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ABSTRACT

In this paper, we present recurrence relations for the Jacobi weighted orthogonal polynomials Pn,
(α,β ,γ)
r (u,v,w)

with r = 0,1, . . . ,n, where n≥ 0, defined on the triangular domain T = {(u,v,w) : u,v,w ≥ 0,u+ v+w = 1} for
values of α,β ,γ >−1. In particular, we construct univariate recurrence relations for Jacobi polynomials when
w = 0, considering three specific cases. These recurrence relations provide an efficient and straightforward
alternative for computing Jacobi polynomials, offering a simpler approach compared to traditional methods.

Keywords: Bernstein polynomials, Jacobi polynomials, orthogonal polynomials, recurrence relations,
triangular domains.

INTRODUCTION

In recent years, there has been growing interest
in developing analytical and numerical approaches
for solving various classes of differential and integral
equations arising in applied mathematics, physics,
and engineering. This trend is reflected in a range
of studies addressing the stability of nonlinear
systems (Hajaj et al., 2025), generalized matrix
functions such as the Mittag-Leffler function (Batiha
et al., 2024), and spectral properties of structured
matrices like the Frobenius companion matrix (Batiha
et al., 2023). Additional works have explored
mapping properties of integral operators (Hawawsheh
et al., 2023), phase change problems such as
the Stefan problem (Merabti et al., 2023), and
inequalities relevant to numerical integration (Alshanti
et al., 2023). Furthermore, classical computational
techniques continue to be refined (Batiha, 2011),
while modern research has also emphasized the
formulation of efficient algorithms for solving Volterra
integro-differential equations (Anakira et al., 2023)
and fractional differential equations using optimized
decomposition strategies (Farraj et al., 2023). Recent
developments also include the study of fractional
dynamical systems under uncertainty (Berir, 2024) and
functional analytic frameworks involving fractional
operators in abstract metric settings (Qawaqneh,
2024).

Polynomials play a fundamental role in various
areas of mathematics, including computational
mathematics, approximation theory, and numerical
analysis. Orthogonal polynomials, particularly Jacobi
polynomials, are extensively used due to their
relevance in solving differential equations, polynomial
approximation, and modeling physical phenomena.
The study of two-variable orthogonal polynomials
has a long and rich history, with foundational work
by Koornwinder (Koornwinder, 1975) providing
essential insights into multivariate analogues of
classical systems. Further comprehensive treatments
can be found in Dunkl and Xu (Dunkl et al.,
2014) and in the monograph by Koekoek et al.
(Koekoek et al., 2010). This paper builds on such
foundational contributions by focusing on Jacobi-
weighted orthogonal polynomials on triangular
domains.

This study focuses on Jacobi polynomials,
both univariate and bivariate, defined on the
triangular domain. These polynomials satisfy specific
orthogonality relations and provide a solid foundation
for applications in applied mathematics and physics.
A key aspect of Jacobi polynomials is their recurrence
relations, which offer an efficient and systematic
method for generating higher-degree polynomials
from lower-degree ones.

The primary objective of this work is to derive
and analyze recurrence relations for Jacobi weighted
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orthogonal polynomials Pn,
(α,β ,γ)
r (u,v,w) on the

triangular domain T = {(u,v,w) : u,v,w ≥ 0,u +
v + w = 1}, where α,β ,γ > −1. Special attention
is given to the case when w = 0, where these
polynomials reduce to univariate Jacobi polynomials.
The recurrence relations established in this study
provide a more efficient alternative to standard
computational methods, facilitating accurate and rapid
computation of Jacobi polynomials.

The results presented in this paper contribute
to advancing polynomial approximation techniques,
offering significant improvements in computational
efficiency and accuracy. These findings have broad
implications for applications in numerical analysis,
computational mathematics, and related fields.

FUNDAMENTAL CONCEPTS

This section introduces the fundamental concepts
necessary to derive and analyze the recurrence
relations of Jacobi weighted orthogonal polynomials
on the triangular domain.

JACOBI POLYNOMIALS ON THE
TRIANGULAR DOMAIN
Jacobi polynomials, denoted by Pn,

(α,β ,γ)
r (u,v,w),

are defined on the triangular domain

T = {(u,v,w) : u,v,w ≥ 0,u+ v+w = 1}
where α,β ,γ >−1. These polynomials are orthogonal
with respect to the Jacobi weight function

w(α,β ,γ)(u,v,w) = uαvβ (1−w)γ .

The recurrence relations for these polynomials
are essential for generating higher-degree
polynomials from lower-degree ones, thereby
improving computational efficiency and enabling the
approximation of complex functions with greater
accuracy.

UNIVARIATE AND BIVARIATE CASES
For the univariate case, when w = 0, Jacobi

polynomials reduce to the classical univariate Jacobi
polynomials P(α,β )

n (x), which are defined on the
interval [−1,1] and satisfy orthogonality with respect
to the weight function

ρ(x) = (1− x)α(1+ x)β .

In the bivariate case, Jacobi polynomials are expressed
in terms of Bernstein basis polynomials, allowing for a
compact representation and efficient computation. The
explicit formulation and recurrence relations for these
polynomials are derived in subsequent sections.

BERNSTEIN REPRESENTATION OF
JACOBI POLYNOMIALS

Jacobi polynomials on the triangular domain
can be expressed in Bernstein basis form, which
facilitates efficient computation and representation.
This representation allows the derivation of recurrence
relations that simplify the computation of higher-
degree polynomials.

TRIANGULAR DOMAIN AND
BARYCENTRIC COORDINATES

The triangular domain T = {(u,v,w) : u,v,w ≥
0,u+ v+w = 1} can be interpreted using barycentric
coordinates, where any point P inside the triangle
formed by the vertices P1, P2, and P3 can be expressed
as:

P = uP1 + vP2 +wP3 with u+ v+w = 1.

This coordinate system is useful for expressing
bivariate Jacobi polynomials on the triangular domain.

