 
isotropic icosahedral encoding sets constrained to the 
unit encoding sphere, as well as other heuristic 
approaches. The icosahedral family is used to provide 
the theoretical values. Note that the observations 
made in the previous section are still valid. In 
addition, the minimum energy encoding sets (ME) 
are indistinguishable from the icosahedral for Ne = 6, 
21, and 46. The Conventional-7 (x, y, z, xy, xz, yz, 
xyz), Jones30, and Force10 encoding schemes are 
described by Jones (1999). The decahedral, DSM-6 
and DSM-10 are minimum condition sets, as 
generated by Skare (2000). The ORTH scheme uses 
x, y, z, xy, xz, and yz cubic vertices. The scaled tetra-
orth scheme is used in Shimony (2000) and Nye 
(1957). The minimum angle is a sensitive test to 
characterize the bias and sensitivity of tensor 
encoding sets. The angle has to be as large as possible 
when an optimal UD configuration is attained. Fig. 5 
shows a triangularization of the minimum energy and 
icosahedral sets. Notice that the ME procedure can 
generate isotropically distributed encoding sets with 

arbitrary Ne; whereas, the icosahedral based sets are 
limited to the discrete values of Ne = 5n2 + 1, 
n = 1,2,3,4…. (Hasan et al., 2001a).  

 

Fig. 3. Scalar functions obtained from the analytical 
encoding matrix. The energy, variance, condition 
number and minimum angle as function of the 
variable, x.. 

 
Fig. 4. A summary of the minimum angle subtended 
between any two pairs of different heuristic, minimum 
energy and icosahedral tensor encoding schemes. 
The minimum angle should be as large as possible to 
warrant uniform distribution. 
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Fig. 5. Triangularization of several isotropically 
distributed tensor encoding sets; mainly icosahedral 
(with discrete Ne values of 6, 21,46, and 126) and 
minimum energy (numerical) sets with Ne = 6, 12, 24 
and 48. 

APPLICATION OF UD SETS AND 
VALIDATION OF ISOTROPIC 
PRINCIPAL VECTOR IN THE HUMAN 
BRAIN 

In this section we seek to study the distribution of 
the principal eigenvector in a normal human brain 
DT-MRI data set. A full brain DT-MRI set was 
obtained from a healthy male volunteer. A balanced 
ME23 encoding scheme, acquired at 1.5T, was used. 
The relative angle between the principal eigenvector 
and each of the 23 directions was computed. In 
addition, the same procedure was applied on the 
vertex directions obtained from the triangularization 
of the principal icosahedron with a total number of 
vertices almost matching the number of voxels in the 
normal human brain, 10n2 + 2 for n = 135. Fig. 6 
shows that the normal subject’s brain principal vector 
with FA > 0.2 is approximately distributed in all 
directions. Notice the resemblance with the predicted 
theoretical relationship for a uniformly distributed 
vector field: dN(α)/dα ~ sin(α) (Mardia and Jupp, 2000).  

 
 

Fig. 6. A test of the isotropic distribution of brain fibers hypothesis on a normal subject (A,B). The expected 
angular distribution for the same tensor encoding scheme (ME23 @1.5T) and a uniformly distributed vector 
distribution on a unit sphere (C,D). 
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BOOTSTRAP VALIDATION OF 
ISOTROPIC TENSOR ENCODING 
ADVANTAGE NE � 6 

Fig. 8 illustrates the application of the multi-
dimensional Bootstrap statistical method in the study 
of tensor metric (e.g., ADC, FA) dependence on the 
DTI parameter space. The figure shows the expectation 
values of ADC, FA and their corresponding errors for 
equivalent imaging times. The standard error and 
total variance maps of the ME6 (ICOSA6, Ne = 6), 
ME12 and ME24 are noticeably smaller than the 
heuristic ORTH, ODG and ME48 schemes. Note that 
an optimal isotropic tensor encoding scheme may 
have 6 < Ne < 24 for the quoted image parameters. 

