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ABSTRACT

This research work aims to characterize the algal colonization of mortar surfaces using image analysis. The
resistance of mortars to the biofouling is studied by means of an accelerated lab-scale test. A suspension of
green algae Klebsormidium flaccidum, was performed to periodically sprinkle the mortar surfaces and digital
images were acquired thanks to a scanner. The colonization rate of the surface follows a sigmoid type curve as
a function of time that can be modeled thanks to Avrami’s model. It is described by a two-process mechanism:
attachment and growth of algal stains. To identify the parameters of the algal colonization model, the images
were segmented thanks to a random forest algorithm to obtain pixel information on the presence of algae.
These processes were then represented with a morphological min-tree and information such as the number of
new germs or their growth have been exploited to feed the Avrami’s model. The results show a good agreement
between the modeling and the experimental data.
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INTRODUCTION

The building facades are progressively and
inevitably subjected to biological colonization
inducing physical and aesthetical degradations of
the construction. The involved microorganisms are
bacteria, algae, cyanobacteria, fungi, lichens and
even higher plants if no prevention is applied. The
implantation of microorganisms depends on many
factors such as climate, environment, light, relative
humidity, roughness, porosity, chemical composition,
surface pH. . . (Ortega-Calvo et al., 1995). Several
studies were devoted to the investigation of the
influence of these parameters on biofouling, at
laboratory scale as well as at real scale.

In the literature, some authors have attempted to
model this phenomenon (Tran et al., 2013). They
showed that Avrami’s germination-growth model was
quite a good tool to express the temporal evolution
of the colonization rates. Avrami’s model is based on
two processes: the nucleation, corresponding to the
appearance of nuclei of a new phase and the growth
representing the increase in the size of these nuclei
with time. In this work, the colonization rate follows
a sigmoid type curve as a function of time and the
biofouling is initiated by the attachment of algae on the
surface of samples creating many spots and considered
as nuclei. As a consequence, the colonization can be
modeled by Avrami’s model.

The aim of this work is to characterize the
colonization mechanism of materials by algae using

image analysis. Avrami’s model parameter values are
extracted using a morphological tree structure and used
to model the algal colonization phenomenon. The main
contributions concern the use of a tree structure to
represent the image sequence (algal colonization at
different times) and the corresponding characterization
to feed the model.

The paper is organized as follows. The next section
shows the experimental setup for image acquisition,
the Avrami’s model, the segmentation of images, the
tree structure and the determination of the model
parameters. Thereafter the experimental and simulated
results are compared and discussed. A conclusion and
some prospects close the paper.

MATERIALS AND METHODS

EXPERIMENTAL DATA
Samples were made up of a cement-based substrate

covered by a render, composed of white Portland
cement CEM I 52.5 N, calcareous filler, a thickener
and water. The render was deposited thanks to a
roughcast roller onto the surface of the substrates.
After storage at 21 ± 1◦C and 95 ± 5% of relative
humidity for 10 days, the render was carbonated under
pure CO2 in order to decrease the surface pH to
around 9, allowing the algal colonization. The size
of the samples were 20 × 8 × 1 cm. The studied
algal specie was Klebsormidium flaccidum because
of its representativeness and its ease of cultivation.
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The bio-receptivity of mortar was examined through
a laboratory accelerated test. The experimental device
consists in a 100 × 50 × 50 cm closed glass chamber
placed in a dark room. Samples were placed on a
stainless steel support inclined at 45◦. 50 L of sterilized
culture medium with an initial algal concentration
of 4 mg.L−1 was introduced. The suspension was
sprinkled onto samples by means of pumps for 90
minutes every 12 hours. Light was provided by neon
lamps with a photoperiod of 12 hours. In the presented
test, 8 samples were placed into the chamber. This
experimental approach is more detailed in (Tran et al.,
2012).

(a) day 0 (b) day 12

(c) day 19 (d) day 23

Fig. 1. Images of a mortar colonized by algae at
different time.

To evaluate biofouling, the sample surface was
daily digitized by means of an office scanner. The
spatial resolution of the scanner is 600 dpi. Fig. 1

shows some images of one mortar sample colonized
by algae, acquired at different times.

MODEL OF THE ALGAL COLONIZATION
The modeling of the algal colonization, using

Avrami’s model, is based on two main processes (Tran
et al., 2013): the attachement rate and the growth rate.

