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ABSTRACT 

Hyperspectral image (HSI) classification is a very important topic in remote sensing. There are many pub-

lished methods for HSI classification in the literature. Nevertheless, it is not clear which method is the most 

robust to noise in HSI data cubes. In this paper, we conduct a systematic study to examine the effects of 

noise in HSI data cubes on classification methods. We compare ten existing methods for HSI classification 

when Gaussian white noise (GWN) and shot noise are present in the HSI data cubes. We have figured out 

which method is the most robust to GWN and shot noise respectively by experimenting on three widely 

used HSI data cubes. We have also measured the CPU computational time of every method compared in 

this paper for HSI classification. 

Keywords: edge preserving features; hyperspectral image classification; minimum noise fraction; princi-

pal component analyses; support vector machine. 

INTRODUCTION  

Classification of remote sensing images goes a long 

way to improve the performance of remote sensing. In-

formation contents of hyperspectral images is signifi-

cantly higher than that of conventional remote sensing 

images, especially in the spectral domain. The acquisi-

tion of hyperspectral images depends on imaging spec-

trometers installed in different spaces. The imaging 

spectrum was established in the 1980s in the ultraviolet, 

visible, near-infrared, and mid-infrared regions of elec-

tromagnetic waves. Since the imaging spectrometer can 

image in many continuous and very narrow bands, each 

pixel in the used wavelength range can get a fully re-

flected or emitted spectrum. As a result, hyperspectral 

images have the characteristics of high spectral resolu-

tion, many bands, and abundant information. 

In this paper, we conduct a systematic study to un-

derstand how noise in hyperspectral imagery (HSI) af-

fects image classification. We compare ten existing 

methods for HSI classification when Gaussian white 

noise (GWN) and shot noise are present in the HSI data 

cubes. We have determined which method is the most 

robust to GWN and to shot noise by experimenting on 

three widely used HSI data cubes. 

The organization of this paper is as follows. Section 

II briefly reviews ten existing methods for HSI classifi-

cation. Section III conducts experiments to determine 

which method is most robust to noise. Finally, Section 

IV concludes the paper and proposes future research di-

rections. 

THE COMPARED METHODS 

We briefly review eleven popular methods for HSI 

classification here.  

1. Tu et al. (2018) propose a new classifier based on cor-

relation coefficient (CC) which can efficiently cap-

ture similarity among different pixels using combin-

ing CC and a joint sparse representation (JSR), with 

the latter one attempting to utilize the within-class 

similarity between training and test samples while re-

ducing the between-class interference. This classifi-

cation algorithm is called CCJS. It proceeds first by 

calculating CCs among the training and test samples 

and then uses the JSR-based classifier to produce the 

representation residuals of different pixels. The bal-

ance between the JSR and the CC is achieved by in-

troducing a regularization parameter λ. The proposed 

algorithm demonstrates the competitive edge over 

other commonly used classifiers in experiments on 

the Indian Pines data set. In this paper, this classifica-

tion method will be designated as CCJS.  

2. Li et al. (2018) suggested reducing the spectral di-

mension of the hyperspectral images by combining a 

segmented principal component analysis (SPCA) and 
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the Gaussian pyramid decomposition-based mul-

tiscale feature fusion. The method works as follows: 

first spectral dimension reduction is accomplished by 

the SPCA and subsequently, the multiscale features 

are extracted from the resulting dimension-reduced 

image by Gaussian pyramids. Finally, SPCA is in-

voked again to compute Gaussian pyramid features 

(SPCA-GPs). The performance of SPCA-GPs is eval-

uated by using a support vector machine (SVM) clas-

sifier. In this paper this method will be designated as 

gp_hqb.  

3. Kang et al. (2014) proposed an original spectral-spa-

tial classification algorithm based on edge-preserving 

filtering. The proposed framework is made of three 

stages. In the first stage, the hyperspectral image is 

classified by a pixelwise classifier such as, a SVM 

classifier yielding a multiple probability map. In the 

second stage edge-preserving filtering is performed 

on each probability map with the first principal com-

ponent or the first three principal components of the 

hyperspectral image playing the roles of the gray or 

color guidance image. In the third stage the class of 

each pixel is determined by the maximum probability. 

