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ABSTRACT

In remote sensing, sensors are more and more numerous, and their spatial resolution is higher and higher.
Thus, the availability of a quick and accurate characterisation of the increasing amount of data is now a quite
important issue. This paper deals with an approach combining a pyramidal algorithm and mathematical
morphology to study the physiographic characteristics of terrestrial ecosystems. Our pyramidal strategy
involves first morphological filters, then extraction at each level of resolution of well-known landscapes
features. The approach is applied to a digitised aerial photograph representing an heterogeneous landscape of
orchards and forests along the Garonne river (France). This example, simulating very high spatial resolution
imagery, highlights the influence of the parameters of the pyramid according to the spatial properties of the
studied patterns. It is shown that, the morphological pyramid approach is a promising attempt for multi-level
features extraction by modelling geometrical relevant parameters.
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INTRODUCTION

Aerial and satellite data provide information
about large areas. Satellite image resolution is usually
coarser than aerial resolution, even if the difference is
about to be filled in. Metric satellite data give access
to a wider range of object sizes for a more accurate
survey of land surfaces and create new challenges
that we propose to address using here numerical
aerial images simulating high resolution satellite data.
In order to detect and extract the corresponding
multiresolution components of these images, we
propose a pyramid multiresolution analysis based on
mathematical morphology. The paper begins with a
review of pyramid algorithms followed by the
description of the morphological pyramid. An
application is last presented using object reconstructions
at several levels of the pyramid.

THE MORPHOLOGICAL PYRAMID
Background and review

The concept of the pyramid, due to Tanimoto and
Pavlidis (1975), was further developed by Marr
(1982) in the field of vision and by Mallat (1989) in
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the context of Multi Resolution Analysis. Then, the
number of different pyramids increased along with
the diversity of their applications. In this respect, it is
difficult to give a universal definition of the pyramid
concept. However, two definitions have been
proposed by Eichmann et al. (1988) and Goutsias and
Heijmans (2000): “1) The pyramid consists of a
(finite or infinite) number of levels such that the
information content decreases toward higher levels
and 2), each step toward a higher level is
implemented by an (information-reducing) analysis
operator, whereas each step toward a lower level is
implemented by an (information-preserving) synthesis
operator.” Pyramid algorithms have been used in
numerous applications such as compression, objects
segmentation or features extraction (Mallat, 1989). A
more complete account of those methods can be
found in Lindenberg (1994).

Only a few studies concern the blending of multi-
resolution and mathematical morphology (Toét, 1989;
Serra and Salembier, 1993), and none in remote
sensing. In this particular domain, even if observed
landscapes are made up of nested structures,
multiresolution is essentially called in to perform data
fusion (Pohl and VVan Genderen, 1998).
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There are several advantages to combining
pyramidal algorithms and mathematical morphology.

First of all, multiresolution analysis enables the
decomposition of a landscape into a set of landscapes
at different spatial resolutions. This point is crucial
because it is related to the concept of overlapped
elements that are significant at several scales. Applying
a morphological filter, or more generally a non linear
one, at all those resolutions enables to characterise
landscape objects by their geometrical features. Next,
the property of idempotence of the morphological
filter ensures the extraction of all features at a given
scale with only one application. Finally, this type of
filter enables the differentiation of clear elements on
a dark background from dark ones on a clear
background, which is very significant for reflectance
measurements interpretation in remote sensing imagery.

In that case, the extraction of the local reflectance
variations is performed by local comparison. It is
consequently robust whatever the radiometric quality
of the image.

At each level of the pyramid, the extracted
information describes image characteristic patterns
and can be used also for the reconstruction of isolated
objects.

The morphological pyramid algorithm

The scheme of our pyramid algorithm is performed
by the recursive application of a basic process made
up of the following operations (Fig. 1) (Laporterie et
al., 2000; Flouzat et al., 2001):

1. morphological filtering,

2. computation of the difference (initial image -
filtered image),

sampling.

Those operations are iterated, with every iteration
yielding a level of the pyramid. Thus, at level i,
mathematically, the transformations are:

1. IF;=MT(l) (1)

where MT represents the Morphological Transform
and IF; the filtered image at level i.