Attachment rate
The attachment rate was defined as the number of

algal spots appearing on surface unit per time unit and
was modeled thanks to a power law.

dγ

dt
(t) = kg(t − tl)q (1)

where γ(t) is the number of algal spots at time t
per unit area (spots/µm2). The constant q denotes
the power of the germination law. kg is the
attachment specific rate constant (spots/µm2.dayq+1).
tl corresponds to the latency time (day) and denotes the
beginning of nucleation and thus colonization.

Growth rate
The growth was considered as two-dimensional

and the hypotheses that the growth rate was identical
for all algal spots and constant during time were
applied. The surface area at time t covered by an algal
spot appearing at time θ was expressed as follows:

S(t) = k2
c .(t −θ)2 (2)

where kc corresponds to the specific growth rate
constant (µm/day).

The final model
Finally, from Avrami’s model, the colonization rate

X(t) at time t is calculated from the law of nucleation
and growth as an exponential equation:

X(t) = 1− exp
(
−

2kgk2
c(t − tl)q+3

(q+1)(q+2)(q+3)

)
(3)

In this equation, kc, kg, q, tl are constants defined in
the previous equations 1 and 2.

In this study, tl is considered to be the time at
which the algae cover 0.1 percent of the surface and
q is assumed equal to 1, i.e. one can extrapolate the
law of speed of germination to a line, relating to
the germination of uniform probability, which means
that there is an identical probability regardless of the
location of the germ. More details can be found in
(Tran et al., 2013)

The objective of this work is then to estimate these
two specific rate constants (i.e. kc and kg) by using
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image analysis, so as to get a simulated colonization
rate X̂(t) by using Equation 3. It will be compared to
the experimental colonization rate X(t) computed on
each image by simply calculating the density of the
pixels classified as algae.

To estimate kc and kg, the necessary characteristics
of the colonization are the number of algal spots
appearing on surface unit per time unit (attachment
rate) and the surface area at time t+x covered by an
algal spot appearing at time t (growth rate). To access
those parameter values, images are required to be
firstly segmented in order to be thereafter quantified
for extracting the attachment of algae.

IMAGE SEGMENTATION

The objective of this segmentation is to generalize
the detection of the biocolonization of mortars in the
case of in-situ tests where different microorganisms
and thus different colors can be observed on the surface
of samples. Given the variability of the images (colors
of algae, tints, shadows ...), the usual segmentation
techniques such as thresholding are not suitable.

In the literature, image segmentation can be
divided in two classes, those based on traditional
techniques (such as (Gutman et al., 2024)) and
those based on machine learning techniques (such as
(Minaee, 2021; Kirillov et al., 2023)). In order to
take into account images of various mortars colonized
by the algae in different conditions, a machine
learning-based segmentation method based on pixel
supervised classification (Posada-Gómez et al., 2011)
was investigated in this paper. The desired binary
classifier has two possible outputs : pixel covered by
algae or not. The advantage of using such an automatic
generic segmentation is its ability to adapt to several
mortars presenting various specific properties in terms
of composition, rugosity, roughness, color, lightness,
... (using a suitable training set).

Building a dataset

Images from a unique sequence corresponding to
a specific experiment (with mortar composed of white
Ordinary Portland Cement, roughness Ra = 150 µm,
initial surface pH = 9.1) and composed of 15 images
(as shown in the experimental data) are segmented
by combining thresholding operators (Posada-Gómez
et al., 2011) performed on the color components. The
parameters were empirically tuned by an expert so as
get a suitable segmentation from a visual point of view.
These segmented images are then considered as the
ground truth. One can note that there does not exist an
objective criterion to define this ground truth. Different
samples are thereafter selected to build the training

dataset. More precisely, 7 regions of size 500 × 700
pixels have been randomly selected and cropped from
the image sequence. Thereafter 3000 pixels classified
as algae and 3000 pixels classified as background have
been randomly selected to build the dataset.

Pixel features

For each image, the pixels are described in the
(L,a,b) color space, since the classical (R,G,B) color
space does not give significant contrast to separate the
algae and the background.

The used features are based on texture and
morphological characteristics. Local Binary Patterns
(LBP) (Ojala et al., 2002) are used for the
texture description and operators from mathematical
morphology (erosion and dilation) are used for the
morphological description (Soille, 2003) .

For both texture and morphological pixel
description, the radius varies between the following
values: 2, 4, 6, 8, in order to work on different
neighborhood scales. In this way, four different
values for each pixel are obtained as each carries
the information depending on different neighboring
pixels. This process is applied to all three channels of
the image and a total of 36 features for each pixel is
then obtained.