ORTHOGONAL POLYNOMIALS

Orthogonal polynomials play a central role
in various branches of mathematics, including
approximation theory, numerical analysis, and
mathematical physics. They provide a systematic
framework for approximating functions and solving
differential equations efficiently. In this section, we
define orthogonal polynomials and highlight their
significance in mathematical theory and applications.

Definition 1 A sequence of polynomials {Pn(x)}∞
n=0 is

said to be orthogonal with respect to a weight function
ρ(x) on an interval [a,b] if

⟨Pi,Pj⟩=
∫ b

a
Pi(x)Pj(x)ρ(x)dx = 0, for i ̸= j.

If i = j, the integral becomes

∫ b

a
[Pi(x)]2ρ(x)dx ≥ 0.

When this integral equals 1, the polynomials are said
to be orthonormal. For a more detailed discussion, see
(Dunkl et al., 2014).
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ILLUSTRATIVE EXAMPLES OF
ORTHOGONAL POLYNOMIALS

Example 1 Chebyshev polynomials are a prominent
example of orthogonal polynomials on the interval
[−1,1], with respect to the weight function

ρ(x) =
1√

1− x2
,

which is known as the Chebyshev weight function of
the first kind. The Chebyshev polynomial of degree n is
defined by the formula:

Tn(x) = cos(ncos−1(x)). (1)

It is easy to verify that:

T0(x) = cos(0 · cos−1(x)) = cos(0) = 1,

T1(x) = cos(cos−1(x)) = x.

To derive the Chebyshev orthogonal polynomials for
n ≥ 2, we substitute θ = cos−1(x) in Eq. (1), giving:

Tn(θ) = cos(nθ).

By applying standard trigonometric identities,
we obtain the recurrence relation for Chebyshev
polynomials:

Tn+1(θ) = cos((n+1)θ) = cosnθ cosθ − sinnθ sinθ ,

Tn−1(θ) = cos((n−1)θ) = cosnθ cosθ + sinnθ sinθ .

Adding these two equations gives:

Tn+1(θ)+Tn−1(θ) = 2cosnθ cosθ .

Since θ = cos−1(x), we have x = cosθ and
cosθ = Tn(θ). Substituting these values, we obtain
the standard recurrence relation for Chebyshev
polynomials:

Tn(x) = 2xTn−1(x)−Tn−2(x), n = 2,3,4, . . . ,

with initial conditions:

T0(x) = 1, T1(x) = x.

Example 2 Hermite polynomials are defined in
(Szegő, 1975) by the orthogonality condition:∫

∞

−∞

e−x2
Hn(x)Hm(x)dx =

√
π n!δnm,

for n,m = 0,1,2, . . ., where δnm is the Kronecker delta.
The coefficient of xn in the n-th Hermite polynomial is
positive.

The Hermite polynomials satisfy the following
recurrence relation:

Hn(x) = 2xHn−1(x)−2(n−1)Hn−2(x),

n = 2,3,4, . . ., with the initial conditions:

H0(x) = 1, H1(x) = 2x.

Example 3 Legendre polynomials are orthogonal on
the interval [−1,1] with respect to the weight function:

ρ(x) = 1.

The recursive relation is used to generate Legendre
polynomials for n ≥ 2. These polynomials can be
constructed using the Gram-Schmidt process.

Theorem 1 The set of polynomial functions
{P0(x),P1(x), . . . ,Pn(x)} defined in the following way
is orthogonal on [a,b] with respect to the weight
function ρ(x). The first two polynomials are given by:

P0(x)≡ 1, P1(x) = x−B1,

where

B1 =

∫ b
a xρ(x)[P0(x)]2 dx∫ b
a ρ(x)[P0(x)]2 dx

.

For k ≥ 2, the recurrence relation is:

Pk(x) = (x−Bk)Pk−1(x)−CkPk−2(x), ∀x ∈ [a,b],

where

Bk =

∫ b
a xρ(x)[Pk−1(x)]2 dx∫ b
a ρ(x)[Pk−1(x)]2 dx

,

Ck =

∫ b
a xρ(x)Pk−1(x)Pk−2(x)dx∫ b

a ρ(x)[Pk−2(x)]2 dx
.

To compute Legendre polynomials, we substitute
ρ(x) = 1 and consider the interval [−1,1]. To find
P2(x), we compute B1,B2, and C2 as follows:

B1 =

∫ 1
−1 xdx∫ 1
−1 dx

= 0, B2 =

∫ 1
−1 x3 dx∫ 1
−1 x2 dx

= 0,

C2 =

∫ 1
−1 x2 dx∫ 1
−1 dx

=
1
3
.

The first four Legendre polynomials, computed using
these formulas, are:

P0(x) = 1,
P1(x) = x,

P2(x) = x2 − 1
3
,

P3(x) = x3 − 3
5

x,

P4(x) = x4 − 6
7

x2 +
3

35
.
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JACOBI POLYNOMIALS

To provide a clear foundation for the development
of recurrence relations on triangular domains, we
begin with the classical theory of univariate Jacobi
polynomials P(α,β )

n (x). This allows us to build a natural
and logical extension to the bivariate case.

UNIVARIATE JACOBI POLYNOMIALS
Univariate Jacobi polynomials, denoted by

P(α,β )
n (x), are orthogonal polynomials of degree n ≥ 0

with respect to the weight function:

ρ(x) = (1− x)α(1+ x)β , α,β >−1,

defined on the interval [−1,1]. These polynomials
can also be computed for n ≥ 2 using the general
recurrence formula:

P(α,β )
n (x) = (2n+α +β −1)

×
[
(2n+α +β )(2n+α +β −2)x+α2 −β 2

]
2n(n+α +β )(2n+α +β −2)

P(α,β )
n−1

×−2(n+α −1)(n+β −1)(2n+α +β )

2n(n+α +β )(2n+α +β −2)
P(α,β )

n−2 (x),

(2)

where the initial polynomials are given by:

P(α,β )
0 (x) = 1, P(α,β )

1 (x) =
1
2
(α +β +2)x+

1
2
(α −β ).