The step 1 performs the filtering of the image.
This low-pass filter is composed of combinations of
opening and closing.

The objects extracted are characterised in terms of
level of reflectance. For instance, beginning the process
by an opening (respectively a closing) may favour the
extraction of clear (respectively dark) components.
Consequently, the non-linear filter is chosen to
correspond with the geometry of the extracted features.
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The structuring element (SE) defines the size and
shape of the neighbourhood on which the filter is
applied, and accordingly the size and shape of the
objects extracted at the level i. The choice of the SE
is crucial for directional structure extraction and is
based on the morphological properties of the patterns
of interest. So, according to the SE, the extracted
objects will have a priori known size, shape and
orientation that are meaningful at a given scale.

2. Dsup, filter, i — Sup(liaIFi) - IFi and
Dint, fitter, i = SUp(li,1F;) - I @)

where Dgyp, fiteer, i @Nd Din fiteer, i Fepresents the details (non
linear equivalent of high frequencies) at the level i.

The second step consists in evaluating the
information extracted at step 1. The characterisation
of the extracted structures enables the analysis of the
image. Dy, siter,i represents clear structures on dark
background whereas Dir firer, i represents dark structures
on clear background at level i. If MT is an opening
(resp. a closing), IF; <1; (resp I; < 1F;) then Dig fiter.i = 0
(resp. Dsup,filter,izo)- Consequently, Dsup, fitter, i is a
clear (resp. dark) top hat. Otherwise, neither Dip firer, i
nor Dgyp fitter, i @r€ ‘empty’ images nor correspond to top
hats. From a general point of view, any morphological
filters (Serra, 1988) can separate details as done in
the Dy, and the Diy; images”. The choice of the
morphological filter depends on the objective.

Consequently, at each level, we are able to
characterise two kinds of structures. The non-linearity
of the filter induces a physical characterisation of
objects. It preserves the most important property at
this step, the different repartition of details (i.e.
landscape components) between the Dy, and Diy
images which corresponds to a realistic description of
the landscape.

3. lizy = sampling(1F) 3)

Step 3 is the sampling which permits the
progression in the levels of the pyramid and
characterises the resolution change from one level to
the next. The sampling ratio is crucial as it
determines the transition into the resolution space and
leads to the multiresolution analysis. Thus, the
resolution and size of the extracted elements can be
chosen at each level of the pyramid. The choice of
both size and sampling algorithm is important, since
the size defines the resolution ratio between two
consecutive levels and the dyadic sampling allows to
reduce continuously successive images resolutions.

The process begins thus at the 0-level, where Iq is
the initial image to be processed.
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Fig. 1. Morphological pyramid decomposition flowchart.

An inverse transformation can be performed (Fig. 2)
allowing the reconstruction of the initial image.
The necessary additional step concerns the
calculation of the information lost at the sampling
step and requires the computation of the difference
(filtered image - sampled image).
This step is mathematically expressed by:
Dsup, sampling,i = SUP(IF, interpolation(li.1))

— interpolation(li.1) 4)

and

Dint, sampling,i = SUP(IFi, interpolation(li+1)) - IF;

®)

where interpolation(li.,) is the interpolation of I;., to
the size of IF;, and thus at the size of images at the
level i of the pyramid.

The set of details are calculated by:
Di = Dyyp, stter,i ~ Dint, fiteer, i +

+D -D

= I, —IF, +IF, —interpolation(l.,,)

= |, —interpolation(l,,,)

sup, sampling, i inf, sampling, i

(6)

Let N be the number of levels performed. The
reconstruction begins with:

IR, _, =interpolation(l,) + D, ,
= interpolation(l,) +
+ 1, —interpolation(l,) =1,

()

Then, the reconstruction is performed by (cf. fig.
2):

IR;_; = interpolation(IR;) + D, (8)
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Fig. 2. Morphological pyramid reconstruction
flowchart.

Using a recursive loop,

IR._, =interpolation(l;) + D,
.., = Interpolation(l,) + D, ©)

Iy
Finally, IR, =1,, and the inverse transform is
exact.

