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ABSTRACT

The tomato salad problem describes a stereological bias in the microscopic characterization of particulate
systems, particularly in transmission electron microscopy (TEM). When a thin section is prepared from a
material containing dispersed particles, the observed particle size distribution in micrographs may differ from
the true distribution due to truncation effects and sampling bias. Depending on the initial size distribution,
the observed mean particle size may appear smaller or larger than the actual mean. This work presents a
Monte Carlo simulation of the tomato salad problem, implemented in R, to study the effects of foil thickness
and particle size distribution on observed size measurements. Simulated results are compared with analytical
predictions, showing good agreement. The study also highlights the impact of stochastic sampling errors,
which can exceed the bias introduced by the tomato salad problem, emphasizing the need for sufficient
sampling in microscopic analysis. The developed simulation may serve as an educational tool and could
be extended in future work to analyze non-spherical particles and sample preparation artifacts.

Keywords: Dispersoids, transmission electron microscopy, particle size distribution, aluminum alloys,
spherical, corpuscle problem.

INTRODUCTION

The corpuscle problem is one of the classic
problems of spherical stereology. It arises when
a planar section is taken from a solid medium
containing spherical particles, a common step in
sample preparation for reflected light microscopy or
scanning electron microscopy (SEM). Because not all
particles are sectioned through their center, some will
appear with a smaller diameter in the micrograph. This
can result in an observed size distribution curve which
is skewed to the left (i.e., to smaller diameters) when
compared to the actual size distribution. However,
small particles have a lower probability of being cut
by the section plane; this can result in an observed size
distribution which is skewed to the right. The second
effect counteracts the former and the size distribution
of the particles determines which effect dominates.
In some cases, the effects cancel each other out and
the observed size distribution is similar to the real
size distribution. The corpuscle problem has been
analytically solved by Wicksell (1925).

The tomato salad problem is a similar issue
encountered in optical bright field microscopy,
transmission electron microscopy (TEM), and other
microscopic methods. In this case, a thin slice is
prepared from a medium containing particles, which
can result in particle truncation. Spherical particles
whose centers lie within the foil will appear in the
micrograph with their actual diameter, regardless of

whether they are cut by the foil surface. However,
particles with centers outside the foil are truncated
and will appear with a reduced diameter. As a result,
the observed mean diameter of particles, derived from
micrographs, may be smaller than the true mean
diameter of the particle distribution. Paradoxically,
depending on the shape of the particle distribution,
the observed mean diameter can also be larger than
the true mean, as larger particles are more likely to
have portions of their volume within the foil. In some
cases, these effects may cancel each other out, and the
observed mean particle diameter will closely match
the actual mean diameter, provided a sufficiently large
population is studied.

Study of the tomato salad problem has been
pioneered by Bach (1958) and an analytical solution
has been presented by Goldsmith (1967). The
relationship between the observed distribution G(r)
and the real, typically unknown distribution F(s) is
given by (Fleischer, 1994):

G(r) =
t ·F(r)+2 · r ·

∫
∞

r
F(s)·s√

s2−r2
ds

d +2 ·
∫

∞

0 F(s)ds
, r ≥ 0 (1)

Where t is the thickness of the slice and r and s are the
observed and real radii.

In practice, the observed size distribution is derived
by measuring the size of a finite number of particles
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ÖSTERREICHER JA: Monte Carlo Simulation of the Tomato Salad Problem

in TEM micrographs. Therefore, the size distribution
data is noisy. Gorenflo (2002) showed that noise
amplification can become a critical issue, as small
errors in the measured data can lead to large deviations
in the reconstructed distribution. As a result, the
problem transitions from well-posed to ill-posed,
making direct inversion infeasible (Gorenflo, 2002).

Here, a Monte Carlo simulation of the tomato
salad problem in R is presented, the results of which
are in good agreement with the mathematical model
(Eq. 1). The simulation may be useful for educational
or illustrative purposes. In addition, it allows for the
simulation of TEM images and for studying stochastic
effects associated with practical limits of microscopic
materials characterization, such as limited numbers of
micrographs and measured particles.

METHODS

In many physical systems, particle size
distributions follow a lognormal distribution, ln(s) ∼
N (µ,σ2), due to the multiplicative nature of
nucleation and growth processes. µ determines the
scale of the distribution. The mean radius (i.e., the
expected value of the lognormal distribution) is s̄. The
relation between µ and s̄ is given by:

µ = ln(s̄)− σ2

2
(2)

µ was chosen such that s̄ remains 50 nm,
representing a typical dispersoid size in aluminum
alloys.