Jacobi polynomials of degree r, denoted by P(α,β )
r (x)

for x ∈ [0,1], can also be expressed using the Bernstein
representation, see (Rababah, 2004; Rababah , 2003):

P(α,β )
r (x) =

r

∑
i=0

(−1)r−i

(r+α

i

)(r+β

r−i

)(r
i

) br
i (x), (3)

for r = 0,1, . . .. Based on the univariate Jacobi
framework, we now present the bivariate Jacobi
polynomials defined over the triangular domain using
barycentric coordinates and Bernstein representation.

BIVARIATE JACOBI POLYNOMIALS
Bivariate Jacobi polynomials, denoted by

P(α,β ,γ)
n,r (u,v,w), are polynomials of degree n with

respect to the Jacobi weight function:

w(α,β ,γ)(u,v,w) = uαvβ (1−w)γ ,

where α,β ,γ >−1 on the triangular domain:

T = {(u,v,w) : u,v,w ≥ 0, u+ v+w = 1} .

These polynomials are expressed in Bernstein basis
form as:

P(α,β ,γ)
n,r (u,v,w) =

r

∑
i=0

(−1)r−i

(r+α

i

)(r+β

r−i

)(r
i

) br
i (u,v)

×
n−r

∑
j=0

(−1) j
(

n+ r+σ +1
j

)
bn−r

j (w,u+ v),

(4)

where σ = α +β + γ , and r = 0,1, . . . ,n, with n ≥ 0.

These polynomials, P(α,β ,γ)
n,r (u,v,w), satisfy the

following properties, as outlined in the theorems
below.

Theorem 2 For all α,β ,γ >−1, the bivariate Jacobi
polynomials P(α,β ,γ)

n,r (u,v,w) of degree n ≥ 1 satisfy:

P(α,β ,γ)
n,r (u,v,w) ∈ Ln, r = 0,1, . . . ,n,

where

Ln = {P ∈ Πn : P ⊥ Πn−1}.

Proof 1 See Theorem 3 in (Rababah, 2005).

Theorem 3 For r ̸= s and all α,β ,γ > −1, the
bivariate Jacobi polynomials P(α,β ,γ)

n,r (u,v,w) and
P(α,β ,γ)

n,s (u,v,w) are orthogonal with respect to the
weight function:

w(α,β ,γ)(u,v,w) = uαvβ (1−w)γ .

Proof 2 For r ̸= s, let

P(α,β ,γ)
n,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)rqn,r(w),

and

P(α,β ,γ)
n,s (u,v,w) = P(α,β )

s

(
u

1−w

)
(1−w)sqn,s(w).

We want to show that the following integral equals
zero:

I =
∫ ∫

T
P(α,β ,γ)

n,r (u,v,w)P(α,β ,γ)
n,s (u,v,w)

×w(α,β ,γ)(u,v,w)dA,

= ∆

∫ 1

0

∫ 1−w

0
P(α,β )

r

(
u

1−w

)
×P(α,β )

s

(
u

1−w

)
(1−w)r+sqn,r(w)qn,s(w)

×w(α,β ,γ)(u,v,w)dudw.
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Substitute t = u
1−w , which gives:

w(α,β ,γ)(u,v,w) = tα(1− t)β (1−w)α+β+γ ,

and since du = dt(1−w), the integral becomes:

I = ∆

∫ 1

0

∫ 1

0
P(α,β )

r (t)P(α,β )
s (t)(1−w)r+sqn,r(w)

×qn,s(w)tα(1− t)β (1−w)α+β+γdt(1−w)dw.

This can be separated into two integrals:

I = ∆

∫ 1

0
P(α,β )

r (t)P(α,β )
s (t)tα(1− t)β dt

×
∫ 1

0
qn,r(w)qn,s(w)(1−w)α+β+γ+r+s+1dw.

By the orthogonality property of Jacobi polynomials,
the first integral equals zero for r ̸= s, hence:

I = 0.

This completes the proof.

The bivariate polynomials P(α,β ,γ)
n,r (u,v,w), for n ≥

0 and r = 0,1, . . . ,n, form an orthogonal system
over the triangular domain T with respect to the
Jacobi weighted function. These polynomials can be
represented in a triangular table as follows:

P(α,β ,γ)
0,0 (u,v,w)

P(α,β ,γ)
1,0 (u,v,w) P(α,β ,γ)

1,1 (u,v,w)

P(α,β ,γ)
2,0 (u,v,w) P(α,β ,γ)

2,1 (u,v,w) P(α,β ,γ)
2,2 (u,v,w) · · ·

P(α,β ,γ)
n,0 (u,v,w) P(α,β ,γ)

n,1 (u,v,w) . . . P(α,β ,γ)
n,n (u,v,w)

(5)

The J-th row contains J + 1 polynomials, each of
degree J, where J = 0,1,2, . . . ,n.

If n is replaced by n + t for any integer t ≥ 1,
the table is extended by calculating the polynomials
in these additional rows using the recurrence formula
(7):

P(α,β ,γ)
n+1,0 (u,v,w),P(α,β ,γ)

n+1,1 (u,v,w), . . . ,P(α,β ,γ)
n+1,n+1(u,v,w)

P(α,β ,γ)
n+2,0 (u,v,w), . . . , P(α,β ,γ)

n+2,n+1(u,v,w), P(α,β ,γ)
n+2,n+2(u,v,w)

...

P(α,β ,γ)
n+t,0 (u,v,w), . . . ,P(α,β ,γ)

n+t,n+t−1(u,v,w),P
(α,β ,γ)
n+t,n+t(u,v,w)

(6)

The aim of this study is to derive the recurrence
relation for the system

{
P(α,β ,γ)

n,r (u,v,w)
}n

r=0
where

α,β ,γ > −1, and to establish the recurrence relation
for this system on the plane where α +β +γ = 0. This
is achieved by considering three cases: when r = n,
r = n − 1, and r ≤ n − 2. Additionally, we derive a
univariate recurrence relation for Jacobi polynomials
when w = 0.