In the following, Dsy, i (resp. Diy, i) represents
Dsup, itter, i (r€SP. Dint, sitter, i)-

If the pattern characteristics of the observed
objects in the spatial domain are a priori known, we
can determine a suitable parameterisation of the
morphological pyramid to compute object extraction.
Consequently, the choices of the filter, the structuring
element, and the sampling ratio, determine the shape,
size and orientation of the extracted objects. Whatever
the components of the image, the characterisation of a
structured image can be done the same way. This
methodology is therefore physically determined by
the knowledge of the spatial characteristics of the
searched features. Once extracted, these features can
be treated if necessary as markers, as shown in the
following paragraph.

APPLICATION TO FEATURES
EXTRACTION IN REMOTE SENSING

Building an application for feature extraction by
using a morphological pyramid requires first to identify
the characteristics of the landscapes components of
interest. Fig. 3 presents the results of an application
performed on a numerical aerial photograph of the
area of Montauban (France) composed of a road
network, orchards, bare soil fields and a part of the
Garonne river. Results are obtained in the green band.
The Dy, and Dy difference images highlight structures
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extracted at different resolutions. In all cases, a filter
is chosen to be symmetric between opening and
closing not to favour either clear or dark structures.

Mathematically, it can be expressed by Lo(1y+L1 g1y,
2 2

where O(1) and F(I) are the opening and closing of
the image |I.

In Fig. 3, orchards show a high contrast compared
to soils and an almost equivalent frequency.
Consequently, the first level of details (Dsyp, o and Dip, o)
extracts tree lines and fields borders corresponding to
the first structural and textural level. For example, Fig. 4
iS Dgyp, 0, Obtained by a 1-radius SE and binarised.

Of course, characterising accurately a component
requires further processing, and the Dy, and Diy
images must then be treated as markers. For instance,
a threshold is applied to Dg, o and is thus binarised.
Then, the marker obtained this way is used to select
the corresponding area within the initial image.
Finally, a conditional dilation of the marker into the
initial image is performed. This reconstruction is
done through the marker propagation through two
steps: i) extraction of some pixels by intersection
with the initial image, ii) propagation of this set of
pixels until the selected pixels values are lower than
the values of their neighbours. The result is shown in
Fig. 5 where field borders are separated from field
furrows in a binary representation.

In the last levels of the pyramid, Fig. 6 illustrates
the effect of a decreased resolution obtained after the
fifth level. This figure represents Dgyp s and Dig s
after two reconstructions. The computation of the
fifth level of the pyramid is crucial for the extraction
of Dbare soil fields and river markers. After
binarisation, the bare soil field markers appear in the
Dsyp, 5 details because its reflectance is higher than
most of the landscape elements in the neighbourhood.
The river marker is contained in the D;y s because
water absorption of solar incident radiation is higher
than in the neighbouring elements. The small squares
in Fig. 6 show the markers. The reconstruction
process can be summarised as: i) over sampling of the
detail image to the size of the initial image, ii)
binarisation of the resulting image to determine the
markers, iii) selection of the marker areas in the
initial image, iv) conditional dilation of these markers
into the initial image. This reconstruction is done by the
marker propagation inside a boundary corresponding to
a local variability of the signal lower than a given
threshold. This threshold is chosen to be equal to the
local standard deviation of the values of the image in
the neighbourhoods of the propagating pixel. Such
parameterisation is justified at the lowest levels of the
pyramid because the markers refer to large and
homogeneous objects. The result shown in Fig. 6
represents the open fields in black and the river in grey.

Fig. 3. Montauban image.
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Fig. 5. Green band Dy, 0, after reconstruction.

CONCLUSION

This method enables the extraction of objects
from images. This kind of extraction is determined by
the physical properties of the objects and modelled by
the parameters of the pyramid. Even if Dy, Or Djns do
not characterise objects by themselves, further simple
processing enables their characterisation. In most
cases, one class of patterns is not exactly extracted at
a given level, and details must be generally considered
as markers for the objects of interest.

The morphological pyramid decomposition enables
a kind of band-pass filtering explicitly performed in
the image domain and extracts elements according to
their sizes.
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