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ABSTRACT

The main goal of this work is to propose a new fractional approach of the higher-order q-Taylor method with
Initial Value Problems (IVPs) for fractional q-difference equations which is called the Fractional Higher-Order
q-Taylor Method (FHOqTM). By applying the generalised q-Taylor theorem, this would be achieved. As a
consequence, we calculate the FHOqTM’s local truncation error. Finally, we present numerical applications
to validate our results by comparing the exact solution and the approximate solution obtained by (FHOqTM).

Keywords: Caputo q-derivative, Fractional q-difference equations, Generalized q-Taylor theorem, Higher-
order q-Taylor method.

INTRODUCTION

Fractional q-calculus is an interesting topic
and an important branch in mathematical analysis,
which was first established and developed in
the 20th century by Jackson (1910; 1908), Al-
Salam (1966-1967) and Agarwal (1969). It has
been of interest to many academics because of its
application to mathematical modeling in several fields,
including biomathematics, engineering, physics,
and technical sciences. Furthermore, fractional q-
difference equations have also played an essential role
in modeling a range of phenomena in many areas; for
more specifics see Abdeljawad and Baleanu (2012);
Ahmad et al. (2012); Annaby and Mansour (2012);
Kac and Cheung (2002); Rajkovic et al. (2007a;b).

In recent years, the initial and boundary
value problems of fractional q-difference equations
involving Caputo’s fractional q-derivative received a
lot of interest from scholars, they studied and discussed
solutions to these problems. There are two types of
solutions, the first type is analytical solutions, which
involve using traditional and analytical techniques to
solve problems, but scientists faced difficulties and
barriers in doing so; for details, see the references
Abbas et al. (2021; 2019); Abdeljawad and Baleanu
(2012); Allouch and Hamani (2023; 2024); Allouch
et al. (2022); Boutiara et al. (2021). This encouraged
consideration of the second type, numerical solutions,

which involve numerical techniques and applications.
However, they did not develop and progress much in
them because researching these type of fractional q-
difference equations is a modern and contemporary
approach; see Hamadneh et al. (2023); Samei (2019);
Samei and Yang (2020) and references therein.

There are several numerical methods and
techniques, including the Taylor method that caught
our interest, which is an algorithm used to estimate
the solution of equations. After that, scientists became
interested and developed Taylor’s method and used it
to find approximate solutions to fractional differential
equations, for more details; see Barrio (2005); Barrio
et al. (2005); Batiha et al. (2023a;b); Zaid and Momani
(2008); Usero (2008).

In fractional q-calculus, researchers generalized
and investigated Taylor’s technique, it is called
generalized q-Taylor’s Method which includes
Caputo’s fractional q-derivative, for more information
see the references Garg et al. (2013); Hassan (2016);
Sana et al. (2021). It has attracted great attention from
scholars, as they have used in order to identify estimate
solutions to fractional q-difference equations.

This research is to present a novel fractional
approach for fractional q-difference equations, it’s
calles the Fractional Higher-Order q-Taylor Method
(FHOqTM), which is a higher order q-Taylor method
and an algorithm used to estimate numerical solutions
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to initial value problem of fractional q-difference
equations involving the Caputo’s q-derivative of the
form:

CDγ
qx(t) = f (t,x(t)), 0 < γ ≤ 1, t ∈ [0,T ],

x(0) = x0.
(1)

where q ∈ (0,1), T > 0 and x0 ∈ R, CDγ
q represents the

Caputo’s fractional q-derivative of order γ ∈ (0,1] and
f : [0,T ]×R → R is continuous function.

The remainder of the document is structured as
follows: In Section 2, we provide several foundational
definitions and properties of fractional q-calculus and
give q-Taylor’s generalized theorem. In Section 3,
we establish the Fractional Higher-Order q-Taylor
Method (FHOqTM) to solve the initial value problem
of fractional q-difference equations wich is based
on generalized q-Taylor’s theorem, we will discuss
and estimate the local truncation error produced by
FHOqTM by presenting some theoretical results.
Finally, we present some numerical examples in
Section 4 to demonstrate the applicability of the
suggested approache.