Remark 1 The condition α +β + γ = 0 is introduced
here to facilitate algebraic simplification and reduce
the computational burden associated with the general
recurrence structure. This constraint helps isolate
the essential behavior of the recurrence relations
while maintaining the orthogonality properties of the
Jacobi-weighted basis. A more general treatment with
arbitrary values of α,β ,γ > −1 will be considered
in future work to broaden the applicability of the
proposed method.

In the final section, we illustrate Jacobi
polynomials in the cubic case on the triangular
domain T , using various values of α , β , and
γ . The Jacobi weighted orthogonal polynomials{

P(α,β ,γ)
n,r (u,v,w)

}n

r=0
are represented in a triangular

table, where:

– The first row contains one polynomial of degree
zero.

– The second row contains two polynomials of
degree one.

– The (n + 1)-th row contains n + 1 polynomials,
each of degree n.

These polynomials are presented in a triangular
table in Section 6. Consequently, there are 1

2(n +
1)(n+2) polynomials of degree ≤ n. Each polynomial
can be computed explicitly using formula (7).

However, using this formula is computationally
expensive, requiring numerous operations and
involving the multiplication of two summations.
Therefore, a more efficient method for computing
these polynomials is needed. In this study, we
construct recurrence relations for the Jacobi weighted
orthogonal system to provide a simpler and faster
approach for populating the triangular table. In
particular, we derive a recurrence relation under the
constraint α + β + γ = 0, where α,β ,γ > −1 and
w = 0.
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GENERAL RECURRENCE
RELATION

This section introduces the recurrence relations for

P(α,β ,γ)
n,r (u,v,w)

under the condition α + β + γ = 0. We begin with
the basic recurrence relation and then explore specific
cases.

– In the first case, where r = n, the recurrence
relation is derived from the properties of P(α,β )

n .

– The second case considers r = n − 1, where the
recurrence relation is derived from the general
formula.

– The final case deals with the scenario when r ≤
n−2, providing a recurrence relation applicable to
all such values of r.

Finally, we present the general recurrence relation that
encompasses all of these cases.

In general, as shown in (Rababah, 2004; 2005), we
have:

P(α,β ,γ)
n,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)rqn,r,σ (w),

(7)
for r = 0,1,2, . . . ,n, where σ = α +β + γ .

From equation (5.6) in (Rababah and Alqudah,
2005), we know:

qn,r(w) = KP(0,2r+1)
n−r (1−2w),

n−r

∑
j=0

(−1) j
(

n+ r+1
j

)(
n− r

j

)
w j(1−w)n−r− j

= K
n−r

∑
j=0

(−1)n−r− j.

In the same way, we have:

n−r

∑
j=0

(−1) j
(

n+ r+σ +1
j

)(
n− r

j

)
w j(1−w)n−r− j

= K∗
n−r

∑
j=0

(−1)n−r− j
(

n+ r+σ +1
n− r− j

)(
n− r

j

)
× (1−2w) j(2w)n−r− j.

Here, P(α,β )
r

( u
1−w

)
is the Jacobi polynomial of degree

r, and qn,r,σ (w) is a scalar multiple of

P(0,2r+σ+1)
n−r (1−2w),

where:

qn,r,σ (w) = K∗P(0,2r+σ+1)
n−r (1−2w), (8)

and σ = α +β + γ , with K∗ being a constant.

To derive the recurrence relation for the system
P(α,β ,γ)

n,r (u,v,w), where r = 0,1,2, . . . ,n, we consider
the following three cases:

– Case 1: r = n, where the recurrence relation is
derived from the properties of the univariate Jacobi
polynomial.

– Case 2: r = n−1, where the recurrence relation is
obtained using the general formula.

– Case 3: r ≤ n − 2, which provides a recurrence
relation that holds for all such values of r.

These cases allow for a comprehensive derivation of
the general recurrence relation for the system.

FIRST CASE (r = n)

In this case, we start from Eq. (8) with r = n. Now,
we have

qn,n,σ (w) = K∗P(0,2n+σ+1)
n−n (1−2w)

= K∗P(0,2n+σ+1)
0 (1−2w) (9)

= K∗.

The recurrence relation for the univariate Jacobi
polynomial is given by:

P(α,β )
n

(
u

1−w

)
=

[
An

(
u

1−w

)
+Bn

]
×P(α,β )

n−1

(
u

1−w

)
−CnP(α,β )

n−2

(
u

1−w

)
.

(10)
Substituting the above equations into Eq. (8) gives:

P(α,β ,γ)
n,n (u,v,w) =

[(
An

(
u

1−w

)
+Bn

)
×P(α,β )

n−1

(
u

1−w

)
−CnP(α,β )

n−2

(
u

1−w

)]
× (1−w)nK∗.

(11)
From equations (8) and (9), we have:

P(α,β ,γ)
n−1,n−1(u,v,w) = K∗P(α,β )

n−1

(
u

1−w

)
(1−w)n−1,

(12)
and

P(α,β ,γ)
n−2,n−2(u,v,w) = K∗P(α,β )

n−2

(
u

1−w

)
(1−w)n−2.

(13)
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Substitute equations (13) and (14) into equation (12)
to obtain the recurrence relation for P(α,β ,γ)

n,n (u,v,w):

P(α,β ,γ)
n,n (u,v,w) = [An(

u
1−w

)+Bn](1−w)

×P(α,β ,γ)
n−1,n−1(u,v,w)−Cn(1−w)2P(α,β ,γ)

n−2,n−2(u,v,w),
(14)

where An, Bn, and Cn are constants.

SECOND CASE (r = n−1)

Substituting r = n−1 into equation (8) gives:

P(α,β ,γ)
n,n−1 (u,v,w) = P(α,β )

n−1

(
u

1−w

)
(1−w)n−1

×qn,n−1,σ (w),
(15)

where P(α,β )
n−1

( u
1−w

)
is an orthogonal polynomial, and

qn,n−1,σ (w) is a scalar multiple of P(0,2(n−1)+σ+1)
n−(n−1) (1−

2w), i.e.,

qn,n−1,σ (w) = K∗P(0,2(n−1)+σ+1)
n−(n−1) (1−2w), (16)

where K∗ is a constant. From (Szegő, 1975), we know
that

P(α,β )
1 (x) =

1
2
(α +β +2)x+

1
2
(α −β ).

