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ABSTRACT

Breast cancer is a prominent contributor to mortality associated with cancer in the female population on a
global scale. The timely identification and precise categorization of breast cancer are of utmost importance in
enhancing patient prognosis. Nevertheless, the task of precisely categorizing breast cancer based on ultrasound
imaging continues to present difficulties, primarily due to the presence of dense breast tissues and their inherent
heterogeneity. This study presents a unique approach for breast cancer categorization utilizing the wavelet
based vision transformer network. To enhance the neural network’s receptive fields, we have incorporated the
discrete wavelet transform (DWT) into the network input. This technique enables the capture of significant
features in the frequency domain. The proposed model exhibits the capability to effectively capture intricate
characteristics of breast tissue, hence enabling correct classification of breast cancer with a notable degree of
precision and efficiency. We utilized two breast tumor ultrasound datasets, including 780 cases from Baheya
hospital in Egypt and 267 patients from the UDIAT Diagnostic Centre of Sabadell in Spain. The findings of
our study indicate that the proposed transformer network achieves exceptional performance in breast cancer
classification. With an AUC rate of 0.984 and 0.968 on both datasets, our approach surpasses conventional
deep learning techniques, establishing itself as the leading method in this domain. This study signifies a
noteworthy advancement in the diagnosis and categorization of breast cancer, showcasing the potential of the
proposed transformer networks to enhance the efficacy of medical imaging analysis.
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INTRODUCTION

Breast cancer is a prevalent malignancy among
women on a global scale, and its incidence is
progressively elevating, positioning it as the second
most significant contributor to cancer-related deaths
1. The timely identification of breast cancer is of
utmost importance in the diagnosis and subsequent
management of the illness (Wang, 2017). At
present, a variety of diagnostic imaging modalities
are utilized to identify anomalies in a patient’s
breast, including mammography, ultrasound (US),
magnetic resonance imaging (MRI), and computer
tomography (CT). Breast ultrasound (BUS) is a widely
employed imaging modality for the characterization
of breast tumors. The use of breast ultrasound
(BUS) has been considered as a viable alternative
to mammography in cases when individuals have
thick breast tissue. Furthermore, several investigations
have demonstrated that breast ultrasound (BUS) has
superior diagnostic capabilities in comparison to

mammography (Duffy et al., 2002). The use of BUS
presents several advantages, including its non-invasive
nature, portability, real-time imaging capabilities,
rapid results, cost-effectiveness, and absence of
ionizing radiation. Nevertheless, the BUS technique
does possess several limitations, which encompass
the presence of artifacts like as shadows, diminished
contrast, and the occurrence of speckle noise.

In the domain of medical imaging, significant
progress has been made by recent advancements in
deep learning methodologies, including convolutional
neural networks (CNNs) and vision-Transformers
(Litjens et al., 2017), (Shamshad et al., 2023). These
techniques have demonstrated notable achievements.
For example, several convolutional neural network
(CNN) architectures, such as VGG, were utilized to
identify breast cancers (Kalafi et al., 2021), (Luo et al.,
2022). CNNs are preferred in this context because to
their ability to acquire strong feature representations
from breast ultrasound (BUS) images. While certain
methods based on CNNs have reached a classification

1https://www.who.int/news-room/fact-sheets/detail/breast-cancer
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accuracy of about 90%, it is important to acknowledge
their limits. CNNs address long-range dependencies by
increasing the size of the convolution kernel, which
can result in decreased system speed and improved
feature representation. In practical applications, the
computing cost of the minor resource system is too
high, hence constraining its potential to generalize.
Vision-Transformers, in turn, enable the extraction of
long-range dependencies by utilizing the self-attention
process. Several research in the existing literature
have utilized a vision-Transformer model to perform
breast tumor classification on BUS (Gheflati and
Rivaz, 2022) and (Hassanien et al., 2022). Several
research have employed the technique of combining
several convolutional neural network (CNN) models to
improve the accuracy of breast tumor categorization in
breast ultrasound (BUS) images.