BASIC FACTS

This section reviews the fundamental definitions
and some properties for fractional q-calculus, for
details see Garg et al. (2013); Kac and Cheung (2002);
Rajkovic et al. (2007a;b).
For q ∈ (0,1), we define:

[a]q =
1−qa

1−q
; a ∈ R.

Let a,b ∈ R and n ∈ N, the q-analogue of the power
(a−b)(n) is expressed by:

(a−b)(n) =
n−1

∏
i=0

(a−bqi), (a−b)(0) = 1.

In generally, for a,b,γ ∈ R, we have:

(a−b)(γ) = aα
∞

∏
i=0

(
a−bqi

a−bqi+γ

)
,

Note that, if b = 0, then a(γ) = aγ .

Definition 1 Kac and Cheung (2002) For all γ ∈ R∗
+.

The q-gamma function is determined as follows:

Γq(γ) =
(1−q)(γ−1)

(1−q)γ−1 .

Note that the q-gamma function satisfy

Γq(γ +1) = [γ]qΓq(γ).

Definition 2 Kac and Cheung (2002) Let f be a
function defined on [0,T ] and n ∈ N. The q-derivative
of order n is defined by :

(Dq f )(t) = (D1
q f )(t) =

f (t)− f (qt)
(1−q)t

, t ̸= 0,

(Dq f )(0) = lim
t→0

(Dq f )(t),

and

(Dn
q f )(t) = (D1

qDn−1
q f )(t), n = 1,2, . . . .

Definition 3 Rajkovic et al. (2007a) Let f : [0,T ]→ R
and for all γ ≥ 0. The Riemann-Liouville’s fractional
q-integral of order γ is given by:

(Iγ
q f )(t) =

1
Γq(γ)

∫ t

0
(t −qs)(γ−1) f (s)dqs.

The fractional q-integral of Riemann-Liouville has
several properties, including Rajkovic et al. (2007a):
1) (I0

q f )(t) = f (t).

2) (Iγ
q t(λ ))(t) = Γq(λ+1)

Γq(γ+λ+1) t
(γ+λ ), γ,λ ∈ R+.

3) (Iγ
q Iλ

q f )(t) = (Iγ+λ
q f )(t) = (Iβ

q Iα
q f )(t), γ,λ ∈ R+.

Definition 4 Rajkovic et al. (2007b) Let f : [0,T ]→ R
and for γ ≥ 0. The Caputo’s fractional q-derivative of
order γ is given by:

(CDγ
q f )(t) = (I[γ]−γ

q D[γ]
q f )(t),

where [γ] represents the integer part of γ .

The Caputo’s fractional q-derivative has the following
properties Rajkovic et al. (2007b):
1) (CD0

q f )(t) = f (t).
2) CDγ

qc = 0, c ∈ R.
3) (CDγ

qt(λ ))(t) = Γq(λ+1)
Γq(λ−γ+1) t

(λ−γ), γ,λ ∈ R+.

Now, we introduce the generalized q-Taylor’s
formulat theorems.

Theorem 1 Garg et al. (2013)(q-Taylor’s
Generalized Theorem) Assume that CD jγ

q f (t) ∈
C([0,T ]) for j = 0,1,2, . . . ,n + 1, where q ∈ (0,1)
and γ ∈ (0,1]. Then the function f can be extended as
follows about t = t0:

f (t) =
n

∑
i=0

(t − t0)(iγ)

Γq(iγ +1)
CDiγ

q f (t0)

+
(t −qt0)((n+1)γ)

Γq((n+1)γ +1)
CD(n+1)γ

q f (ξ ), (2)

with 0 < ξ ≤ t, ∀t ∈ [0,T ].
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RESULTS AND DISCUSSION

Our goal in this part is to establish a fractional
higher-order q-Taylor Method (FHOqTM) version.
The generalised q-Taylor method’s principles will be
used to accomplish this. In addition, we will discuss
the precise local truncation error of our developed
methodology.

