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ABSTRACT

Visible RGB and Thermal infrared (RGBT) object tracking has emerged as a prominent area of focus
within the realm of computer vision. Nevertheless, the majority of existing RGBT tracking methods,
which predominantly rely on Transformers, primarily emphasize the enhancement of features extracted by
convolutional neural networks. Unfortunately, the latent potential of Transformers in representation learning
has been inadequately explored. Furthermore, most studies tend to overlook the significance of distinguishing
between the importance of each modality in the context of multimodal tasks. In this paper, we address these
two critical issues by introducing a novel RGBT tracking framework centered on multimodal hierarchical
relationship modeling. Through the incorporation of multiple Transformer encoders and the deployment of
self-attention mechanisms, we progressively aggregate and fuse multimodal image features at various stages
of image feature learning. Throughout the process of multimodal interaction within the network, we employ
a dynamic component feature fusion module at the patch-level to dynamically assess the relevance of visible
information within each region of the tracking scene. Our extensive experimentation, conducted on benchmark
datasets such as RGBT234, GTOT, and LasHeR, substantiates the commendable performance of our proposed
approach in terms of accuracy, success rate, and tracking speed.
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INTRODUCTION

Visible RGB and Thermal infrared (RGBT) object
tracking is an emerging direction in the field of
object tracking, aiming to exploit the complementary
advantages of visible modality and infrared modality
to overcome environmental interference and obtain
richer feature representations. There are significant
modality differences between visible and infrared
images.

Due to visible images and infrared images
being captured by different spectral cameras, they
undergo significantly different imaging processes
and possess distinct wavelength ranges, resulting
in notable modality differences. The first critical
challenge in RGBT object tracking research is how
to overcome this heterogeneity between different
modalities. Current RGBT tracking methods often
utilize dual-branch networks based on convolutional
neural networks and employ a fusion strategy to
address this heterogeneity issue. There are roughly
three categories of methods for fusing multimodal
features: In the first category, as shown in Fig.
1(a), fusion is performed only on high-level features
extracted from the two branches using a fusion

strategy such as concatenation, element-wise addition,
or attention mechanisms Li et al. (2019b); Mei et al.
(2021) . In the second category, as shown in Fig.
1(b), a progressive fusion approach is used to fuse
features from multiple layers alternately during feature
extraction and feature fusion Xiao et al. (2022).
However, these methods still have some limitations.
Firstly, due to potential imperfect alignments in
multimodal images, simple linear operations may
lead to the loss of discriminative information in
the features. Secondly, the fusion of visible and
infrared features often focuses on feature-level fusion
at higher layers, lacking early-stage interaction,
which may lead to the loss of some important
low-level semantic details. Additionally, existing
Transformer-based methods typically use separate
Transformer encoder and decoder layers for feature
enhancement and interaction operations, simply
stacking convolutional layers and Transformer layers
without fully utilizing its advantages in modeling
long-term dependencies. Addressing these issues,
we propose a Multimodal Hierarchical Relationship
Modeling (MHRM) method, as shown in Fig. 1(c).
It utilizes a multi-layer Transformer encoder structure
to establish a multi-directional and free information
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flow, connecting visible light-infrared image pairs
and template-search image pairs. During early-stage
feature learning in the image, feature interaction
and fusion are performed simultaneously. In the
interaction process, we model intra-modal fine-grained
information relationships, extracting modality-related
and discriminative features.

(a) Dual-Steam (b) Progressive (c) Hierarchical

Fig. 1: Comparison of three fusion methods.

The second key challenge in RGBT tracking
is determining the importance of infrared modality
information relative to visible modality information.
The complementarity of infrared modality information
to visible modality information varies depending
on factors like lighting, object shape, size, and
occlusion. The interaction between the two modalities
is not always effective for visual tasks. Therefore,
in practical scenarios, the importance of infrared and
visible information differs across videos, frames, and
even different regions within the same frame. Thus,
discerning whether infrared information enhances
visible information and predicting the extent of this
enhancement is crucial. However, existing methods
often treat both modalities equally and overlook
the varying importance of the two modalities for
tracking tasks. To address this challenge, we design
a patch-level Dynamic Component Fusion Module
(DCFM), dynamically solving the importance of
visible information for each region in the tracking
scene. It adaptively adjusts the interaction between
visible and infrared information during tracking
to better adapt to complex tracking scenarios. To
quantify the importance, we introduced a illumination
decoupling network to compute the illumination of
visible images and used a trainable neural network
to calculate weights for each block. These weights
are assigned to describe the importance of visible
information within each region. Through patch-level
weight allocation, it assigns more reasonable weight
proportions to regions containing objects, highlighting
the object while reducing the background’s impact.