Classification models

Different classifiers’ performances are compared.
The selected classifiers are: Multi-Layer-Perceptron
(MLP), Random Forest (RF), Support Vector Machine
(SVM) and Vote. The later corresponds to the
most frequently chosen class considering all previous
classifiers after a bagging of the data. The results will
be shown on the next section.

IMAGE SEQUENCE ANALYSIS USING
COMPONENT-TREES

Once the images are segmented and pixels are
annotated with labels (algae or not), the over-time
coverage of the surface by algae is accessed. The
processes at stake are germ spots appearing, growing
and merging together. To apply Avrami’s model, the
necessary parameters are the number of algal spots
appearing on surface unit per time unit (attachment
rate) and the surface area at time t + x covered by an
algal spot appearing at time t (growth rate).

The use of a tree structure (Bosilj et al., 2018)
facilitates the access to those parameters. The leaves
of the tree correspond to the germs being born, the
subbranches to growing spots and the nodes that
have multiple children to the merging of spots. This
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representation will enable to extract the quantitative
information as inputs for the model description.
The desired tree structure is shown in Fig. 2 on
a toy example. The images on the top correspond
to the evolution of the mortar surface colonized by
algae spots (shown in white, background is black)
at different times. The numbers both corresponds
to the connected components of the binary images
and the nodes into the hierarchical tree. The blue
nodes corresponds to germ nucleation, the red to
germ growth and the pink ones as germ fusion.
All the required information for the Avrami’s model
parameters is then contained in such a hierarchical
tree.

Fig. 2. Desired tree structure on a toy example. A
sequence of images at different times is shown at
the top (the white components correspond to the
algae spots). At the bottom, the corresponding tree of
components is illustrated. It contains all the required
information (nucleation, growth and merge of algae
spots).

The most widespread forms of hierarchical
tree structures are detailed in Bosilj et al. (2018).
Component trees are found in many applications
: classification, image filtering, segmentation,
registration, compression and morphological
operators, for instance algebraic openings/closings
and levellings. (Berger et al., 2007). Many theoretical
publications describe the efficient implementation
of some of these trees (Géraud et al., 2013; Perret
et al., 2010). These tree structures are used in many
applications : astronomy (Perret et al., 2010), biology
(Oliveira et al., 2018) and many others.

To build the desired tree for the proposed study in
this paper, the selected structure is a morphological
Min-tree of components, as first introduced in
(Salembier et al., 1998). The Min-tree is an inclusion
tree representing the dark structures in an image I,
based on lower level sets with the leaves corresponding
to the local image minima. A connected component of
the level set Lk missing from the level set Lk−1 makes a

new node nk with its surrounding spatial region R(nk)
which becomes either :

– A parent node to all previous nodes at lower levels
which are included in the region of the new node:
R(nk′)⊂ R(nk),k′ < k.

– A leaf node if it does not include the regions of any
previous nodes.

At the highest gray level, there is only one
connected component covering the whole image and
it forms the root of the tree. The hierarchy corresponds
to distinct connected components of the lower level
sets: Hmin = {CC(Lk)|k ≤ lMax}. The local minima of
the dual image −I correspond to the local maxima of
the original. Thus, considering the upper level sets of
I or the lower level sets of the dual −I, one obtain
the dual Max-tree hierarchy. The Min-tree is adapted
for manipulation of dark image structures, and the
Max-tree, based on higher level sets with the leaves
corresponding to the local image maxima, for the
bright ones (Bosilj et al., 2018).

The structure of Min and Max trees is shown in
Fig. 3, extracted from Bosilj et al. (2018).

Fig. 3. (a) The original image; (b) corresponding Min-
tree; (c) the dendrogram; and (d,e) Max-tree and its
dendrogram. Corresponding spatial regions are shown
next to the nodes. Extracted from Bosilj et al. (2018)

To use the presented data as a Min-tree, the
temporality of the evolution will be represented in
the following way : a superimposition of the binary
algae segmented images is used, representing the
older apparition of algae darker in gray-level, with
a grey-value corresponding to the time at which
they appeared. This leads to nested structures as we
consider no algae detachment. A ”final” image is
constructed with only zeros so that it corresponds to
the root of the tree.
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DETERMINATION OF kg AND kc

The identification of the parameters values of kg
and kc from the Avrami’s model is then possible by
extracting information from the tree structure.