To establish our main results for the problem (1),
we present the following lemma:

Lemma 1 The fractional initial value problem (1) has
an approximate solution given as follows:{

v0 = x0,
vi+1vi +hγT (ti,vi),

(3)

with

T (ti,vi) =
1

Γq(γ +1)
f (ti,vi)+

hγ

Γq(2γ +1)
CDγ

q f (ti,vi)

+ · · ·+ h(n−1)γ

Γq(nγ +1)
CD(n−1)γ

q f (ti,vi), (4)

for i = 0,1, . . . ,n − 1, such that vi represents the
approximate solution of the exact solution x at ti and
h represents the step size.

Proof 1 To show the result, we divided interval [0,T ]
as follows:

0= t0 < t1 = t0+h< t2 = t0+2h · · ·< tn = t0+nh= b,

in which the mesh points ti = t0+ ih, i= 1,2, . . . ,n, with
h = b

n is the step size. Suppose that

CD(n+1)γ
q y(t) ∈Cn+1([0,T ]).

Now, by applying q-Taylor’s generalised theorem
mentioned in Theorem 1. The solution x(t) can be
expanded about t = ti as:

x(t) = x(ti)+
CDγ

qx(ti)
Γq(γ +1)

(t − ti)(γ)+
CD2γ

q x(ti)
Γq(2γ +1)

×(t − ti)(2γ)+ · · ·+
CDnγ

q x(ti)
Γq(nγ +1)

(t − ti)(nγ)

+
CD(n+1)γ

q x(ξ )
Γq((n+1)γ +1)

(t − ti)((n+1)γ),

where ti < ξ < ti+1.
By changing t to ti+1 in the previous equality, we find:

x(ti+1) = x(ti)+
hγ

Γq(γ +1)
CDγ

qx(ti)+
h2γ

Γq(2γ +1)

×CD2γ
q x(ti)+ · · ·+ hnγ

Γq(nγ +1)
CDnγ

q x(ti)

+
h(n+1)γ

Γq((n+1)γ +1)
CD(n+1)γ

q x(ξ ). (5)

Because of,

CDγ
qx(t) = f (t,x(t)),

CD2γ
q x(t) = CDγ

q f (t,x(t)),
...

CDnγ
q x(t) = CD(n−1)γ

q f (t,x(t)).

This will transform formula (5) into the following:

x(ti+1) = x(ti)+
[

hγ

Γq(γ +1)
f (ti,x(ti))

+
h2γ

Γq(2γ +1)

C

Dγ
q f (ti,x(ti))+ · · ·

+
hnγ

Γq +(nγ +1)

C

D(n−1)γ
q f (ti,x(ti))

]
+

h(n+1)γ

Γq((n+1)γ +1)
CDnγ

q f (ξ ,x(ξ ). (6)

In fact, formula (6) can be approximately represented
as follows: {

v0 = x0,
vi+1vi +hγT (ti,vi),

with

T (ti,vi) =
1

Γq(γ +1)
f (ti,vi)+

hγ

Γq(2γ +1)
CDγ

q f (ti,vi)

+ · · ·+ h(n−1)γ

Γq(nγ +1)
CD(n−1)γ

q f (ti,vi), (7)

for i = 0,1, . . . ,n − 1, which is what we wanted to
prove.

Theorem 2 Assume that the initial value problem (1)
can be approximated using the FHOqTM with a step
size of h, and suppose CD jγ

q x(t) ∈ C([0,T ]), for j =
0,1,2, . . . ,n+1, where q ∈ (0,1) and γ ∈ (0,1]. Then,
The local truncation error is given by:

O(hnγ).