In summary, the main contributions of this paper
are as follows:

– We propose a single-stream RGBT tracking
framework based on multi-modal hierarchical

relationship modeling. By stacking multiple layers
of Transformer encoders, we establish a multi-
directional and free information flow connecting
visible and infrared image pairs, progressively
aggregating and fusing multi-modal image features
at multiple stages of feature learning.

– We design a patch-level dynamic compoment
fusion module based to dynamically solve the
importance of visible information for each region
in the tracking scene. It adaptively adjusts
the interaction between visible and infrared
information during tracking to better adapt to
complex tracking scenarios.

– Extensive experiments on the RGBT234, GTOT,
and LasHeR datasets demonstrate that our method
achieves competitive performance in terms of
precision, success rate, and tracking speed.

RELATED WORK

RGBT OBJECT TRACKING

In recent years, deep learning-based methods have
dominated the field of RGBT object tracking. Gao
et al. propose a deep adaptive fusion network with
multiple fusion modules connected to each layer
for fusing visible modal features, infrared modal
features, and output features from the upper layer to
achieve deep fusion of features Gao et al. (2019).
Wang et al. design a cross-modal pattern propagation
network to construct inter-modality propagation
relationships through affinity correlation, and to mine
and exploit potential mode cues for better feature
representation Wang et al. (2020). Zhang et al. propose
a method based on attribute-driven representation to
represent and aggregate the features of each class of
attribute branches separately to effectively predict the
attributes in the tracking process Zhang et al. (2021a).

TRANSFORMER-BASED OBJECT
TRACKING

Chen et al. design a tracking method based
on Transformer structure Chen et al. (2021), where
the decoder replaces the correlation operation in
the traditional Siamese network framework. Xiao
et al. propose an attribute-based progressive fusion
network that uses a stacked Transformer encoder-
decoder structure, where the encoder performs feature
enhancement and the decoder performs feature fusion
for different branches of features Xiao et al. (2022).
Ye et al. propose a one-stream tracking framework
that unifies feature learning and relational modeling

42



Image Anal Stereol 2024;43:41-51

by bridging template-search image pairs with a bi-
directional information stream established through the
Transformer Ye et al. (2022). Zhu et al. propose
a visual prompt multimodal tracking framework
that uses modal complementary cueers to generate
effective visual prompts, inputting a single-stream
Transformer backbone to eliminate the need to design
additional network branches Zhu et al. (2023).

FEATURE FUSION

Zhu et al. design a trident fusion network for
RGBT tracking, which fully exploits multilayer depth
features by deploying multimodal information and
recursively aggregating features from all convolutional
layers using a dense feature aggregation module Zhu
et al. (2022). Song et al. use a cross-attention
structure to fuse ultrasound data with MRI image
data Song et al. (2021). Zhang et al. propose a fusion
sub-network for semantic segmentation of RGBT
tracking, which adaptively obtains the weights of
different modalities by bridging first and fusing later
strategy with multiple channel weighted summation
modules Zhang et al. (2021c). Meng et al. proposes
a human interaction understanding framework that
blends local and contextual representations with deep
graphical architectures to facilitate the understanding
of human-computer interaction Meng et al. (2023).

METHOD

NETWORK ARCHITECTURE

The proposed RGBT tracking method consists of
three stokenes: Multimodal Hierarchical Relationship
Modeling (MHRM), Dynamic Component Fusion
Module (DCFM) and prediction head. The specific
structure is shown in Fig. 2. Multiple ViT Dosovitskiy
et al. (2021) encoders are used to form the backbone of
the Siamese network, which is used to perform feature
learning and interaction between the template and the
search image, and between the visible and infrared
modalities. In the encoding and weighting addition
phase, the DCFM is used to compute the weight of the
visible modality for each region of the visible image, in
order to distinguish the different levels of importance
of the visible and infrared images. Finally, the obtained
visible and infrared search region features are fused
again and reshaped into spatial features for input to
the prediction head for subsequent object classification
and regression.