In addition, the majority of currently available
breast tumor categorization methodologies yield
a categorical designation, specifically benign or
malignant. In this study, we propose a novel approach
for breast cancer categorization utilizing the wavelet
based vision transformer network. The main objective
of the proposed model is to address three key
challenges: enhancing feature representation by
eliminating imaging artifacts, validating across various
BUS datasets, and improving classification results.
The model employs Discrete Wavelet Transform
(DWT) at the input stage to extract essential features
in the frequency domain while preserving spatial
representation. Using DWT, detailed image texture
information is retained through multi-frequency
feature representations. The transformer network
that has been presented exhibits the capability to
effectively capture intricate aspects of breast tissue,
leading to precise classification of breast cancer with
a notable degree of accuracy and efficiency. The
proposed approach being presented aims to combine
the strengths of attention mechanism in order to
effectively handle the uncertainties present in BUS
images caused by factors such as shadows, low
contrast, and speckle noise. The effectiveness of the
proposed model is demonstrated by a thorough and
detailed analysis of experimental outcomes using two
publicly accessible BUS datasets.

RELATED WORK

This section provides an overview of the prior
studies conducted in the field of breast tumor
classification in ultrasound, focusing on classical
methods, CNN-based approaches, and Transformer-
based networks.

CLASSICAL METHODS

Numerous studies have employed conventional
manual feature extraction methods in the classification
of breast cancers shown in ultrasound imaging. The
present study shows a categorization framework
for breast anomalies utilizing seven Nakagami
parametric images derived from ultrasound radio
frequency (RF) data (Chowdhury et al., 2022). Various
morphometric, elemental, and hybrid properties
were derived from each parametric images. The
author utilized the aforementioned characteristics and
employed a support vector machine (SVM) classifier
for their classification. (Wei et al., 2020) proposed the
utilization of a manually designed feature extractor
that incorporates several techniques such as local
binary patterns (LBP), histogram of oriented gradients
(HOG), gray-level co-occurrence matrices (GLCM),
and shape features for the analysis of breast tumor
characteristics in ultrasound imaging. The researchers
employed Support Vector Machines (SVM) and Naive
Bayes (NB) algorithms to perform breast tumor
classification. The classification scores obtained from
these algorithms were combined using a weighted
fusion technique. The resulting classification attained
an accuracy of 91.11%.

(Nemat et al., 2018) proposed the utilization
of a computer-aided diagnostic system (CAD) that
incorporates a preprocessing operation to improve
the quality of ultrasound depicting breast cancers.
Subsequently, the use of the watershed method
was employed for the purpose of segmenting the
breast tumor. Ultimately, the authors integrated
the logistic regression methodology into their
study for the purpose of distinguishing between
malignant and benign tumors. The CAD method
presented by (Abdel-Nasser et al., 2017) has four
primary stages, including super-resolution calculation,
region of interest extraction, feature extraction,
and classification. The researchers employed a set
of five manually designed features derived from
several image analysis techniques, including GLCM
(Gray-Level Co-occurrence Matrix), LBP (Local
Binary Patterns), HOG (Histogram of Oriented
Gradients), phase congruency-based LBP, and pattern
lacunarity spectrum. These features were extracted
from a BUS (Breast Ultrasound). The collected
attributes were utilized to classify tumors into two
categories: malignant and benign. The conventional
approach exhibits many shortcomings. The approach
is computationally time-consuming, less resilient,
and necessitates particular feature choices and
preprocessing activities.
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CNN-BASED METHODS
A plethora of deep learning-based methodologies

have been devised for the purpose of categorizing
breast tumors into benign and malignant
classifications. In their study, (Kalafi et al., 2021)
implemented a modification to the VGG16 network
by incorporating an attention mechanism. This
modification aimed to enhance the network’s ability
to extract pertinent characteristics and emphasize
crucial pixel information pertaining to the target
tumor in ultrasound images, while distinguishing
it from the backdrop. The researchers employed a
composite loss function comprising of binary cross-
entropy and the logarithm of the hyperbolic cosine
loss. The technique that was proposed demonstrated
an overall accuracy rate of 93% in the classification of
benign and malignant tumors in ultrasonic imaging.
(Fan et al., 2023) suggested an innovative model
that combines localization and classification of breast
masses using attention mechanisms and a sequential
semi-supervised learning approach.