In this paper this method will be designated as EdgeP. 

4. Kang et al. (2018) developed a new spectral-spatial 

classification algorithm based on Gabor filtering and 

deep network (GFDN). Gabor features are obtained 

by performing Gabor filtering on the first three prin-

cipal components of the hyperspectral image. These 

components typically represent the low-level spatial 

structures of different orientations and scales. The 

Gabor features and spectral features are simply 

stacked to form the final fused features. Next, deep 

features are extracted by training a stacked sparse and 

deep autoencoder network which is supplied the fused 

features on its input. To overcome the problem of lim-

ited number of training hyperspectral image samples 

they are augmented by automatically generated vir-

tual samples and both real and virtual samples are 

used in training parameters of the deep network to im-

prove its classification accuracy. In this paper this 

method will be designated as GFDN. 

5. Kang et al. (2015) introduced a novel spectral-spatial 

classification method for HSI based on extended ran-

dom walkers (ERWs). In the first stage of this ap-

proach a SVM classifier is applied to classify hyper-

spectral image probability maps and yielding proba-

bility distributions of class membership for each hy-

perspectral pixel. In the second stage the pixelwise 

probability maps are optimized with the ERW algo-

rithm by encoding the spatial information of the HSI 

in a weighted graph and the class of a test pixel is de-

termined by three factors, namely the pixelwise sta-

tistics information learned by the SVM classifier, the 

spatial correlation among adjacent pixels yielded by 

the weights of graph edges, and finally by the con-

nectedness information between the training and test 

samples modeled by random walkers. In this paper 

this method will be designated as iidf.  

6. Spatial-aware collaborative representation (CR) is 

proposed for HSI classification in Jiang et al. (2017). 

A closed-form solution using spatial-spectral infor-

mation has been proposed. That approach utilizes 

both spatial and spectral features by introducing the 

distance-weighted spatial regularization terms. The 

proposed approach outperforms the state-of-the-art 

classifiers in experiments on three HSI data sets. In 

this paper this method will be designated as JSaCR. 

7. Kang et al. (2017) developed a novel algorithm for 

HSI classification by utilizing principal component 

analysis (PCA)-based Edge-Preserving Features 

(PCA-EPFs). The algorithm works as follows. First, 

the standard EPFs are derived by applying edge-pre-

serving filters with different parameter settings to the 

input image and are subsequently stacked together. 

Next, spectral dimension of the stacked EPFs is re-

duced with the PCA, which not only represent the 

EPFs in the mean square sense but also emphasize the 

separability of pixels in the EPFs. Finally, the result-

ing PCA-EPFs are classified by an SVM classifier. In 

this paper, this method is designated as PCA_EPF. 

8. Chen (2021) developed a novel algorithm for HSI 

classification based on PCA and SVM. He used PCA 

to reduce the dimensionality of an HSI data cube, and 

then performed spatial convolution with three differ-

ent filters on the PCA output cube. He fed all three 

convolved output cubes to SVM to classify every 

pixel. Finally, he fused the three output maps to de-

termine the final classification map. The experiments 

conducted on three widely used HSI data cubes (i.e., 

Indian Pines, Pavia University, and Salinas) demon-

strate that the proposed method significantly outper-

forms state-of-the-art methods in terms classification 

accuracy. In this paper this method is be designated 

as MultiScalePCA. 

9. Chen et al. (2021) introduced a novel approach for 

HSI classification by fusing PCA, 2D spatial convo-

lution, and SVM. The proposed method takes ad-

vantages of correlation in both spatial and spectral do-

mains in an HSI data cube. First, PCA is used to re-

duce the dimensionality of an HSI data cube and then 

spatial convolution is applied to dimension-reduced 

data cube twice in a sequence resulting in generating 
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two convolved PCA output data cubes in a multireso-

lution way. The two convolved data cubes are fed to 

the SVM to classify each pixel to one of the known 

classes. Experiments on three widely used hyperspec-

tral data cubes (i.e., Indian Pines, Pavia University 

and Salinas) demonstrate significant improvement of 

the classification accuracy of the proposed approach 

over a few competing methods. This method will be 

designated as PCA+SVM. 