Thus, we have

P(0,2(n−1)+σ+1)
1 (1−2w) =

1
2
(2n+σ +1)(1−2w)

− 1
2
(2n+σ −1).

(17)
For simplicity, define

C∗ =
1
2
(2n+σ +1), D∗ =

1
2
(2n+σ −1).

We now use the recurrence relation for P(α,β )
n−1

( u
1−w

)
:

P(α,β )
n−1

(
u

1−w

)
=

[
An−1

(
u

1−w

)
+Bn−1

]
P(α,β )

n−2

(
u

1−w

)
−Cn−1P(α,β )

n−3

(
u

1−w

)
.

(18)

Substitute these into equation (15) to obtain:

P(α,β ,γ)
n,n−1 (u,v,w) =

[[
An−1

(
u

1−w

)
+Bn−1

]

×P(α,β )
n−2

(
u

1−w

)
−Cn−1P(α,β )

n−3

(
u

1−w

)]
× (1−w)n−1K∗(C∗(1−2w)−D∗). (19)

Distributing the terms and associating the result to
establish the Jacobi polynomials of degree n− 2 and
n−3, we get:

P(α,β ,γ)
n,n−1 (u,v,w) =

[
An−1

(
u

1−w

)
+Bn−1

]
×P(α,β )

n−2

(
u

1−w

)
(1−w)n−2

×K∗[(1−w)(C∗(1−2w)−D∗)]

−Cn−1P(α,β )
n−3

(
u

1−w

)
(1−w)n−3

K∗[(1−w)2(C∗(1−2w)−D∗)]. (20)

Substitute the following equations:

P(α,β ,γ)
n−2,n−2(u,v,w) = P(α,β )

n−2

(
u

1−w

)
(1−w)n−2K∗,

and

P(α,β ,γ)
n−3,n−3(u,v,w) = P(α,β )

n−3

(
u

1−w

)
(1−w)n−3K∗.

Substitute these expressions into the previous equation
to obtain:

P(α,β ,γ)
n,n−1 (u,v,w) =

[
An−1

(
u

1−w

)
+Bn−1

]
×P(α,β ,γ)

n−2,n−2(u,v,w)[(1−w)(C∗(1−2w)−D∗)]

−Cn−1P(α,β ,γ)
n−3,n−3(u,v,w)[(1−w)2(C∗(1−2w)−D∗)]

(21)

where An−1, Bn−1, Cn−1, C∗, and D∗ are constants.

THIRD CASE (r ≤ n−2)

Herein, we have

for r = 0,1,2, . . . ,n− 2. In this case, we express
qn,r,σ (w) as an orthogonal polynomial and apply its
recurrence relation. Specifically:

qn,r,σ (w) = K∗P(0,2r+σ+1)
n−r (1−2w),

where P(0,2r+σ+1)
n−r (1 − 2w) is an orthogonal

polynomial with the following recurrence relation:

P(0,2r+σ+1)
n−r (1−2w) = [An−r(1−2w)+Bn−r]

×P(0,2r+σ+1)
n−r−1 (1−2w)−Cn−rP

(0,2r+σ+1)
n−r−2 (1−2w).

(22)
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Substitute equation (22) into the basic equation (8),
replacing qn,r,σ (w) with K∗P(0,2r+σ+1)

n−r (1−2w), to get:

P(α,β ,γ)
n,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)rK∗

× [An−r(1−2w)+Bn−r]P
(0,2r+σ+1)
n−r−1 (1−2w)

−Cn−rP
(α,β )
r

(
u

1−w

)
(1−w)rK∗

×P(0,2r+σ+1)
n−r−2 (1−2w). (23)

After simplifying, we have:

P(α,β ,γ)
n,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)r

×
{

K∗P(0,2r+σ+1)
n−r−1 (1−2w)

}
(An−r(1−2w)+Bn−r)

−Cn−rP
(α,β )
r

(
u

1−w

)
(1−w)r

×
{

K∗P(0,2r+σ+1)
n−r−2 (1−2w)

}
. (24)

Now replace the following:

K∗P(0,2r+σ+1)
n−r−1 (1−2w) = qn−1,r,σ (w),

K∗P(0,2r+σ+1)
n−r−2 (1−2w) = qn−2,r,σ (w),

to obtain:

P(α,β ,γ)
n,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)r

×qn−1,r,σ (w)(An−r(1−2w)+Bn−r)

−Cn−rP
(α,β )
r

(
u

1−w

)
(1−w)rqn−2,r,σ (w). (25)

Since we know

P(α,β ,γ)
n−1,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)rqn−1,r,σ (w)

P(α,β ,γ)
n−2,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)rqn−2,r,σ (w)

substitute ttheminto equation (25) to obtain the
recurrence relation for P(α,β ,γ)

n,r (u,v,w) when α,β ,γ >
−1 and r = 0,1, . . . ,n−2:

P(α,β ,γ)
n,r (u,v,w) = (An−r(1−2w)+Bn−r)

×P(α,β ,γ)
n−1,r (u,v,w)−Cn−rP

(α,β ,γ)
n−2,r (u,v,w),

(26)
where An−r, Bn−r, and Cn−r are constants defined in
the previous section. Thus, the recurrence relations for
all three cases are now complete.

RECURRENCE RELATION WHEN
w = 0

In this section, we discuss the case where the
recurrence relation becomes univariate when w = 0.

The general form of the polynomial is given by:

P(α,β ,γ)
n,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)rqn,r,σ (w),

(27)
r = 0,1,2, . . . ,n, where

qn,r,σ (w) =
n−r

∑
j=0

(−1) j
(

n+ r+σ +1
j

)
bn−r

j (w,u+ v).