(Zourhri et al., 2023) proposed system that
utilizes Transfer Learning, approach enabling the
repurposing of pre-trained models for breast tumor
classification task in the US. Specifically, four pre-
trained models—VGG16, VGG19, MobileNetV2,
and ResNet50V2—were employed. (Luo et al.,
2022) proposed a deep learning approach for
the segmentation and classification of breast
cancers utilizing ultrasound imaging. Initially, the
segmentation network produced a binary segmentation
map. The subsequent stage involved the utilization of
two parallel networks, each with two inputs, including
the original images and the segmented image. The
feature aggregation network, which incorporates
channel attention, was proposed to enhance the
classification performance by combining the retrieved
features. Nevertheless, a significant drawback of this
study is its failure to function in a comprehensive
manner that incorporates increased training duration
and complexity. (Byra, 2021) proposed a novel transfer
learning technique called deep representation scaling
(DRS) layers, which involves incorporating additional
features between the pre-trained convolutional neural
network (CNN) layers to improve performance. The
use of this approach successfully decreases the number
of trainable parameters inside the network, resulting in
a notable enhancement of classification accuracy by
91.5%.

TRANSFORMER-BASED METHODS
Limited research has been undertaken in the

field of ultrasonography to assess the efficacy
of Transformer techniques in the detection of

breast cancer. (Gheflati and Rivaz, 2022) introduced
Transformer-based techniques for the classification
of breast cancers using two ultrasound datasets.
The utilization of a pre-trained Vision Image
Transformer (ViT) model by the author served the
purpose of mitigating overfitting and enhancing the
acquisition of more effective feature representations
on very limited ultrasound datasets. The researchers
conducted a comparison between the findings obtained
from the Vision Transformer (ViT) model and the
current leading Convolutional Neural Network (CNN)
approaches, and found that the ViT model achieved
similar classification performance. In their study, (Ge
et al., 2023) employed a combination of Convolutional
Neural Network (CNN) and Transformer models to
enhance the acquisition of more effective feature
representations. These representations were then
utilized for the classification of breast masses into
benign and malignant categories, using ultrasound
images as the primary dataset. The researchers
utilized a dataset consisting of 4128 images of breast
ultrasound (BUS), which were further categorized into
2064 samples of benign nature and 2064 samples
of malignant kind. The strategy that has been
advised has yielded an Area Under the Curve (AUC)
value of 97.5%. In their study, (Mo et al., 2023)
introduced a novel approach called the anatomy-aware
HoVer-Transformer model. This model was designed
specifically for the purpose of extracting anatomical
information from ultrasound images, with the ultimate
goal of accurately identifying breast cancers. The
aforementioned methodology employed three distinct
BUS datasets in order to attain cutting-edge outcomes.
The radiomics approach proposed by (Hassanien et al.,
2022) involves using ultrasound sequences of the
breast for feature extraction using the ConvNext
network. Additionally, the method incorporates a
pooling mechanism to calculate a malignant tumor
score.

MATERIAL AND METHOD

DATASET
The present analysis utilized two publicly

accessible datasets, namely UDIAT and Baheya
Hospital, located in Egypt. The specifics pertaining to
each dataset are explained in the subsequent sections.

– The UDIAT BUS dataset: The samples were
collected at the UDIAT Diagnostic Centre, which
is a part of the Parc Tauli Corporation located in
Sabadell, Spain (Yap et al., 2017). The dataset
known as UDIAT comprises a collection of 163
ultrasound images specifically depicting breast
cancers. In the provided samples, there are 109
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cases of benign breast tumors and 54 cases of
malignant breast tumors. The ultrasound images
include a mean resolution of 760 pixels in width
and 570 pixels in height.

– The Baheya Hospital dataset: The breast
ultrasound samples utilized in this study were
obtained from Baheya Hospital, located in Egypt
(Al-Dhabyani et al., 2020). The dataset has a
total of 780 samples, which are classified into
three categories: normal, benign, and malignant.
The normal category consists of 133 samples,
the benign category consists of 487 samples, and
the malignant category consists of 210 samples.
The typical resolution dimensions of an ultrasound
sample are 500 pixels by 500 pixels. This
study specifically eliminates samples from normal
classes and focuses solely on samples classified as
benign or malignant.