10. Chen et al. (2022) proposed a new method for HSI 

classification by using minimum noise fraction 

(MNF), spatial filtering, and support vector machine 

(SVM). They consider the three most popular DR 

methods: PCA, minimum noise fraction (MNF), and 

locally linear embedding (LLE), which are applied to 

perform dimensionality reduction of a hyperspectral 

data cube before performing classification. Subse-

quently, 2D spatial filtering is applied to the DR out-

put band images and then the pixels of the data cube 

are classified by the SVM. Thus, both spatial infor-

mation and spectral information are involved in clas-

sification. Experimental results show that the pro-

posed MNF+SVM approach decisively outperforms 

several existing classification methods. In this paper, 

this method is designated as MNF+SVM. 

11. Chen et al. (2023) proposed the noise robust hyper-

spectral image classification with MNF-based edge-

preserving features. In this method, we replaced PCA 

with MNF and better classification results were ob-

tained for hyperspectral image classification. We do 

not compare this method in this paper, and we leave 

it to our future research. 

 

RESULTS AND DISCUSSION 

We test three HSI data cubes for HSI classification, 

which can be described as follows. 

a.  Indian Pines. This data cube was acquired by the air-

borne visible/infrared imaging spectrometer (AVIRIS) sen-

sor over the Indian Pine test site in northwestern Indiana, 

USA, on June 12, 1992. The dimension of this data cube is 

145×145 pixels and it has 200 spectral bands. Table 1 tab-

ulates ground truth classes and the pixel number for every 

class in this data cube. 

 

 

 

 

 

 

Table 1. Ground truth classes and the total pixel number 

for each class in Indian Pines data cube. 

No Class Names Total Samples 

C1 Alfalfa 46 

C2 Corn notill 1428 

C3 Corn mintill 830 

C4 Corn 237 

C5 Grass pasture 483 

C6 Grass trees 730 

C7 Grass pasture mowed 28 

C8 Hay windrowed 478 

C9 Oats 20 

C10 Soybean notill 972 

C11 Soybean mintill 2455 

C12 Soybean clean 593 

C13 Wheat 205 

C14 Woods 1265 

C15 Buildings Grass Trees Drives 386 

C16 Stone Steel Towers 93 

 

b.  Pavia University. This data cube was collected by 

the ROSIS sensor during a flight campaign over Pavia, 

northern Italy, on July 8, 2002. The dimension of this 

data cube is 610×340 pixels and it has 115 spectral 

bands.  There are 9 classes of land covers, which are tab-

ulated in Table 2. 

 

Table 2. Ground truth classes and the total pixel number 

for each class in Pavia University data cube. 

No Class Names Total Samples 

C1 Asphalt  6631 

C2 Meadows 18649 

C3 Gravel 2099 

C4 Trees 3064 

C5 Painted metal sheets 1345 

C6 Bare Soil 5029 

C7 Bitumen 1330 

C8 Self-Blocking Bricks 3682 

C9 Shadows 947 

 

 

c.  Salinas. This data cube was acquired by the AVIRIS 

sensor over Salinas Valley, California. The dimension 

of this data cube is 512×217 pixels it has 204 spectral 

bands. Table 3 shows ground truth classes and the total 

pixel numbers for all classes. 
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Table 3. Ground truth classes and the total pixel number 

for each class in Salinas data cube. 

No Class Names Total Samples 

C1 Broccoli green weeds 1 2009 

C2 Broccoli green weeds 2 3726 

C3 Fallow 1976 

C4 Fallow rough plow 1394 

C5 Fallow smooth 2678 

C6 Stubble 3959 

C7 Celery 3579 

C8 Grapes untrained 11271 

C9 Soil vineyard develop 6203 

C10 Corn senesced green weeds 3278 

C11 Lettuce romaine 4wk 1068 

C12 Lettuce romaine 5wk 1927 

C13 Lettuce romaine 6wk 916 

C14 Lettuce romaine 7wk 1070 

C15 Vinyard untrained 7268 

C16 Vinyard vertical trellis 1807 

 

 

In the experiments, Gaussian white noise (GWN) is 

added to the noise-free HSI data cubes with noise stand-

ard deviation  σn=100, 200, 300, 400, and 500. A noisy 

hyperspectral imagery data cube can be generated by 

adding GWN to a noise-free data cube:  

                          B=A+ n Z, (1) 

where Z obeys normal distribution with zero mean 

and unit variance, A is the noise-free data cube, B is the 

simulated noisy data cube, and n is the noise standard 

deviation.  