Proof 2 According to formula (6), we can write:

x(ti+1)− x(ti)−
hγ

Γq(γ +1)
f (ti,x(ti))−

h2γ

Γq(2γ +1)

×CDγ
q f (ti,x(ti))−·· ·− hnγ

Γq(nγ +1)
CD(n−1)γ

q f (ti,x(ti))

=
h(n+1)γ

Γq((n+1)γ +1)
CDnγ

q f (ξ ,x(ξ ),
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for ξ ∈ (ti, ti+1). Consequently, this gives:

x(ti+1)− x(ti)−hγT (ti,x(ti)) = h(n+1)γ

Γq((n+1)γ+1)
CDnγ

q f (ξ ,x(ξ ),

with

T (ti,x(ti)) =
1

Γq(γ +1)
f (ti,x(ti))+

hγ

Γq(2γ +1)

×CDγ
q f (ti,x(ti))+ · · ·+ h(n−1)γ

Γq(nγ +1)

×CD(n−1)γ
q f (ti,x(ti)),

for i = 0,1,2, . . . ,n−1.
Consequently, the following is the local truncation
error:

E T
i+1(h) =

x(ti+1)− x(ti)
hγ

−T (ti,x(ti)).

This implies,

E T
i+1(h) =

hnγ

Γq((n+1)γ +1)
CDnγ

q f (ξ ,x(ξ )).

If CD jγ
q x(t) ∈C([0,T ]), for j = 0,1,2, . . . ,n+1, then:

CD(n+1)γ
q x(t) = CDnγ

q f (t,x(t)),

which is limited on [0,T ]. Therefore,

E T
i+1(h) = O(hnγ).

ILLUSTRATIVE APPLICATIONS

This section aims to show the effectiveness of
our proposed approach, which we call FHOqTM.
Therefore, we present two numerical examples to
illustrate our results, which we use FHOqTM in two
different cases of fractional q-difference equations.
Next, we highlight the results obtained and compare
them with exact solutions by presenting them in
graphs.

Example 1 We consider the following initial value
problem of fractional q-difference equations:

CDγ
qx(t) =−x(t)+ t +2, 0 < γ ≤ 1, t ∈ [0,1],

x(0) = 1
3 .

(8)

The exact solution to the problem (8) when γ = 1 is
given as:

x(t) = t +1− 2
3

e−t .

Here, we take n = 100, so h = 0.01. Assume that:

f (t,x(t)) =−x(t)+ t +2.

Additionally, let’s suppose that we want to use on the
FHOqTM of order 2γ . To achieve this, we obtain:

CDγ
q f (t,x(t)) = x(t)− t −2+

t(1−γ)

Γq(2− γ)
.

As a result, we can determine T (ti,vi) by using
equation (7) as follows:

T (ti,vi) =
1

Γq(γ +1)

(
− vi + ti +2

)
+

hγ

Γq(2γ +1)

×
(

vi − ti −2+
t(1−γ)
i

Γq(2− γ)

)
, (9)

where vi represent approximations for x(ti) for
i = 0,1,2, . . . ,99.
Since ti = t0 + ih = 0.01i for i = 0,1,2, . . . ,99. So, we
can write the formula (9) as:

T (ti,vi) =
1

Γq(γ +1)

(
− vi +0.01i+2

)
+

(0.01)γ

Γq(2γ +1)

×
(

vi −0.01i−2+
(0.01)i(1−γ)

Γq(2− γ)

)
. (10)

Consequently, by equation (10), we can express the 2γ

order of the FHOqTM in the following form:


v0 =

1
3 ,

vi+1 = vi +(0.01)γ

[
1

Γq(γ+1)

(
− vi +0.01i+2

)
+ (0.01)γ

Γq(2γ+1)

(
vi −0.01i−2+ (0.01)i(1−γ)

Γq(2−γ)

)]
,

(11)

for i = 0,1,2, . . . ,99.
Considering the formula (11), we can simulate
approximate solutions by applying the FHOqTM of
order 2γ with exact solution to the problem (8), it is
shown in Fig. 1 for q= 0.99, γ = 1 and Fig. 2 represent
the absolute errors of order 2γ .
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Fig. 1: Exact & Numerical solutions of order 2γ for
q = 0.99 and γ = 1.
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Fig. 2: Absolute Errors of order of order 2γ for q =
0.99 and γ = 1.