The proposed framework for breast tumor
malignancy prediction is illustrated in Fig. 1.
We employed wavelet based vision-Transformer
architectures in order to assess the malignancy ratings
of breast tumors based on ultrasound images.

Vision-
Transformer

Malignancy
Score

Benign

Malignant
Input BUS

Discrete Wavelet
Transform (DWT)

Fig. 1. The proposed framework is being suggested
for the prediction of breast tumor malignancy. The
provided wavelet based input image of a BUS is fed
into the vision-Transformer model, which subsequently
produces a malignancy score.

WAVELET BASED VISION
TRANSFORMER

Breaking down an image into a set of wavelet
coefficients of consistent size is a crucial step in the
transformative process. This intricate decomposition
enables the extraction of comprehensive information
from the input image, including both global
topological details and intricate local textural features.
By encompassing these aspects, the transformation
significantly enhances the neural network’s ability
to discern and understand the diverse characteristics
present in the image. Additionally, this process
contributes to the expansion of the receptive field for
individual neurons within the architecture, ensuring
a more holistic perception of the input data. As a

result, the combination of global and local information,
coupled with an enlarged receptive field, equips the
neural network with a more nuanced understanding of
the input, fostering improved feature representation
and extraction (Daubechies, 1990). DWT employs
multiple filter banks to partition the time and frequency
components of the feature vector across different
resolutions (Daubechies, 1990). In particular, we apply
a 2D Discrete Wavelet Transform (DWT) using four
convolutional Haar filters. These filters, or kernels, can
be mathematically expressed as: kLL = [1 1;1 1]T ,
kLH = [−1 − 1;1 1]T , kHL = [−1 1;−1 1]T ,
and kHH = [1 − 1;−1 1]T , to decompose a
abdominal US, I, into four sub-bands, i.e. ILL, ILH ,
IHL, and IHH .


ILL(i, j) = I(2i−1,2 j−1)+ I(2i−1,2 j)+ I(2i,2 j−1)+ I(2i,2 j)
ILH(i, j) =−I(2i−1,2 j−1)− I(2i−1,2 j)+ I(2i,2 j−1)+ I(2i,2 j)
IHL(i, j) =−I(2i−1,2 j−1)+ I(2i−1,2 j)− I(2i,2 j−1)+ I(2i,2 j)
IHH(i, j) = I(2i−1,2 j−1)− I(2i−1,2 j)− I(2i,2 j−1)+ I(2i,2 j)

(1)

By decomposing the input features and feeding
them to the network, the variety and richness of the
input is increased. This results in a faster training
process and quicker convergence. This technique is
similar to dilated filtering operations, which divide the
image into sub-images using DWT.

Our primary focus was on the self-attention
mechanism used in the Vision Transformer to gain
a deeper understanding of cross-covariance attention
(Ali et al., 2021). This mechanism allows the model
to concentrate on important and relevant features
in images while disregarding irrelevant information.
The attention mechanism functions by computing a
weighted sum of all the features obtained from given
patch images. The Transformer model is then trained
to learn the weights assigned to each extracted feature,
which are used to estimate the attention coefficient.

Layer Norm Layer Norm

Layer NormFeed-Forward
Network

Local Patch
Interaction 

 (LPI)

Cross-
Covariance

Attention (XCA)

Input Tokens

Output

XCA Block

Fig. 2. Illustration of the XCA layer.

Assuming an input sequence representing US
image patches with s patch embeddings (i.e.,
z1,z2,z3.......zs), we can represent each entity using
a feature embedding dimension of dim. The entire
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sequence can be represented as a matrix in Z ∈
R s × dim, where s represents the number of tokens
in the input sequence. For every patch embedding,
three linear projections are used to acquire three
vectors: Query (Q), Keys (K), and Values (V). To
capture the global feature representation, the three
learnable weight matrix representations of Queries
W Q ∈ Rs × dimq , Keys W K ∈ Rs × dimk , and Values
WV ∈Rs × dimv that computed from the input sequence
can be explained as follows:

Q =WQ ·Z, K =WK ·Z, V =WV ·Z (2)

Here, WQ ∈ Rdim × dimq ,WK ∈ Rdim × dimk , and WV ∈
Rdim × dimv belongs to the learnable parameters.
Therefore, the self-attention can be computed by:

Attention(Q,K,V) = So f tmax

(
QK⊤√

dimq

)
V (3)

Where dimq, dimk, and dimv correspond to the
dimensions of Q, K, and V , respectively. Additionally,

So f tmax
(

QK⊤√
dimq

)
is the employed to produce the

attention vectors. To address the gradient vanishing
problem of the softmax function, the dot-products of
queries and keys are divided by the square root of√

dimq. Furthermore, this allows for improving the
training process of the model.