MULTIMODAL HIERARCHICAL
RELATIONSHIP MODELING
We design a MHRM module to incrementally

aggregate and fuse image features in multiple stages
of image feature learning through multiple stacked
Transformer encoders. Unlike other Transformer-
based methods, we eschew the use of decoder
structures as a means of feature interaction and instead
use only encoder structures, combining multimodal
inputs into one feature sequence that is fed into the
encoder structure simultaneously. In the multilayer
encoder structure, a free flow of information is
constructed by self-attention, and the visible-infrared
image pairs are connected by a multi-directional
information flow. Multimodal information is directed
to each other for feature extraction, and each token
embedding in the input sequence can complete the
global interaction between two pairs. The proposed
MHRM structure is shown in the middle part of
Fig. 2. A pair of visible and infrared images of a
frame of a video sequence in the RGBT dataset is
input, and then the images are cropped to obtain
the visible template and search image as well as the
infrared template and search image. First, we divide
the template image and the search image separately.
According to the size, the template image is divided
into n×n patches and the search image is divided into
N ×N patches, and then the above image patches are
sorted into a sequence of patches to obtain the visible
template patch sequence zv = [zv

1;zv
2; ·· ·;zv

n2 ], the visible
search patch sequence zi = [zi

1;zi
2; · · ·;zi

n2 ], the infrared
template patch sequence xv = [xv

1;xv
2; · · ·;xv

N2 ] and the
infrared search patch sequence xi = [xi

1;xi
2; · · ·;xi

N2 ].
The linear projection layer flattens zv,zi,xv and xi

to 2-dimensional features, while adding the learnable
position embedding pz and px, to mark the position
information of each patch. The projection layer outputs
the token embedding sequences Z and X , in the case of
visible modality, the process can be described as:

Zv = [zv
1P;zv

2P; · · ·;zv
n2P]+ pz, (1)

Xv = [xv
1P;xv

2P; · · ·;xv
N2P]+ px. (2)

where P is the learnable parameter of the linear
projection layer. The same can be done for the
infrared token embedding sequence. According to
the distribution of token embeddings, the visible and
infrared token embeddings are sequentially cross-
arranged and concatenated into a sequence, which
is then fed in parallel into a MHRM consisting
of L Transformer encoders. The encoder structure
uses the ViT structure that has been applied many
times to downstream tasks, with some modifications
to make it more suitable for multimodal tasks, as
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Fig. 2: The framework of multimodal hierarchical relationship modeling tracking model. It includes three parts:
multimodal hierarchical relationship modeling, dynamic component feature fusion and prediction head.

shown in the left part of Fig. 2. The encoder consists
of two layer normalization followed by a multi-
head self-attention and a multi-layer perceptron layer,
during which two residual connections are made. ViT
provides a variety of publicly available pre-training
models, which can greatly improve the efficiency of
our training models. In the encoder, the input token
embeddings sequence consisting of two modalities is
subjected to multiple self-attention operations. Unlike
the cross-attention of two inputs, the self-attention
is a process of interaction between two input token
embeddings, which enhances their own features by
generating an attention matrix. In this process, not
only enhancing of the two modalities’ own feature
representations, but also the interactive fusion between
the template and the search, and between the visible
and infrared images are carried out. Furthermore, the
weight allocation network in Section 3.3 also plays
a role in this process. After obtaining the weight
matrix W , we calculate the ratio matrix between W
and (1−W ) before encoding, and then multiply it with
the infrared token sequence. Also, since this phase is
performed simultaneously, the fusion of visible and
infrared information is discriminative and instructive
in the training process. Compared to cross-attention,
self-attention using cascaded features makes the whole
framework highly parallelized. Although the input to
ViT is still a visible-infrared image pair, the inference
speed is less affected by the highly parallel structure.

We use a token subsequence [Zv
j ;Zi

j;Xv
j ;X i

j] to
illustrate the principle of the method. This process can
be analyzed from two perspectives. First, the formula
for the attention mechanism can be expressed as:

A= So f tmax(
[Qv

z ;Qi
z;Qv

x;Qi
x][K

v
z ;Ki

z;Kv
x ;Ki

x]
⊤

√
dk

)·[V v
z ;V i

z ;V v
x ;V i

x ],

(3)
From the perspective of multimodal relationship, the
attention weight map calculation process can be
expressed as follows:
W = [Qv

z ;Qi
z;Qv

x;Qi
x][K

v
z ;Ki

z;Kv
x ;Ki

x]
⊤

= [Qv
{z,x}Kv

{z,x}
⊤;Qv

{z,x}Ki
{z,x}

⊤;Qi
{z,x}Kv

{z,x}
⊤;Qi

{z,x}Ki
{z,x}

⊤
]

∆
= [Wvv,Wvi;Wiv,Wii].