 

We also conduct experiments with shot noise added 

to the noise free data cubes by using the following 

Matlab command:  

             B(i) = imnoise(A(i),'poisson'), (2) 

where A(i) is the i=th noise-free spectral band of the 

HSI data cube and B(i) is the noisy spectral band after 

adding shot noise. Shot noise does not have a noise level 

in generating noisy data cube, which is totally different 

from the GWN.  

Tables 4-6  show the overall classification accuracy 

(%) for the Indian Pines data set, the Pavia University 

data set, and the Salinas data set with GWN and shot 

noise, respectively. The best results are highlighted in 

bold font. In our experiments, we select 10% of samples 

as training data set for the Indian Pines data set, and we 

pick 2% of samples as training data set for the Pavia Uni-

versity data set and the Salinas data set. All the rest sam-

ples are for the testing data set. It can be seen from the 

tables that for GWN the JSaCR method performs the best for 

the Indian Pines data set, both the gp_hqb method and the 

GFDN method obtain the best results for the Pavia University 

data set, and the gp_hqb method achieves the best results for 

the Salinas data set. When there is no noise, the PCA_EPF 

method performs the best for the Indian Pines data set, the 

GFDN method obtains the best results for both the Pavia Uni-

versity data set and the Salinas data set. For shot noise, the 

JSaCR method performs the best for the Indian Pines 

data set and for the Pavia University data set, and the 

gp_hqb method achieves the best results for the Salinas 

data set. Fig. 1 shows the original noise-free band (#50) 

from the Pavia University data set and the noisy bands 

with different noise levels (n=100, 200, 300, 400, 500) 

whereas Fig.2 displays the noise-free band and that with 

shot noise added.   

 

 

Table 4. Overall classification accuracy (%) for the Indian Pines data set with GWN and shot noise. The best results 

are highlighted in bold font. 
Methods No 

Noise 

GWN (σn) Shot  

Noise 100 200 300 400 500 

CCJS 95.33 94.34 93.98 93.63 93.09 91.54 33.22 

gp_hqb 98.91 98.64 98.23 98.07 97.82 97.85 94.25 

EdgeP 93.65 65.98 57.41 52.17 51.41 49.29 23.96 

GFDN 98.57 98.46 98.41 98.45 97.86 98.27 95.13 

iidf 97.17 88.97 80.21 75.00 69.54 65.65 23.96 

JSaCR 98.67 99.03 99.04 98.95 98.83 98.73 98.12 

PCA_EPF 99.08 97.77 96.87 96.48 95.88 95.61 66.41 

MultiScalePCA 98.48 96.85 96.62 95.99 95.33 94.48 80.77 

PCA+SVM 81.71 78.87 75.75 72.38 69.51 67.44 31.13 

MNF+SVM 98.39 96.76 94.13 92.76 91.35 90.07 80.39 

 



Image Anal Stereol 2024;43:195-201 

 

199 

 

Table 5. Overall classification accuracy (%) for the Pavia University data set with GWN and shot noise. The best 

results are highlighted in bold font. 
Methods No 

Noise 

GWN (σn) Shot  

Noise 100 200 300 400 500 

CCJS 83.90 66.65 57.39 53.67 52.53 50.70 38.59 

gp_hqb 99.62 99.75 99.72 99.68 99.66 99.63 84.66 

EdgeP 96.90 89.28 84.87 82.93 77.60 77.02 43.60 

GFDN 99.76 99.75 99.72 99.74 99.65 99.52 80.66 

iidf 99.26 99.18 97.39 93.20 90.26 86.78 2.21 

JSaCR 98.44 97.97 96.83 95.43 94.06 92.86 92.78 

PCA_EPF 98.81 98.78 98.52 98.59 98.48 98.47 90.34 

MultiScalePCA 97.10 95.73 94.10 92.34 90.70 89.34 44.46 

PCA+SVM 92.92 87.22 82.51 79.48 77.06 75.33 43.04 

MNF+SVM 97.32 96.16 95.08 93.51 91.65 89.87 37.44 

 