(28)

Since our work is defined on the triangular domain:

T = {(u,v,w) : u,v,w ≥ 0, u+ v+w = 1} ,

we have u + v = 1 − w, which allows us to express
bn−r

j (w,u+ v) as:

bn−r
j (w,u+ v) =

(
n− r

j

)
w j(1−w)n−r− j. (29)

Substitute qn,r,σ (w) from equation (29) into
equation (27) to obtain:

P(α,β ,γ)
n,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)r

×
n−r

∑
j=0

(−1) j
(

n+ r+σ +1
j

)
×
(

n− r
j

)
w j(1−w)n−r− j. (30)

Separate the summation in equation (30) into two
parts: when j = 0, and when j = 1,2, . . . ,n − r, as
follows:

P(α,β ,γ)
n,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)r

×
{
(−1)0

(
n+ r+σ +1

0

)(
n− r

0

)
w0(1−w)n−r−0

+
n−r

∑
j=1

(−1) j
(

n+ r+σ +1
j

)(
n− r

j

)
w j(1−w)n−r− j

}
(31)

The first term in the summation, when j = 0, simplifies
to:

(−1)0
(

n+ r+σ +1
0

)(
n− r

0

)
w0(1−w)n−r

= (1−w)n−r. (32)
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Substitute this into the equation to obtain

P(α,β ,γ)
n,r (u,v,w) = P(α,β )

r

(
u

1−w

)
(1−w)r

×

{
(1−w)n−r +

n−r

∑
j=1

(−1) j
(

n+ r+σ +1
j

)

×
(

n− r
j

)
w j(1−w)n−r− j

}
. (33)

• Case when w = 0: Now, set w = 0 to get:

P(α,β ,γ)
n,r (u,v,0) = P(α,β )

r

(
u

1−0

)
(1−0)r

×

{
1+

n−r

∑
j=1

(−1) j
(

n+ r+σ +1
j

)(
n− r

j

)}
.

(34)
Since all terms in the summation for j = 1,2, . . . ,n− r
vanish (because 0 j = 0 for all j ≥ 1), the expression
reduces to:

P(α,β ,γ)
n,r (u,v,0) = P(α,β )

r (u)(1)r(1)n−r = P(α,β )
r (u).

(35)
So, the last equation becomes:

P(α,β ,γ)
n,r (u,v,0) = P(α,β )

r

(
u

1−0

)
(1−0)r{1+0}. (36)

Simplifying this, we get:

P(α,β ,γ)
n,r (u,v,0) = P(α,β )

r (u). (37)

This means that when w = 0, the polynomial
P(α,β ,γ)

n,r (u,v,0) becomes a univariate polynomial that
depends only on r.

• Tabular Representation: Consider the
following table:

P(α,β ,γ)
0,0 (u,v,0)

P(α,β ,γ)
1,0 (u,v,0),P(α,β ,γ)

1,1 (u,v,0)

P(α,β ,γ)
2,0 (u,v,0),P(α,β ,γ)

2,1 (u,v,0),P(α,β ,γ)
2,2 (u,v,0)

...

P(α,β ,γ)
n,0 (u,v,0),P(α,β ,γ)

n,1 (u,v,0), . . . ,P(α,β ,γ)
n,n (u,v,0)

• Consistency Across Rows and Columns: The
first column has the same value for all r = 0. By
equation (35):

P(α,β ,γ)
0,0 (u,v,0) = P(α,β ,γ)

1,0 (u,v,0) = P(α,β ,γ)
2,0 (u,v,0)

= . . .= P(α,β ,γ)
n,0 (u,v,0) = P(α,β )

0 (u).

The polynomials in the second column, for r = 1, also
yield the same values:

P(α,β ,γ)
1,1 (u,v,0) = P(α,β ,γ)

2,1 (u,v,0) = . . .

= P(α,β ,γ)
n,1 (u,v,0) = P(α,β )

1 (u).

Following this pattern up to the general case:

P(α,β ,γ)
i,i (u,v,0) = P(α,β ,γ)

i+1,i (u,v,0) = . . .

= P(α,β ,γ)
n,i (u,v,0) = P(α,β )

i (u),

for n, j > i.

• Final Row Interpretation: This implies that
only one row, the last row of the table, remains:

P(α,β ,γ)
n,0 (u,v,0),P(α,β ,γ)

n,1 (u,v,0), . . . ,P(α,β ,γ)
n,n (u,v,0).

These polynomials can be replaced respectively by:

P(α,β )
0 (u),P(α,β )

1 (u),P(α,β )
2 (u), . . . ,P(α,β )

n (u).

• Conclusion: When w = 0, all bivariate Jacobi
polynomials reduce to a univariate system of Jacobi
polynomials of degree r, which can be expressed in
the Bernstein representation.

NUMERICAL SIMULATIONS

In this section, cubic Jacobi-weighted orthogonal
polynomials are constructed using equation (7). For
simplicity, we use the notation σ = α + β + γ . To
visualize these polynomials, the software Mathematica
is employed.

We consider the triangular domain:

T = {(u,v,w) : u,v,w ≥ 0, u+ v+w = 1} ,

with specific values chosen for the parameters α , β ,
and γ , where w is defined as:

w = 1−u− v.

The numerical simulations allow us to plot and analyze
the behavior of these polynomials under different
parameter settings. The results provide insights into
the structure and properties of the bivariate Jacobi
polynomials, which play a critical role in various
applications, including approximation theory and
numerical analysis.
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FIRST POLYNOMIAL P(α,β ,γ)
3,0 (u,v,w)

The first polynomial in the cubic case, for r = 0, is
given by:

P(α,β ,γ)
3,0 (u,v,w) = (u+ v)3 −3(4+σ)w(u+ v)2 (38)

+
3
2
(4+σ)(3+σ)w2(u+ v)

− 1
6
(4+σ)(3+σ)(2+σ)w3,

where σ = α +β + γ .

Note. All figures in this section have been
revised to include axis labels, colormap descriptions,
and quantitative captions for improved scientific
readability.

In the following cases, different values of α , β , and
γ are considered:

– Case 1: α = β = γ = 0

P(0,0,0)
3,0 (u,v,w) = (u+ v)3 −12w(u+ v)2

+18w2(u+ v)−4w3.