(4)
where Wiv can be considered as a measure of
the similarity between visible and infrared images,
resulting in the self-attention output:

A = [Wvv,Wvi;Wiv,Wii] · [V v
{z,x};V i

{z,x}]

= [WvvV v
{z,x}+WviV i

{z,x};WivV v
{z,x}+WiiV i

{z,x}],
(5)

where WivV v
{z,x} is responsible for the fusion between

visible and infrared modalities, while WvvV v
{z,x} and

WiiV i
{z,x} are feature aggregation operations for image

itself. Therefore, the global relationship modeling of
the L-layer Transformer encoders achieves a more
adequate perceptual fusion of visible and infrared
information.
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Similarly, from the perspective of relationship
between template and the search image, the attention
weight map calculation process can be expressed as
follows:

W = [Q{v,i}
z K{v,i}

z
⊤;Q{v,i}

z K{v,i}
x

⊤;Q{v,i}
x K{v,i}

z
⊤;Q{v,i}

x K{v,i}
x

⊤]
∆
= [Wzz;Wzx;Wxz;Wxx],

(6)
where Wzx can be considered as a measure of
the similarity between template and search images,
resulting in the self-attention output:

A = [Wzz,Wzx;Wxz,Wxx] · [V {v,i}
z ;V {v,i}

x ]

= [WzzV
{v,i}
z +WzxV

{v,i}
x ;WxzV

{v,i}
z +WxxV

{v,i}
x ],

(7)
where WxzV

{v,i}
z is responsible for the relational

interaction between the template image and the search
image, WxxV

{v,i}
x is equivalent to feature aggregation by

attention of the image itself.

DYNAMIC COMPONENT FEATURE
FUSION

We focus on how to assign reasonable weights to
the multimodal information to regulate the importance
of visible and infrared information in the whole
tracking task, and thus guide the interaction between
the different modalities. We design a patch-level
DCFM by introducing an illumination decomposition
network to obtain the input visible image illumination
map, and then dynamically derive the corresponding
weights for each patch by a trainable neural network.

Since there may be significant scene changes
between videos and even between frames, we adjust
the weighting of the interactions between the different
modes to a dynamic value. Since there may be
significant illumination differences in different regions
of the same frame, we design a Dynamic Component
Fusion Module (DCFM) at image patch-level by
introducing an illumination decoupling network to
obtain the input visible image illumination map, and
then dynamically derive the corresponding weights for
each patch by a trainable neural network.

DCFM estimates a deterministic value α ∈ (0,1) to
describe the trustworthiness of the visible information
in each region by measuring the illumination
information of the visible image. α and (1 − α)
will be used as modality weights to dynamically
guide the interaction of visible and infrared modalities
throughout. Specifically, we directly refer to the
illumination decoupling network in the publicly
available pre-trained weight model KinD++ Zhang
et al. (2021d). Based on the Retinex illumination

enhancement theory, we set two branches for
the visible image to decompose the illumination
component I and the reflectance component R of
the visible image, respectively, denoted as:S = R ·
I. We keep only the illumination component as
illumination map I for subsequent operations. For the
actual tracking task, we only need a deterministic
value to regulate the multimodal fusion. Therefore,
similar to TNet Cong et al. (2022), we set a trainable
network to map the illumination map to (0,1) to
describe the trustworthiness of the visible illumination.
Specifically, the illumination map is divided into
regions according to the image patch partitioning
rule, then resized by global average pooling, 1×1
convolutional transformation of the channels, and then,
finally, the features are mapped to a specific fractional
value by a fully connected layer and a sigmoid
activation function. The process can be expressed as
follows:

αi = σ(FC(Conv(GAP(Ii)))), (8)

where Ii denotes the feature of the i-th region, Conv
and FC represents the convolution and fully connected
layer, GAP and σ denotes the global average pooling
and sigmoid activation function. α denotes the final
weight.

After calculating α for each region, we can obtain
the weight matrix W for the search image. W initializes
the weights for both visible and infrared modalities
across the entire network and adjusts them through a
trainable network. The regions of operation for W are
the encoder within the main backbone and the final
weighted summation module. It globally regulates the
fusion-related effects for multimodal integration.