Fig. 2 shows the general description of the XCA
layer. The cross-covariance attention computes the
attention along the features or channels dimension
rather than the token dimension, which can be
expressed as follows:

XCAAttn(Q,K,V ) =VAXCA(K,Q) (4)

Where AXCA(K,Q) is the So f tmax
(
K̂⊤Q̂/τ

)
that

generate the attention scores, and τ correspond to
a learnable temperature that provides better model
training. It is worth noting that the estimation of
attention weights A relies on the cross-covariance
matrix.

Local patch interaction

As XCA does not have a direct connection between
tokens, it can restrict the model’s strength to capture
local associations between pixels in input images.
Therefore, the foundation of the LPI layer lies in

the combination of information between the tokens
in the input sequence. The attention layers from
the attention mechanism are usually employed to
merge this information, as previously mentioned in
self-attention-related literature. Nevertheless, the XCA
attention layer extends this capability by enabling
the integration of information between features or
channels in the input sequence instead of just the
tokens. This layer allows capturing local spatial
features similar to CNNs and leads to better results.
The LPI block depicted in Fig. 3, uses two depth-
wise convolutions, which are separated by batch
normalization and nonlinear Gaussian Error Linear
Unit (GELU) activation function. These convolutional
layers incorporated the kernel size of 3×3.

Feed forward network

The XCA block utilizes the point-wise FFN layer
that contains the single hidden layer with four-
dimensional hidden units. FFN permits interaction
between all features when there are no feature relations
in the LPI block.

The design utilized in this study is derived from
the XCiT Transformer model, as described in the work
by Ali et al. (Ali et al., 2021). As seen in Fig. 2, every
XCiT layer comprises three primary components: the
core cross-covariance attention (XCA) operation, the
local patch interaction (LPI) module, and a feed-
forward network (FFN). LayerNorm is applied before
each layer, and a residual connection is applied after
each layer. The fundamental design elements of this
architectural framework encompass the depth of the
model, the dimensionality of the patch embedding
denoted as d, and the utilization of a certain number of
heads denoted as h in the context of Cross-Attention
(XCA). The construction of proposed model involved
the utilization of XCiT-L24, which was characterized
by a model depth of 24, patch embeddings dimensions
of 768, and 16 heads. The dimensions of the
input image of the bus are 224 × 224, whereas the
dimensions of each patch are 16×16.

PERFORMANCE MEASUREMENT

This article presents an evaluation of the proposed
methods utilizing five evaluation metrics, namely
accuracy, precision, recall, and F1-score. These
metrics can be mathematically expressed as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
(5)

Precision =
T P

T P+FP
(6)
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Fig. 3. Illustration of local patch interaction block.

Recall =
T P

T P+FN
(7)

F1-score =
T P

T P+0.5(FP+FN)
(8)

In the context of this study, TP represents the accuracy
rate of correctly classifying malignant BUS images,
while TN represents the accuracy rate of correctly
classifying benign BUS images. FP denotes the rate
of incorrectly identifying benign BUS images as
malignant, and FN represents the rate of incorrectly
classifying malignant BUS images as benign.