In Fig. 1, lognormal distributions with different
values of σ are presented. A low σ corresponds to a
narrower distribution, where most particles have sizes
close to the mean. Conversely, a high σ leads to a
wider distribution, with some particles significantly
smaller or larger than the mean.

For Monte Carlo (MC) simulation of the tomato
salad problem in TEM, code was written in R,
version 4.4.2 (R Core Team, 2024). It is given in
the Supplementary Materials. The following procedure
explains how it works:

1. The parameters σ and µ of the log-normal size
distribution of the particles are defined.

2. The edge lengths of micrographs to be simulated
are defined (here: 5×5 µm2)

3. The simulation volume is defined by the area of
the micrographs (see step 2) and a height that
should be much larger than both the mean particle

diameter and the TEM foil thicknesses under
investigation (e.g., 50 µm).

4. Poisson point process: While the volume fraction
of particles is smaller than the desired volume
fraction (here: 0.01), particles are generated with a
random diameter from the size distribution defined
in (1.) and randomly placed within the volume
defined in (3.) so that they do not cut the surface
of the simulation volume. Overlapping with other
particles is not prevented, as this has no influence
on the numerical results.

5. A slice (TEM foil) of thickness t is placed at a
random height in the simulation volume.

6. Particles that lie entirely within the foil are
identified.

7. Particles that are cut by the upper or lower surface
of the foil are identified.

8. Particles from (7.) are sorted into particles whose
centers lie within the foil and those whose centers
lie outside of the foil (these are the particles which
appear with reduced diameter on a micrograph).

9. Apparent radii of all particles identified in (6.–8.)
are calculated and stored.

10. Visualization of simulated TEM image.

11. Go to (5.) until the desired number of simulations
is achieved.
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Fig. 1: Lognormal distributions for different σ values
(0.2, 0.5, and 0.7), where the mean radius s̄ is 50 nm.
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RESULTS AND DISCUSSION

Fig. 2 presents a simulation of the tomato salad
problem in TEM, illustrating how particle positioning
relative to the foil influences their apparent sizes in
TEM images. Purple and magenta particles (panels A
and C) have their centers inside the foil, appearing in
the micrograph (panel B) with their actual diameters;
while purple particles are partially cut by the foil,
magenta ones remain fully intact. In contrast, particles
with centers outside the foil (orange in panels A
and C) appear with reduced apparent diameters
in the micrograph. Fig. 2B presents the simulated
TEM bright-field image, where it is typically not
possible to distinguish whether an observed particle
retains its original radius or appears reduced due
to foil intersection. Finally, Fig. 2C visualizes and
identifies the particles in the TEM image, explicitly
marking their apparent diameters (solid circles) and
real diameters (dashed lines).

At first glance, Fig. 2 suggests that the effect of
the tomato salad problem is relatively minor. Although
many particles are intersected by the foil, those with
their center inside the foil retain their full radius. Even
for particles with centers outside the foil, the apparent
radius in the projection is often close to the original
diameter. Only in a few cases does the apparent
diameter deviate significantly, appearing much smaller
than the true diameter.

However, the extent of distortion in particle
size distribution due to the tomato salad problem
is influenced by the parameters of the lognormal
distribution (σ and µ). In Fig. 3, the observed
mean diameters are presented for various lognormal
distribution shapes across different foil thicknesses.
The data reveal that, depending on the particle size
distribution, either a reduction or an increase in
the observed mean diameter can occur. While a
reduction is anticipated due to particles being partially
intersected by the foil, an increase may be less
intuitive. This increase occurs because larger particles
are more likely to be intersected by the foil, leading
to a higher probability of their partial inclusion in the
observed sample (i.e., a sampling bias).