Determination of kg

To extract the required model parameters, only the
data up to the day 16 is considered. After 16 days, it
is difficult to perfectly identify the new spots, as the
colonization rate exceeds 50% leading to a significant
overlap between the new spots and the existing algal
deposit. This results in poor quantification of the
number of new spots. Further data contain algae
detachment which does not fit within the scope of this
study. The extraction of the number of new germs per
remaining surface over time from the tree is performed
and the time at which they appeared is accessed sorting
them by gray-level as explained earlier. To obtain the
value of kg, the number of new germs per remaining
surface as a function of time is extracted considering
the leaves of the tree. This function is then derived with
respect to time and plotted as a function of t − tl (we
assume q = 1). A linear regression is performed and
the slope is extracted as kg.

Determination of kc

The surface covered by growing germs over time
is extracted. The growth of only non-merging germs
is considered given that considering the growth of
merging would not be accurate.

These alone germs are the subbranches of the
tree. To extract the subbranches, all leave nodes and
merging nodes (nodes that have multiple children) are
considered. We then consider each of this nodes and
proceed to loop alongside the subbranch and extract
the unique parent of the considered node until the
parent is not unique, e.g. when a merging occurs.

For every germ, its growth is followed, the surface
S(t) is plotted in pixels according to the square of
(t − θ). The intercept is forced to zero as a linear
relation is seek.

All the values obtained for each subbranch are
averaged to obtain the final kc.

More computational details for the determination
of the values kg and kc can be found in Tran et al.
(2013).

RESULTS

CLASSIFICATION RESULTS FOR
IMAGE SEGMENTATION

A 5-fold cross validation is performed to ensure
generalization of the models. The results from
the different classifiers are presented in table 1
using different performance metrics. Best results are
highlighted in bold font.

Table 1. Performance evaluation of different
classifiers.

MLP RF SVM Vote
Accuracy 95.6% 99.3% 98% 98.5%
F1 score 94.4% 99.0% 97.8% 98.6%

Jacquard index 89.5% 98.1% 95.8% 97.2%
Matthews CC 90.2% 98.1% 95.6% 97.3%

For the RF classifier, 500 trees and a maximum
depth of 16 have been used. Regarding the MLP
classifier, the hyperparameters are: 10 layers and 10
neurons in each layer, the stochastic gradient-based
optimizer and a maximum of 1000 iterations. For the
SVM classifier, a linear kernel has been used.

The Random Forest algorithm yields better results
and takes reasonable calculation time. The final
segmentation is therefore performed using this RF
classifier.

EXTRACTION OF AVRAMI PARAMETERS
AND MODELING

Based on the methodology detailed earlier, the
following values were obtained : tl = 4.63 days, kg =
2.55.10−8 spots per squared day t2 per µm2 and
kc = 178.1 µm per day. These parameters lead to the
simulation shown in Fig. 4.

DISCUSSION

The results show a quite good agreement between
the modeling and the experimental data. However,
there are differences observed between the ground
truth and the simulation with the empirical values,
which could come from the fact that the few drop-off of
algae are not taken into account since it is considered
that each image is included in the next one.
In addition, it was assumed in this paper q = 1 but a
power law different than one could be considered.
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Fig. 4. Simulation of the covering rate with the
proposed model compared to the ground truth
corresponding to the experimental data.

CONCLUSION AND PROSPECTS

The aim of this study was to introduce a
reproducible method to extract Avrami’s parameters
from a case of colonization of mortar surface by algae.
Thanks to image acquisition and analysis, the model
parameter values have been extracted. The surface
colonization all along the time has been evaluated
between the model and its direct characterization
from images, showing a quite well agreement. The
results could be improved by taking into account the
algae detachment by using a topological tracking of
connected components in image sequences (Gonzalez-
Diaz et al., 2018), but it could be difficult to
experimentally quantify this phenomenon. Also, the
acquisition setup could be improved by using other
acquisition systems than the scanner.

The strength of the proposed method in relation
to the studied application is the use of a component
tree applied to an image sequence. Indeed, it gives
directly access to the required information (nucleation,
growth and fusion of the algae spots) leading to an easy
characterization. The main limitation is the lack of a
ground truth for the image segmentation step, although
an expert can provide an estimate based on qualitative
considerations.

Finally, if the proposed generic method is used on
different scenario, the influence of several parameters
such as climate, environment, light, relative humidity,
roughness, porosity, chemical composition or surface
pH could be investigated.
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