 

Table 6. Overall classification accuracy (%) for the Salinas data set with GWN and shot noise. The best results are 

highlighted in bold font. 
Methods No 

Noise 

GWN (σn) Shot  

Noise 100 200 300 400 500 

CCJS 94.57 80.80 67.16 50.04 28.81 17.64 22.78 

gp_hqb 99.78 99.85 99.87 99.74 99.74 99.74 97.92 

EdgeP 95.68 86.54 80.91 71.80 60.65 59.47 20.82 

GFDN 99.81 99.74 99.71 99.64 99.50 99.32 90.86 

iidf 99.39 98.06 92.98 89.76 86.50 84.23 3.34 

JSaCR 99.35 98.02 96.75 95.41 94.32 93.30 96.74 

PCA_EPF 99.70 99.63 99.49 99.17 99.33 99.07 91.53 

MultiScalePCA 98.67 94.96 91.38 89.31 87.80 86.45 23.33 

PCA+SVM 94.50 84.49 78.06 74.59 72.13 70.14 18.05 

MNF+SVM 98.74 95.08 94.66 93.64 93.01 92.25 40.00 

 

 

 

Fig. 1. The noise-free #50 band in the Indian Pines data cube and the noisy spectral bands with GWN added. 
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Fig. 2. The noise-free #50 band in the Indian Pines data cube and the noisy band with shot noise added. 

 

Table 7 shows the execution time in seconds by using 

our unoptimized Matlab code for the Indian pines data 

cube, the Pavia University data cube, and the Salinas data 

cube. Our experiments are done under the Linux operating 

system with Intel(R) Xeon(R) CPU E5-2697 v2 at 

2.70GHz and 131 GB of random-access memory (RAM). 

Our method MNF+SVM is the fastest for the Indian Pines 

data cube and the Pavia University data cube and 

PCA_EPF is the fastest for the Salinas data cube. The 

JSaCR method is the slowest among all methods compared 

in this paper. Nevertheless, it achieves very good classifi-

cation results under the noisy environment for hyperspec-

tral imagery classification.  

Table 7. The execution time in seconds by using our un-

optimized Matlab code for the Indian pines data cube, 

the Pavia University data cube, and the Salinas data 

cube. The best results are highlighted in bold font. 

Method Indian 

Pines 

Pavia Univer-

sity 

Sa-

linas 

CCJS 617.2 1830.6 3227.9 

gp_hqb 121.1 72.6 113.2 

EdgeP 468.3 119.7 382.8 

GFDN 120.2 207.2 219.0 

iidf 200.8 1487.8 876.9 

JSaCR 631.8 2476.9 5592.8 

PCA_EPF 72.9 73.9 83.0 

Mul-

tiScalePCA 
48.4 397.7 518.7 

PCA+SVM 35.8 306.0 377.3 

MNF+SVM 7.7 72.6 141.6 

 

CONCLUSIONS 

Classification of remotely sensed images is to iden-

tify and classify the information of the earth’s surface 

and its environment on the remotely sensed images, so 

that we can identify the feature information correspond-

ing to the image information and extract the required 

feature information. Classification of remotely sensed 

images is the specific application of automatic pattern 

recognition technology in the field of remote sensing. 

In this paper, we have conducted a systematic study 

on HSI classification methods to examine the effects of 

noise in HSI data cubes on the classification. We have 

found out that the JSaCR method, the GFDN method, 

and the gp_hqb method are most robust to both GWN 

and shot noise. Nevertheless, the JSaCR method is the 

slowest in term of CPU computational time. 

Future research will be done in the following ways. 

We may perform PCA-based denoising methods (Chen 

and Qian (2011), Chen et al. (2014), Luo et al. (2014)) 

for HSI image classification as a preprocessing step. We 

may investigate deep learning for HSI classification 

soon. Also, we may use low-rank matrix approximation 

for HSI classification. Furthermore, it is important to 

take advantages of both spatial and spectral information 

for HSI classification. 
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