The image patch-level weight assignment can
effectively regulate the global multimodal information
fusion. To a certain extent, assigning a more reasonable
weight to the region patches containing the objects
can achieve the purpose of highlighting the object and
weakening the background. The is input to the encoder
structure in the backbone and the final weighted
addition module to globally regulate the fusion-related
effects of multimodal.

PREDICTION HEAD AND LOSS
FUNCTION
A sequence of token embeddings containing

multimodal information is reshaped into a spatial
feature map, which are then fed into a fully
convolutional network consisting of m convolutional-
normalized-ReLU activation function layers. The
response maps M and local offsets O are output to
obtain the final predicted classification results and
object coordinates. In the training process, the entire
tracking network architecture uses both classification
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and regression loss functions to achieve the best
training results. We use weighted focal loss Law
and Deng (2018) as the classification loss, GIoU
loss Rezatofighi et al. (2019) as the regression loss,
and mean absolute error loss.

Weighted focal loss adjusts the training focus
onto challenging samples by dynamically modifying
the weights of easily distinguishable samples during
the training process. Its calculation formula can be
described as follows:

Lcls =−
H

∑
x

W

∑
y

{
(1−Mxy)

β log(Mxy), i f M̂xy = 1
(1− M̂xy)

η(Mxy)
β log(1−Mxy),otherwise

,

(9)
where Mxy is the prediction score at position (x,y)
in the predicted response map, M̂xy denotes the truth
heat map generated using Gaussian kernel, β and
η is the hyperparameter set to 2 and 4 respectively
during training. The IoU loss employs the Intersection
over Union (IoU) metric to address the issue where
bounding boxes with the same L-distance between
predicted and ground truth boxes have different
IoU values, making it challenging to optimize using
IoU alone. However, when two bounding boxes
do not intersect (i.e., IoU=0), the loss value is 0,
which prevents gradient backpropagation. Hence, the
Generalized IoU (GIoU) loss is used. It introduces a
minimum enclosing box to confine the overlap range.
The calculation formula is as follows:

LGIoU = IoU +
Ac −µ

Ac , (10)

where Ac represents the minimum enclosing box area
of the real target bounding box and the predicted
bounding box, while µ stands for the union area of
the real bounding box and the predicted bounding box.
The total loss of the network is described as follows:

Ltotal = Lcls +λ1L1 +λ2LGIoU , (11)

where λ1 and λ2 are the equilibrium parameters, which
are set to 2 and 5 in the experiment.

EXPERIMENTS

DATASETS AND METRICS

GTOT includes 50 pairs of highly aligned
visible and infrared videos, which were captured in
different scenes and conditions. Each frame contains
manually annotated data, including the coordinates of
the object’s bounding box and attributes indicating
challenging conditions Li et al. (2016).

RGBT234 is an extension of the RGBT210
dataset, comprising 234 pairs of highly aligned
visible and infrared videos. It also includes manually
annotated object bounding boxes and attributes
indicating challenging conditions. The annotations are
more accurate, and the attributes are richer, taking
into account various environmental challenges Li et al.
(2019a).

LasHeR is a large RGBT dataset that consists of
1224 pairs of visible and infrared videos, featuring
greater scene complexity. Among these, 979 video
sequences are allocated to the training set, while 245
sequences are allocated to the test set Li et al. (2021).

In the evaluation of the GTOT, RGBT234, and
LasHeR test sets, we use the same two evaluation
metrics: Precision Rate (PR) and Success Rate
(SR). We calculate the center position error between
predicted bounding boxes and ground truth bounding
boxes for all frames and set a threshold, where the
CLE is defined as:

ρ =

√
(x1 − x2)

2 +(y1 − y2)
2, (12)

where (x1,y1) and (x2,y2) indicates the center point
coordinates of the predicted bounding box and the
ground truth. PR represents the percentage of all
frames whose center position error is less than this
threshold. Similarly, we compute the overlap between
the predicted bounding box and the groundtruth for all
frames and set a threshold, where the overlap is defined
as:

O(a,b) =
|a∩b|
|a∪b|

, (13)

where a and b indicates the predicted bounding box
and ground truth. SR is the percentage of all frames
whose overlap is greater than the threshold, i.e. the
percentage of frames successfully tracked.

EXPERIMENT SETTING
We conduct experiments on a computer equipped

with an NVIDIA GTX 4090 GPU, running the Ubuntu
20.04 operating system.