Fig. 3 presents results from the Monte Carlo
simulation and the analytical solution (Eq. 1),
demonstrating good agreement between the two
approaches. Moreover, the Monte Carlo method allows
for the analysis of stochastic errors, which tend to
increase with wider particle size distributions. This is
because wider distributions encompass a greater range
of particle sizes, leading to increased variability in the
simulation outcomes.
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Fig. 2: Simulation of the tomato salad problem
in TEM for lognormally distributed particles (σ =
0.5, s̄ = 50 nm, foil thickness 100 nm). (A) Three-
dimensional visualization of the simulated TEM foil.
(B) Simulated resulting TEM bright-field (BF) image.
(C) Visualization and identification of particles visible
in the TEM image, showing their apparent diameters
(solid circles) and real diameters (dashed lines).
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Fig. 3: (A) Comparison of observed mean diameters
from Monte Carlo simulations (100 simulations
per data point, with standard deviation error
bars) compared to the analytical solution (Eq. 1).
(B) Analytical solution over a broader parameter
space.

In practice, a broader distribution of particle
sizes—and consequently, a wider range of observed
diameters—requires measuring more particles to
obtain a reliable observed mean diameter. The standard
deviation of individual particle sizes could be used
to determine the required sample size. However,
since our data consists only of mean particle sizes
per micrograph, as individual particle measurements
were not stored, we rely on the spread of these
mean values across micrographs as an indirect
measure of variability. This approach accounts for
both the intrinsic particle size distribution and the
statistical fluctuations due to limited sampling in each
micrograph.

The required sample size n (number of
micrographs) can be calculated using the formula:

n =

(
Zα/2 ×SD

MoE

)2

(3)

where:

– Zα/2 is the Z-score corresponding to the desired
confidence level,

– SD is the standard deviation of the mean particle
sizes across micrographs,

– MoE is the desired margin of error.

Using Zα/2 = 1.96 and a margin of error (MoE)
of 5 nm , we can calculate the number of micrographs
that should be analyzed to achieve a 95% confidence
level of being within 5 nm of 2r̄. Rounding up, we
obtain n = 2 for σ = 0.2, n = 11 for σ = 0.5, and
n = 68 for σ = 0.7.

Our results highlight that the stochastic error
introduced by sampling can be significantly larger than
the error due to the tomato salad problem, especially
when only a few micrographs are taken or analyzed.

For distributions of non-spherical particles, the
analysis becomes more complex (Andersen et al.,
2008) and Monte Carlo simulation may be an attractive
alternative to purely mathematical approaches. Future
research could therefore focus on expanding the
simulation to non-spherical particles.

While the preceding analysis focused on the
theoretical treatment of the tomato salad problem,
practical factors such as sample preparation must
also be considered. For instance, in aluminum alloys
containing dispersoid particles, ion polishing may
lead to mechanical capping of these particles. In
contrast, electropolishing is less likely to cause
such effects, as dispersoids are typically more
noble than the surrounding aluminum matrix. This
prevents partial dissolution of the dispersoid itself.
Rather, preferential dissolution of the matrix (micro-
galvanic corrosion) can lead to particle detachment
(Kosari et al., 2020; Wu et al., 2024). Conversely,
preferential dissolution of second-phase particles leads
to pitting (dealloying) (Österreicher et al., 2016).
Both effects affect the measured dispersoid size
distribution. These mechanisms, including mechanical
attack, microgalvanic corrosion, and pitting corrosion,
are illustrated in Fig. 4. To account for such effects,
the Monte Carlo simulation could be adapted to
incorporate the probability of particle loss due to
selective matrix dissolution or dealloying, providing
a more realistic representation of the observed
microstructure.
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Fig. 4: Schematic representation of different etching
effects: (A) Mechanical attack, (B) Microgalvanic
corrosion, and (C) Pitting corrosion (dealloying).

Similar effects could also occur in other material
systems where second-phase particles exhibit different
properties than the matrix. Expert judgment is
necessary when interpreting microstructural data,
especially when sample preparation techniques may
introduce biases.

CONCLUSIONS

This paper presents a Monte Carlo simulation
of the tomato salad problem in spherical stereology,
illustrating how the underlying size distribution
influences the observed size distribution in agreement
with the analytical solution.

Furthermore, the Monte Carlo approach highlights
practical challenges introduced by limited sampling,
where stochastic errors can exceed the bias itself.
Additionally, the effects of sample preparation are
discussed.

These findings reinforce the importance of careful
experimental design in microscopic particle analysis.
Researchers should be mindful of both systematic
biases from sectioning and random errors from finite
sampling when interpreting micrographs. Improving
accuracy may require not only analytical corrections
but also optimized sample preparation techniques to
minimize additional artifacts.
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