Fig. 1. Surface plot of P(0,0,0)
3,0 (u,v,w) over the

triangular domain u + v + w = 1, with α = β = γ =
0. Axes represent u, v, and polynomial value. The
vertical axis shows values approximately from 0 to 40.
A standard colormap illustrates intensity.

– Case 2: α = β = γ =−0.5

P(−0.5,−0.5,−0.5)
3,0 (u,v,w) = (u+ v)3 −7.5w(u+ v)2

+5.625w2(u+ v)−0.3125w3.

Fig. 2. Surface plot of P(−0.5,−0.5,−0.5)
3,0 (u,v,w) for α =

β = γ =−0.5. The plot shows values between 0 and 20
with labeled axes u, v, and polynomial height.

– Case 3: α = β = γ = 0.5

P(0.5,0.5,0.5)
3,0 (u,v,w) = (u+ v)3 −16.5w(u+ v)2

+37.125w2(u+ v)−14.4375w3.

Fig. 3. Visualization of P(0.5,0.5,0.5)
3,0 (u,v,w) with α =

β = γ = 0.5. Polynomial values range up to 60. Axes u,
v, and height are clearly defined.

– Case 4: α = 0.5, β = γ =−0.5

P(0.5,−0.5,−0.5)
3,0 (u,v,w) = (u+ v)3 −10.5w(u+ v)2

+13.125w2(u+ v)−2.1875w3.

Fig. 4. Plot of P(0.5,−0.5,−0.5)
3,0 (u,v,w) for α = 0.5, β =

γ = −0.5. Polynomial surface is shown with intensity
via colormap. Axes denote u, v, and output value.
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– Case 5: α = 1
3 , β =−2

5 , γ = 0

P(
1
3 ,−

2
5 ,0)

3,0 (u,v,w) = (u+ v)3 −11.8w(u+ v)2

+17.3067w2(u+ v)−3.7177w3.

Fig. 5. Surface plot of P
( 1

3 ,−
2
5 ,0)

3,0 (u,v,w) for α = 1
3 ,

β =− 2
5 , γ = 0. Polynomial values shown between 0 and

40.

SECOND POLYNOMIAL P(α,β ,γ)
3,1 (u,v,w)

The second polynomial in the cubic case, when
r = 1, is given by:

P(α,β ,γ)
3,1 (u,v,w) = [(1+α)u− (1+β )v]

[
(u+ v)2

−2(5+σ)w(u+ v)+
1
2
(5+σ)(4+σ)w2

]
where σ = α +β + γ .

This polynomial is visualized using Mathematica
in several cases for different values of α , β , and γ as
follows:

– Case 1: α = β = γ = 0

P(0,0,0)
3,1 (u,v,w) = (u− v)

×
[
(u+ v)2 −10w(u+ v)+10w2] .

Fig. 6. Plot of P(0,0,0)
3,1 (u,v,w) with α = β = γ = 0.

Symmetric structure about u = v; axes and colormap
included.

– Case 2: α = β = γ =−0.5

P(−0.5,−0.5,−0.5)
3,1 (u,v,w) = 0.5(u− v)

×
[
(u+ v)2 −7w(u+ v)+4.375w2] .

Fig. 7. Visualization of P(−0.5,−0.5,−0.5)
3,1 (u,v,w) for α =

β = γ = −0.5. Values oscillate around zero with small
amplitude. Axes and color scale are labeled.

– Case 3: α = β = γ = 0.5

P(0.5,0.5,0.5)
3,1 (u,v,w) = 1.5(u− v)

×
[
(u+ v)2 −13w(u+ v)+17.875w2] .

Fig. 8. Surface plot of P(0.5,0.5,0.5)
3,1 (u,v,w) for α =

β = γ = 0.5. The polynomial shows a steep slope
and stronger asymmetry. Axes are labeled u, v, and
polynomial height; colormap represents magnitude.

– Case 4: α = 0.5, β = γ =−0.5

P(0.5,−0.5,−0.5)
3,1 (u,v,w) = (1.5u−0.5v)

×
[
(u+ v)2 −9w(u+ v)+7.875w2] .
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Fig. 9. Surface plot of P(0.5,−0.5,−0.5)
3,1 (u,v,w) with α =

0.5, β = γ = −0.5. The polynomial exhibits a tilted
saddle structure with labeled axes and color gradient.

– Case 5: α = 1
3 , β =−2

5 , γ = 0

P(
1
3 ,−

2
5 ,0)

3,1 (u,v,w) = (1.34u−0.6v)

×
[
(u+ v)2 −9.867w(u+ v)+9.834w2] .

Fig. 10. Surface plot of P
( 1

3 ,−
2
5 ,0)

3,1 (u,v,w) for α =
1
3 , β = − 2

5 , γ = 0. The structure is asymmetric with
polynomial values ranging up to 10. All axes are
labeled.

THIRD POLYNOMIAL P(α,β ,γ)
3,2 (u,v,w)

The third polynomial in the cubic case, for r = 2,
is given by:

P(α,β ,γ)
3,2 (u,v,w) =

[
1
2
(2+β )(1+β )v2

− (2+α)(2+β )uv+
1
2
(2+α)(1+α)u2

]
× [(u+ v)− (6+σ)w] ,

where σ = α +β + γ .

The same cases are considered to plot this
polynomial, with different values of α , β , and γ:

– Case 1: α = β = γ = 0

P(0,0,0)
3,2 (u,v,w) = [v2 −4uv+u2][(u+ v)−6w].

Fig. 11. Surface plot of P(0,0,0)
3,2 (u,v,w) for α = β =

γ = 0. The plot shows a quadratic difference pattern
multiplied by a linear w-term. Axes u, v, and height are
labeled.

– Case 2: α = β = γ =−0.5

P(−0.5,−0.5,−0.5)
3,2 (u,v,w) = [0.375v2 −2.25uv

+0.375u2][(u+ v)−4.5w].