During the training process, the OSTrack-384
is used as a baseline. Firstly, the pretrained model
parameters based on the ViT with MAE He et al.
(2022) are loaded, and the number of encoders,
denoted as L, is set to 12. The encoder model
parameters are initialized. Subsequently, the DCFM
parameters are initialized based on the Retinex-based
illumination decoupling network. The entire model is
trained using the LasHeR dataset train sets, and data
augmentation strategies are employed during training,
including operations like flipping, rotation, brightness
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jitter, and so on. The initial learning rate for the
encoder backbone is set to 4×10−5, while the learning
rate for other network structures in the model is set to
4× 10−4. The Adam W optimizer is used to optimize
the model with a weight decay of 10−4, and the
training iteration count is set to 100.

During testing, the pretrained model parameters
are loaded, and model parameters are fixed. The
classification map is simply multiplied by a Hann
window of the same size. The bounding box with the
highest score after multiplication is selected as the
tracking result.

EVALUATION ON RGBT TRACKING
DATASETS

Fig. 3: Evaluation results on the GTOT dataset.

GTOT Dataset. We compare the our method (Ours)
with several state-of-the-art tracking methods in terms
of both accuracy and success rate, including the
RGBT tracking methods APFNet Xiao et al. (2022),
MANet Li et al. (2019b), JMMAC Zhang et al.
(2021b), M5L Tu et al. (2022), HDINet Mei et al.
(2021), DAFNet Gao et al. (2019), DAPNet Zhu et al.
(2019) and the traditional tracking method OTrack Ye
et al. (2022). The comparison of tracking results on
the GTOT dataset is shown in Fig. 3. The comparison
results show that our method shows superior accuracy
and success rate compared with most of the tracking
methods, and achieves the best performance in the
success rate metric. It achieves 74.5%. The accuracy
achieves 90.2%. The accuracy and success rate are
11.5% and 9.2% higher than the baseline method
OTrack, respectively. The success rate is 0.8% higher
and the accuracy is only 0.3% lower than that of
the state-of-the-art method APFNet. In addition, the
proposed method is based on SiameseFC, which has
a significant speed advantokene over APFNet based
on MDNet Nam and Han (2016), and the speed
comparison results are shown in detail in Section 4.5.

RGBT234 Dataset. The comparison of tracking
results on the RGBT234 dataset is shown in Fig.
4. The comparative results show that our method
also achieves better results on RGBT234. The best
performance is achieved in the success rate index,
which reaches 59.9%. The accuracy achieves 80.5%.
The accuracy and success rate are 5.6% and 3.6%

higher than the baseline method OSTrack, respectively.
The success rate is 2% higher and the accuracy is 2.2%
lower than that of the state-of-the-art method APFNet.

Fig. 4: Evaluation results on the RGBT234 dataset.

Fig. 5: Evaluation results on the LasHeR dataset.

LasHeR Dataset. We compare our method (Ours)
with several RGBT tracking methods, including
APFNet Xiao et al. (2022), MANet Li et al. (2019b),
MANet++ Lu et al. (2021), DAFNet Gao et al.
(2019), DAPNet Zhu et al. (2019), FANet Zhu et al.
(2021), mfDiMP Zhang et al. (2019) and OSTrack Ye
et al. (2022). The comparison results are shown in
Fig. 5. The results show that our method achieves
best performance in both accuracy and success rate.
Compared with the method APFNet, the accuracy is
improved by 7.3% and the success rate is increased
by 8.9%. According to the analysis, the LasHeR
dataset has more complex scenes and challenging
environments, and the proposed method focuses more
on modulating the enhancement of visible modality
by infrared information, so it is more advantokeneous
when facing more challenging environments.

Visualization. The tracking visualization results of
GTOT and RGBT234 subsequences are shown in Fig.
6, and the visualization of the LasHeR subsequencesis
shown in Fig. 7. The results show that our method
compared to APFNet and OSTrack, the tracking
bounding box results are closer to GroundTruth and
less prone to tracking drift when dealing with video
sequences in poor environments such as nighttime or
low-light.

EVALUATION OF ATTRIBUTE
CHALLENGE

GTOT dataset primarily consists of seven
attributes, corresponding to seven external
environmental challenges. These challenges include
target occlusion (OCC), scale variation (LSV), fast
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Ours APFNet OSTrackGroundTruth

Fig. 6: Visualizations of four video sequence on GTOT and RGBT234 datasets.