EXPERIMENTAL RESULTS AND
DISCUSSION

IMPLEMENTATION DETAILS
In the present study, the original BUS images

were subjected to rescaling, resulting in a resolution
of 224 × 224 pixels. In order to increase the
diversity of features, the data augmentation approach
was employed, which involved applying a rotation
of 30 degrees, a scaling probability of 0.5, and
horizontal and vertical flipping with a chance of
0.5. The normalization of the breast tumor images
was performed by calculating the mean and standard
deviation. The model was optimized using an ADAM
optimizer, with an initial learning rate of 0.0001.
The classification models were trained for 50 epochs
using a mini-batch size of four. It is noteworthy
to mention that all of the trained models employed
identical hyperparameter configurations. The cross-
entropy loss function was utilized in order to enhance
the optimization of the model. The BUS datasets were
divided into three distinct subsets, namely training,
validation, and testing, in the proportions of 70%, 10%,
and 20% respectively. It is important to acknowledge
that both ultrasound datasets underwent distinct
processes of training, validation, and evaluation.
Computational Setup: The deep learning-based

algorithms were trained and assessed using the
PyTorch neural network library. The training and
evaluation were conducted on a system equipped with
an Intel Core-i9 CPU, 32GB of RAM, and a GeForce
RTX 2080Ti GPU with 11GB of memory.

STATE-OF-THE-ART RESULTS
COMPARISON

Table 1 compares the proposed breast tumor
malignancy score prediction model to six different
state-of-the-art classification approaches using UDIAT
and Baheya ultrasound datasets. ConvNextv2 (Woo
et al., 2023), ResNet101 (Szegedy et al., 2017),
MobileNetV2 (Sandler et al., 2018), ResNext101
(Xie et al., 2017), EfficientNetV2 (Tan and Le,
2021), and XCiT were analyzed. In comparison to
current approaches, the suggested model achieved
the maximum classification accuracy of 96.98%
for UDIAT and 95.10% for Baheya datasets. This
enhanced performance is achieved by incorporating
DWT features into the network input, resulting in
a notable improvement of 1% compared to XCiT
without the use of DWT. In the UDIAT dataset,
ResNext101 received the third-highest scores, with
accuracy, precision, recall, and F1-score metrics 8%,
9%, 8%, and 9% lower than proposed. However,
MobileNetV2, and EfficientNetV2 perform similarly
across all criteria. On Baheya, EfficientNetV2 obtained
the third-best classification results. Finally, the
proposed approach can efficiently extract features
from noisy ultrasound and identify patterns as
benign or cancerous. It optimizes the model using a
limited set of BUS samples using cheaper computer
procedures. These best methods of both datasets
accurately eliminated image artifacts through self-
attention mechanisms and identified the presence of
neighboring tissue to precisely classify breast tumors.

The classification results of the proposed technique
are presented in Table 2, alongside the latest state-
of-the-art results on the UDIAT dataset. It is evident
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Table 1. Compared state-of-the-art CNN networks with the proposed model.

Model UDIAT Baheya
Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

ConvNextv2 85.48 85.65 85.48 86.6 89.10 87.45 87.41 84.34 83.86 89.29
ResNet101 78.65 74.41 72.58 73.2 76.12 78.47 76.7 76.32 75.87 81.82
MobileNetV2 79.77 78.33 81.81 78.06 82.67 85.27 84.01 81.69 82.66 86.84
ResNext101 87.87 85.96 88.63 86.90 88.49 86.82 88.01 81.60 83.76 87.35
EfficientNetV2 77.02 77.95 80.54 77.46 80.9 88.74 86.8 88.11 87.05 89.4
XCiT (w/o DWT) 95.87 93.54 95.48 94.22 97.9 93.40 92.14 93.57 92.82 95.66
Proposed (With DWT) 96.98 94.67 96.79 95.30 98.40 95.10 93.55 94.66 93.74 96.82

from the results that the suggested mechanism
exhibited superior performance compared to the
current techniques mentioned in (Byra et al., 2019)
and (Byra and Andre, 2019), achieving an increase
in accuracy of 13% and 21% respectively. The study
conducted by Ning et al. (2020) utilized a multi-scale
patch extraction approach, which yielded the second-
highest outcomes of 90.90% accuracy and 93.90%
AUC. The comparison of classification results between
the proposed technique and current studies on the
Baheya dataset is presented in Table 3. The suggested
model has reached the maximum classification result
of 95.10%, along with an AUC score of 0.968.
Additionally, the model has shown an improvement
of 2% in terms of AUC compared to the technique
presented by (Moon et al., 2020). It is important
to highlight that the proposed model yields superior
classification outcomes compared to other models.
The suggested approach has demonstrated a significant
enhancement in the performance of both BUS datasets,
hence establishing a higher level of reliability and
accuracy in the prediction of breast tumors.