Fig. 12. Surface plot of P(−0.5,−0.5,−0.5)
3,2 (u,v,w)

with α = β = γ = −0.5. The polynomial displays
gentle curvature with a linear w-modulation. Axes and
colormap are defined.

– Case 3: α = β = γ = 0.5

P(0.5,0.5,0.5)
3,2 (u,v,w) = [1.875v2 −6.25uv

+1.875u2][(u+ v)−7.5w].

Fig. 13. Surface plot of P(0.5,0.5,0.5)
3,2 (u,v,w) for α =

β = γ = 0.5. The curvature is sharper with stronger
decay toward w = 1. All axes are labeled and a smooth
color map is used.
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– Case 4: α = 0.5, β = γ =−0.5

P(0.5,−0.5,−0.5)
3,2 (u,v,w) = [0.375v2 −3.75uv

+1.875u2][(u+ v)−5.5w].

Fig. 14. Surface plot of P(0.5,−0.5,−0.5)
3,2 (u,v,w) with

α = 0.5, β = γ =−0.5. The plot shows asymmetry and
varying concavity across the triangle. Axes u, v, and
function value are labeled.

– Case 5: α = 1
3 , β =−2

5 , γ = 0

P(
1
3 ,−

2
5 ,0)

3,2 (u,v,w) = [0.96v2 −3.734uv+1.556u2]

× [(u+ v)−5.934w].

Fig. 15. Surface plot of P
( 1

3 ,−
2
5 ,0)

3,2 (u,v,w) for α =
1
3 , β = − 2

5 , γ = 0. The polynomial demonstrates
mixed curvature with axis-aligned variation. Axes and
colorbar are defined.

FOURTH POLYNOMIAL P(α,β ,γ)
3,3 (u,v,w)

The last polynomial in the cubic case, when r = 3,
is given by:

P(α,β ,γ)
3,3 (u,v,w) =−1

6
(3+β )(2+β )(1+β )v3

+
1
2
(3+α)(3+β )(2+β )uv2

1
2
(3+α)(2+α)(3+β )u2v

+
1
6
(3+α)(2+α)(1+α)u3,

where σ = α +β + γ .

As before, five cases are considered for different
values of α , β , and γ to generate these polynomials:

– Case 1: α = β = γ = 0

P(0,0,0)
3,3 (u,v,w) =−v3 +9uv2 −9u2v+u3.

Fig. 16. Surface plot of P(0,0,0)
3,3 (u,v,w) for α = β = γ =

0. This is a skew–symmetric cubic in u and v without
dependence on w. All axes are labled and values vary
from -1 to 1.

– Case 2: α = β = γ =−0.5

P(−0.5,−0.5,−0.5)
3,3 (u,v,w) =−0.3125v3

+4.6875uv2 −4.6875u2v+0.3125u3.

Fig. 17. Surface plot of P(−0.5,−0.5,−0.5)
3,3 (u,v,w) for

α = β = γ =−0.5. A softened version of the skew-cubic
structure appears. Axes u, v, and height are labeled.

– Case 3: α = β = γ = 0.5

P(0.5,0.5,0.5)
3,3 (u,v,w) =−2.1875v3 +15.3125uv2

−15.3125u2v+2.1875u3.

143



ALKASASBEH W.A. et al.: Recurrence Relations for Jacobi Weighted Orthogonal Polynomials

Fig. 18. Surface plot of P(0.5,0.5,0.5)
3,3 (u,v,w) for α =

β = γ = 0.5. This polynomial shows a pronounced peak-
valley configuration in the triangular domain. Axes and
color scale are included.

– Case 4: α = 0.5, β = γ =−0.5

P(0.5,−0.5,−0.5)
3,3 (u,v,w) =−0.3125v3 +6.5625uv2

−10.9375u2v+2.1875u3.

Fig. 19. Surface plot of P(0.5,−0.5,−0.5)
3,3 (u,v,w) with

α = 0.5, β = γ = −0.5. The function is steeper in u-
direction and asymmetric. Axes u, v, and z are labeled.

– Case 5: α = 1
3 , β =−2

5 , γ = 0

P(
1
3 ,−

2
5 ,0)

3,3 (u,v,w) =−0.416v3 +6.934uv2

−10.11u2v+1.038u3.

Fig. 20. Surface plot of P
( 1

3 ,−
2
5 ,0)

3,3 (u,v,w) for α = 1
3 ,

β =− 2
5 , γ = 0. The polynomial shows a mildly skewed

cubic profile. Axes and colormap are properly labeled.

CONCLUSION

In this work, we constructed and analyzed
the cubic Jacobi-weighted orthogonal polynomials
P(α,β ,γ)

3,r (u,v,w) for r = 0,1,2,3 over the triangular
domain T = {(u,v,w) : u,v,w ≥ 0,u + v + w = 1}.
By considering various parameter values for α , β ,
and γ , we derived explicit polynomial expressions and
visualized them using Mathematica. The polynomial
structures exhibit significant variations depending on
the chosen parameter values, influencing both the
magnitude and shape of the resulting polynomials.
The visualizations provide valuable insights into
the behavior of these polynomials across different
scenarios, demonstrating their utility in applications
that involve polynomial approximations on triangular
domains. The constructed recurrence relations also
offer an efficient way to compute these polynomials
without the need for direct summation formulas,
making them more practical for computational tasks.
However, in this work, we do not claim the uniqueness
or optimality of the derived recurrence relations when
compared to other polynomial bases on simplices
such as Dubiner or orthonormal Bernstein bases.
These comparisons are left as an important direction
for future research. In the same regard, it is worth
mention that although the derived recurrence relations
are expected to offer computational advantages over
classical summation formulas, this paper does not
include empirical benchmarks. Evaluating runtime
efficiency on large-scale inputs (e.g., 105 tuples) and
comparing recurrence-based vs. classical construction
remains an important direction for future research. In
addition, a full computational implementation of the
proposed recurrence relations using frameworks such
as NumPy or TensorFlow, along with a scalability
analysis, will be addressed in a future extension of
this work. A practical appendix containing code and
numerical benchmarks is also planned.
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