By taking different values of γ for q= 0.99, various
values of q for γ = 1, respectively. We plot in Fig. 3 and
Fig. 4 the numerical solutions of problem (8) which is
generated by the FHqOTM of order 2γ and compare
the results with the exact solution, respectively.
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solutions for different values of γ for q = 0.99.
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Fig. 4: Comparisons between Exact & Numerical
solutions for different values of q for γ = 1.

Example 2 Consider the following initial value
problem of fractional q-difference equations:

CDγ
qx(t) = x(t)+ t3, 0 < γ ≤ 1, t ∈ [0,1],

x(0) = 1.
(12)

The following is the exact solution to the problem (12)
for γ = 1:

x(t) = 7et − t3 −3t2 −6t −6.

Let n = 100 in this case h = 0.01. Let’s suppose:

f (t,x(t)) = x(t)+ t3.
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Next, we want to use the FHOqTM of orders 2γ and
4γ , respectively. To accomplish this, we calculate:

CDγ
q f (t,x(t)) = x(t)+ t3 +

Γq(4)
Γq(4− γ)

t(3−γ),

CD2γ
q f (t,x(t)) = x(t)+ t3 +

Γq(4)
Γq(4− γ)

t(3−γ)

+
Γq(4)

Γq(4−2γ)
t(3−2γ),

and

CD3γ
q f (t,x(t)) = x(t)+ t3 +

Γq(4)
Γq(4− γ)

t(3−γ)

+
Γq(4)

Γq(4−2γ)
t(3−2γ)

+
Γq(4)

Γq(4−3γ)
t(3−3γ).

Consequently, we can use equation (7) to find T (ti,vi)
as:

T (ti,vi) =
1

Γ(γ +1)
(vi + t3

i )+
hγ

Γ(2γ +1)

(
vi + t3

i

+
Γq(4)

Γq(4− γ)
t(3−γ)
i

)
+

h2γ

Γ(3γ +1)

(
vi + t3

i

+
Γq(4)

Γq(4− γ)
t(3−γ)
i +

Γq(4)
Γq(4−2γ)

t(3−2γ)
i

)
+

h3γ

Γ(4γ +1)

(
vi + t3

i +
Γq(4)

Γq(4− γ)
t(3−γ)
i (13)

+
Γq(4)

Γq(4−2γ)
t(3−2γ)
i +

Γq(4)
Γq(4−3γ)

t(3−3γ)
i

)
,

where vi denote estimates for x(ti), such that
i = 0,1,2, . . . ,99.
Since ti = t0+ ih= 0.01i for i= 0,1,2, . . . ,99, equation
(13) can be rewritten as follows:

T (ti,vi) =
1

Γ(γ +1)
(vi +(0.01i)3)+

(0.01)γ

Γ(2γ +1)

×
(

vi +(0.01i)3 +
Γq(4)

Γq(4− γ)
(0.01i)(3−γ)

)
+

(0.01)2γ

Γ(3γ +1)

(
vi +(0.01i)3 +

Γq(4)
Γq(4− γ)

×(0.01i)(3−γ)+
Γq(4)

Γq(4−2γ)
(0.01i)(3−2γ)

)
+

(0.01)3γ

Γ(4γ +1)

(
vi +(0.01i)3 +

Γq(4)
Γq(4− γ)

×(0.01i)(3−γ)+
Γq(4)

Γq(4−2γ)
(0.01i)(3−2γ)

+
Γq(4)

Γq(4−3γ)
(0.01i)(3−3γ)

)
, (14)

Thus, by using formula (14), we can determine the 2γ

and 4γ order of the FHOqTM respectively as:
v0 = 1,

vi+1 = vi +(0.01)γ

[
1

Γ(γ+1)(vi +(0.01i)3)+ (0.01)γ

Γ(2γ+1)

×
(

vi +(0.01i)3 +
Γq(4)

Γq(4−γ)(0.01i)(3−γ)

)]
.