In Fig. 9, the single voxel bootstrap distributions 
of ADC and FA are shown for two low and high 
anisotropy representative voxels at two different SNR 
levels for the icosahedral encoding scheme. The 
lowest SNR level corresponds to an SNR value of 
about 40, NT = Nref + NdNe = 55. Note that 1) the 
distribution is approximately normally distributed, 2) 
the anisotropy is generally overestimated at low SNR 
and low anisotropy and 3) since the three eigenvalue 
images are combined to obtain the ADC we expect 
the ADC to be less biased to noise than the tensor 
fractional anisotropy index, FA. In Fig. 9, the single 
voxel angular dispersion of the principal eigenvector, 
e1, is shown for different encoding schemes, low and 
high anisotropy voxels and two SNR levels. The 
reference vector, eref, is computed from the highest 
SNR possible for each encoding set. The analysis is 
done as a function of the tensor encoding scheme, 
SNR and anisotropy. Constant total acquisition times, 
TE, TR, b, I(0), etc. were maintained. The encoding 
sets compared have Ne = 6, 12, 24 and 48.  

DISCUSSION AND 
CONCLUSIONS 

Diffusion tensor imaging is a sensitive modality 
that is very promising in radiological and psychiatric 
applications (Le Bihan et al., 2001; Melhem et al., 
2002). A full brain DT-MRI exam can be obtained in 
less than 10 min using the single shot echo-planar 
method (see Fig. 10). An efficient, accurate and 
specific DTI experiment seeks to partition the total 
imaging time into the different parameter space 
variables to obtain high quality images with minimal 
artifacts. The data sufficiency condition for tensor 
decoding requires at least seven independent 
measurements. Without a priori knowledge about the 
full brain fiber distribution, the encoding directions 

are required to be uniformly distributed over the 
encoding unit sphere in order to reduce the encoding 
directional bias. This work has presented the 
fundamental aspects of the MRI based single 
diffusion tensor encoding and estimation theory. This 
work discussed some criteria (figures-of-merit) for 
the evaluation and optimization of single tensor 
encoding directions assuming a two-diffusion 
weighting scheme. The icosahedral and minimum 
energy sets have been found to be optimal for single 
tensor encoding when the tensor distribution is 
uniformly distributed. This work also related the 
minimum condition set with Ne = 6 to a commonly 
used tensor encoding scheme (ODG). The minimum 
condition criterion does not lead to uniformly 
distributed tensor encoding sets. 

The Bootstrap non-parametric statistical method 
was used at equal imaging time to study the tensor 
encoding advantage with more than the least required 
optimal six icosahedral vertices. The Bootstrap 
method is less restrictive than the Monte Carlo 
approach and is more useful in obtaining the 
distribution of any DT-MRI related map. This work 
shows that minimum energy sets with 6 � Ne � 24 are 
able to reduce the total tensor variance and the 
variance in the estimated ADC and FA maps. The 
observations made on the behavior of the heuristic 
ORTH and ODG and minimum variance encoding 
schemes were confirmed with the Bootstrap method 
and are consistent with an earlier study using Monte 
Carlo simulations (Hasan et al., 2001a). The 
Bootstrap evaluation results in this work, although 
limited to one section and one subject, are useful in 
providing feedback on the protocol design. The 
Bootstrap method presents a framework to test the 
effect of other important DTI parameters, that have 
not been addressed directly in this paper, such as Nref 
and the b-factor on the accuracy of the estimated 
tensor (Xing et al., 1997; Cercignani and Horsfield, 
1999; Jones et al., 1999). The SNR-anisotropy-
encoding-angular dispersion results are useful also in 
optimizing and regularizing fiber tracking algorithms. 
Tensor encoding with uniformly distributed sets 
seems to be more justified for whole brain studies, as 
it has been demonstrated that the human brain fiber 
orientations can sweep all possible orientations. In 
addition, tensor encoding with the sufficient 
icosahedral set with Ne = 6 and optimal sets with 
6 < Ne < 24 seems to reduce the dependency on 
systematic errors per encoding direction. For full 
brain DT-MRI data acquisition at 1.5 T, this work 
recommends using optimally distributed tensor 
encoding sets with 6 � Ne < 24. Further Bootstrap 
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studies with more subjects are needed to evaluate the 
theoretical predictions and the experimental 
observations presented in this work at 3 T.  
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