Ours APFNet OSTrackGroundTruth

Fig. 7: Visualizations of three video sequence on LasHeR datasets.
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Fig. 8: Attribute-based PR/SR scores on GTOT dataset.

motion (FM), low illumination (LI), thermal crossover
(TC), small objects (SO), and object deformation
(DEF). To address these attribute challenges, we
conducted precision and success rate comparisons
of seven tracking methods on the GTOT dataset, as
shown in Fig. 8. The figure shows that our method
achieves the best results for both SR and PR in the
LSV and LI attributes, and SR alone achieves the
best results in the OCC, FM, and TC attributes,
and PR is mostly in the second position. There are
also cases of PR or SR in second place in SO and
DEF. In summary, our method maintains the best
or second-best performance on most attributes’ two
metrics, especially in scale variation, low illumination.
Compared to attribute-based method APFNet, our
method also shows certain advantages. Experimental
results confirm that our method excels in dealing with
external environmental challenges.

ABLATION STUDY

Module Ablation Experiments. In order to verify
the effectiveness of proposed MHRM and DCFM,
the entire network was disassembled and combined.
To further validate the effectiveness of DCFM, Static
Component Fusion Module (SCFM) was set and α

was manually set to 0.6. Ablation experiments were
conducted on two datasets, RGBT234 and GTOT. The
comparison results are shown in Table 1. The results
show that the tracking model with the addition of
the MHRM and DCFM can improve the accuracy
and success rate, and the weight assignment provided

by the DCFM can also improve the performance
compared to the static assignment, and the synergy
between the two can achieve the best performance
improvement. This demonstrates the effectiveness of
each of the proposed modules.

Candidate Elimination Ablation Experiments. The
Candidate Elimination (CE) module is a key module
in the benchmark method OSTrack. We compared the
method with the Candidate Elimination (CE) retained
to the method with CE removed. The comparison
results are shown in Table 1. The experimental results
show that the model with CE in place has a slight
decrease in both metrics for both datasets. Therefore,
we removed CE module. The experimental results
indicate that incorporating the CE module leads to a
slight decrease in both metrics for both datasets. As a
result, we decided to remove the CE module.

EFFICIENCY ANALYSIS

The efficiency analysis experiments were
conducted in the same environment. We compare
the tracking speed of our method with several tracking
methods with better performance, APFNet Xiao et al.
(2022), MANet Li et al. (2019b), and MANet++ Lu
et al. (2021). The comparison results are shown in
Table 2. The results show that the tracking speed of
our method can reach 87 FPS, which is sufficient to
achieve real-time tracking. Compared with the best
method APFNet, the average FPS of our method is
78.9 higher than APFNet. Compared with the fastest
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Table 1: PR/SR scores of ablation experiments on GTOT and RGBT234.

RGB T MHRM SCFM DCFM CE Ye et al. (2022) GTOT RGBT234
✓ 78.7/65.3 74.9/56.3

✓ 64.7/55.1 70.4/51.3
✓ ✓ ✓ 83.6/68.4 77.0/57.5
✓ ✓ ✓ ✓ 89.2/73.8 77.2/57.9
✓ ✓ ✓ ✓ ✓ 90.0/74.2 79.2/59.1
✓ ✓ ✓ ✓ 90.2/74.5 80.5/59.9

method MANet++, the average FPS is improved by
35.6. The data in the table are sufficient to prove
that our method performs well in terms of accuracy,
success rate and tracking speed.

Table 2: Comparison of efficiency and real-time
performance (PR/SR/FPS) of four methods.

Method GTOT RGBT234
MANet 89.4/72.4/6.2 77.7/53.9/5.9

MANet++ 90.1/72.3/52.9 80.0/55.4/50.4
APFNet 90.5/73.7/8.5 82.7/57.9/8.2

Ours 90.2/74.5/87.5 80.5/59.9/87.0

CONCLUSION

In this paper, we propose an RGBT tracking
framework, which uses a stacked Transformer
encoders to progressively aggregate and fuse
multimodal image features. During the entire
multimodal interaction process of the network,
a DCFM is used to dynamically solve for the
importance of visible information in each region of
the tracking scene, thereby regulating the interaction
between visible and infrared information in the
tracking process. Experimental results on three
datasets demonstrate the competitive performance of
the proposed method.
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