(15)

And

v0 = 1,

vi+1 = vi +(0.01)γ

[
1

Γ(γ+1)(vi +(0.01i)3)+ (0.01)γ

Γ(2γ+1)

×
(

vi +(0.01i)3 +
Γq(4)

Γq(4−γ)(0.01i)(3−γ)

)
+ (0.01)2γ

Γ(3γ+1)

(
vi +(0.01i)3 +

Γq(4)
Γq(4−γ)(0.01i)(3−γ)

+
Γq(4)

Γq(4−2γ)(0.01i)(3−2γ)

)
+ (0.01)3γ

Γ(4γ+1)

×
(

vi +(0.01i)3 +
Γq(4)

Γq(4−γ)(0.01i)(3−γ)

+
Γq(4)

Γq(4−2γ)(0.01i)(3−2γ)+
Γq(4)

Γq(4−3γ)(0.01i)(3−3γ)

)]
.

(16)

for i = 0,1,2, . . . ,99.
Looking at the formulas (15)-(16) and by using
FHOqTM of order 2γ and 4γ respectively, we can
simulate approximate solutions with exact solution to
the problem (12) for q = 0.99 and γ = 1, it is shown
in Fig. 5 and Fig. 7, respectively. Fig. 6 and Fig.
8 represent the absolute errors of order 2γ and 4γ ,
respectively.
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Fig. 5: Exact & Numerical solutions of order 2γ for
q = 0.99 and γ = 1.
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Fig. 6: Absolute Errors of order 2γ for q = 0.99 and
γ = 1.
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Fig. 7: Exact & Numerical solutions of order 4γ for
q = 0.99 and γ = 1.
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Fig. 8: Absolute Errors of order 4γ for q = 0.99 and
γ = 1.

By choosing various values of γ for q = 0.99, and
different values of q for γ = 1, respectively. We plot in
Fig.9 and Fig.10 the numerical solutions of problem
(12) which is generated by the FHqOTM of order
4γ and compare the obtained results with the exact
solution, respectively.
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Fig. 9: Comparisons between Exact & Numerical
solutions for various values of γ for q = 0.99.
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Fig. 10: Comparisons between Exact & Numerical
solutions for various values of q for γ = 1.

CONCLUSION

In this research, we establish a novel fractional
approach to solve the initial value problem of
fractional q-difference equations involving the
Caputo’s q-derivative, known as the Fractional Higher-
Order q-Taylor Method (FHOqTM). This method is
based on the generalised q-Taylor’s theorem, and
we have estimate the local truncation error that
FHOqTM produces. In order to show the efficacy of

255



ALLOUCH N et al.: A New Fractional Approach for HOqTM

our results, we presented the numerical applications
and performed several comparisons between the exact
solutions and the approximate solution generated by
the FHqOTM. The suggested approach has proven
to be a successful numerical method for resolving
the initial value problems of fractional q-difference
equations.

REFERENCES
Abbas S, Benchohra M, Henderson J (2021).

Existence and Oscillation for Coupled Fractional
q-Difference Systems. J. Fract. Calc. Appl.
12:143–155.

Abbas S, Benchohra M, Laledj N, Zhou Y (2019).
Existence and Ulam Stability for Implicit
Fractional q-Difference Equation. Adv. Differ.
Equ. 2019:480.

Abdeljawad T, Baleanu D (2012). Caputo q-Fractional
Initial Value Problems and a q-Analogue Mittag-
Leffler Function. Commun. Nonlinear Sci. Numer.
Simul. 16:4682–88.

Agarwal R (1969). Certain Fractional q-Integrals and
q-Derivatives. Proc. Camb. Philos. Soc. 66.

Ahmad B, Ntouyas SK, Purnaras IK (2012). Existence
Results for Nonlocal Boundary Value Problems of
Nonlinear Fractional q-Difference Equations. Adv.
Differ. Equ. 2011:140.

Allouch N, Hamani S (2023). Boundary Value
Problem for Fractional q-Difference Equations in
Banach. Rocky Mountain J. Math. 53:1001–10.

Allouch N, Hamani S (2024). Existence and Ulam
Stability of Initial Value Problem for Fractional
Perturbed Functional q-Difference Equations.
Stud. Univ. Babes-Bolyai Math. 69:483–502.