Benign US Malignant US

Fig. 4. The proposed model is utilized to produce
an illustration of Gradcam for breast tumor
categorization. The red/yellow coloration delineates
the specific area in which the network exhibits
a heightened emphasis on tumor identification.
Networks with blue highlights tend to capture feature
representations of less significant background tissues.

The visualization depicted in Fig. 4 illustrates
the application of the proposed approach to both
benign and cancerous samples. A higher intensity
of red/yellow hues indicates that the network
has successfully captured the most significant
and pertinent characteristics linked to the tumor.

Conversely, blue hues represent lesser priority areas,
such as background pixels. The proposed methodology
prioritized the identification of tumor by placing
greater emphasis on the analysis of healthy tissues
pixels inside a benign sample. The tumor exhibits
neighboring tissue characterized by areas of reduced
pixel intensity and alterations in pixel values. The
suggested model effectively captures and delineates
the region of interest. The suggested network filter
effectively identified cancerous pixels and disregarded
any accompanying artifacts in the malignant sample.
The proposed model offers a notable benefit in terms
of modifying spatial attention through the integration
of local self-attention and global self-attention. This
unique combination enables vision transformer to
effectively collect a greater range of spatial data
pertaining to the breast tumor. The approaches that
were assessed shown a much superior ability to
differentiate between benign and malignant tumors.

In a clinical context, the reliance on precise
forecasts is both critical and highly delicate. Certain
models demonstrated exceptional performance in
particular scenarios, whilst others shown an inability
to accurately classify data. An attempt was made to
address these difficulties through the utilization of the
proposed model. Based on a comprehensive analysis
of both quantitative and qualitative assessments,
it can be concluded that the suggested technique
offers a dependable and resilient method for tumor
classification. To achieve the proposed objective, the
model utilized DWT to separate the input’s lower
and higher frequency components. This approach
emphasized spatial information and encouraged the
model to learn effective feature representations. The
lower frequency component contained details such
as shadows, speckle noise, and illumination changes,
while the higher frequency pertained to essential
shapes, edges, margins, and fine details. This enabled
the model to avoid imaging artifacts and significantly
improve classification results, as demonstrated by
comprehensive experimental results. The power of
vision-Transformers was employed in our study due
to their distinct ability to capture both local and long-
range contextual information. This utilization was
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Table 2. Comparing the proposed method with existing works on UDIAT dataset. Dashed lines reflect results not
published in the reference.

Methods Evaluation Metrics
Accuracy Precision Recall F1-Score AUC

Proposed 96.98 94.67 96.79 95.30 98.40
(Byra et al., 2019) 84 − 85.10 − 89.30
(Byra and Andre, 2019) 76 − 78 − 81
(Ning et al., 2020) 90.90 − 92.70 − 93.90

Table 3. Comparing the proposed method with existing works on Baheya dataset.

Method Evaluation Metrics
Accuracy Precision Recall F1-Score AUC

Proposed 95.10 93.55 94.66 93.74 96.82
(Moon et al., 2020) 90.77 72.50 96.67 82.86 94.89
(Das and Rana, 2021) 88.89 88 87 87 −
(Vigil et al., 2022) 85.30 − − − −

crucial for effectively categorizing the characteristics
of breast tumors. It is important to acknowledge that
the suggested methodology is not restricted to the
estimation of malignancy scores for breast cancers
using BUS images. Ultrasound and other medical
imaging modalities, including mammography, MRI,
CT, among others, have the capability to evaluate
the malignancy of tumors in different anatomical
locations, such as the liver, thyroid, brain, and prostate.

CONCLUSION

In this paper, we presented a wavelet based
vision Transformer network used to predict breast
tumor malignancy in ultrasound images. Since CNNs
and vision-Transformers function differently, we used
DWT in network input to extract tumor feature
variability to characterize BUS tumors. Using a
proposed network produces adequate results. Two
datasets independently tested the proposed model,
which outperformed previous techniques. With the
UDIAT and Baheya datasets, it achieved AUC values
of 0.984 and 0.968, respectively. The suggested
approach will be used to determine the malignancy
score for ultrasound images of kidney and cardiac.
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