Allouch N, Hamani S, Graef JR (2022). Boundary
Value Problem for Fractional q-Difference
Equations with Integral Condition in Banach
Space. Fractal Fract. 6:94.

Al-Salam W, Verma A (1975). A Fractional Leibniz
q-Formula. Pac. J. Math. 60:1–10.

Al-Salam W (1966-1967). Some Fractional q-Integrals
and q-Derivatives. Proc. Edinb. Math. Soc.
15:135–40.

Annaby MH, Mansour ZS (2012). q-Fractional
Calculus and Equations, Lecture Notes in
Mathematics. 2056. Springer, Heidelberg.

Barrio R, Blesa F, Lara M (2005). VSVO Formulation
of the Taylor Method for the Numerical Solution
of ODEs. Comp. Math. Applic. 50:93–111.

Barrio R (2005). Performance of the Taylor Series
Method for ODEs/DAEs. Appl. Math. Comp.
163:525–45.

Batiha IM, Abubaker AA, Jebril IH, Al-Shaikh SB,
Matarneh K (2023a). New Algorithms for Dealing
with Fractional Initial Value Problems. Axioms
12:15.

Batiha IM, Bataihah A, Al-Nana AA, Alshorm S,
Jebril IH, Zraiqat A (2023b). A Numerical Scheme
for Dealing with Fractional Initial Value Problem.
Int. J. Innov. Comp. Inf. Cont. 18:12.

Boutiara A, Etemad S, Alzabut J, Hussain A,
Subramanian M, Rezapour S (2021). On a
Nonlinear Sequential Four-Point Fractional
q-Difference Equation Involving q-Integral
Operators in Boundary Conditions Along with
Stability Criteria. Adv. Differ. Equ. 2021:1–23.

Garg M, Chanchlani L, Alha S (2013). On Generalized
q-Differential Transform. Aryab. J. Math. Inf.
5:265–74.

Hamadneh T, Hioual A, Alsayyed O, Al-Khassawneh
YA, Al-Husban A, Ouannas A (2023). The
FitzHugh-Nagumo Model Described by Fractional
Difference Equations: Stability and Numerical
Simulation. Axioms 12:806.

Hassan H (2016). Generalized q-Taylor Formulas.
Adv. Differ. Equa. 2016:12.

Jackson F (1910). On q-Definite Integrals. Quart. J.
Pure Appl. Math. 41:193–203.

Jackson F (1908). On q-Functions and a Certain
Difference Operator. Trans. R. Soc. Edinb.
46:253–81.

Kac V, Cheung P (2002). Quantum Calculus. Springer,
New York.

Zaid OM, Momani S (2008). An Algorithm for the
Numerical Solution of Differential Equations of
Fractional Order. J. Appl. Math. Info. 26:15–27.

Rajkovic PM, Marinkovic SD, Stankovic MS (2007a).
Fractional Integrals and Derivatives in q-Calculus.
Appl. Anal. Disc. Math. 1:311–23.

Rajkovic PM, Marinkovic SD, Stankovic MS (2007b).
On q-Analogues of Caputo Derivative and Mittag-
Leffler Function. Fract. Calc. Appl. Anal. 10:359–
73.

Sana G, Mohammed PO, Shin DY, Noor MA, Oudat
MS (2021). On Iterative Methods for Solving
Nonlinear Equations in Quantum Calculus. Fractal
Fract 5:17.

Samei ME (2019). Existence of Solutions for a
System of Singular Sum Fractional q-Differential
Equations via Quantum Calculus. Adv. Diff. Equ.
2019:23.

Samei ME, Yang W (2020). Existence of Solutions for
k-Dimensional System of Multi-Term Fractional

256



Image Anal Stereol 2024;43:249-257

q-Integro-Differential Equations under Anti-
Periodic Boundary Conditions via Quantum
Calculus. Math. Meth. Appl. Sci. 43:4360–82.

Usero D (2008). Fractional Taylor Series for Caputo
Fractional Derivatives. Construction of Numerical
Schemes. Preprint submitted.

257


