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ABSTRACT 

Optical coherence tomography (OCT) is characterized by high resolution and noninvasiveness; thus, it has 

been widely used to analyze skin tissues in recent years. Previous studies have evaluated skin OCT images 

using traditional algorithms with low accuracy for complex tissue structure images. Although a few studies 

have used deep learning methods to assess tissue structure in OCT images, they lack quantitative assess-

ment of deeper skin tissue thickness and are limited to the epidermal layer. Thus, in the present study, we 

proposed an automated segmentation and quantitative evaluation method. The skin OCT images were first 

pre-processed, and the attention mechanism was added to U-Net based on transfer learning to segment the 

images and quantify the thickness of mouse skin tissue structure. The results showed that U-Net combined 

with the coordinate attention (CA) mechanism had better segmentation performance with 93.94% mean 

intersection of union (MIoU) value and 96.99% Dice similarity coefficient; the segmentation errors were 

0.6 μm, 2.2 μm, 3.8 μm, and 6.0 μm for the epidermis layer, subcutaneous fat layer, muscle fascia layer, 

and the overall skin tissue structure of mice, respectively. The overall skin tissue thickness of the four mice 

were 235 ± 20 μm, 264 ± 42 μm, 275 ± 40 μm, and 774 ± 91 μm, respectively. The present study provides 

a rapid and accurate method for the automated measurement of skin tissue thickness. 

Keywords: Deep learning; Image segmentation; Optical coherence tomography; U-Net.

INTRODUCTION  

Optical coherence tomography (OCT) (Huang et 

al., 1991) is a noninvasive, high-resolution biomicro-

scopic imaging technique that acquires high-resolution 

(micron level) three-dimensional (3D) cross-sectional 

images inside biological tissues (Tadrous, 2000). Thus, 

it has wide applications in biomedical ophthalmology 

(Pan and Chen, 2023), oncology (Sacha et al., 2020), 

and dermatology (Kim et al., 2012). In the past two dec-

ades, clinical attempts have been made to evaluate nor-

mal skin tissue structures, including the epidermis, der-

mis, hair follicles, and sweat glands, using OCT (Patha-

nia et al., 2022). 

Investigators in dermatology have used traditional 

noninvasive optical imaging methods such as decision 

trees and edge detection algorithms to segment and clas-

sify lesion regions in skin OCT images (Bonne et al., 

2015; Cobb et al., 2006; Gao et al., 2016). However, the 

conventional methods used for such analyses are not ac-

curate in evaluating the OCT images of structurally 

complex skin and cannot assess deeper areas of imaging 

depth. Additionally, the traditional methods are time-

consuming and cannot meet the needs of real-time eval-

uation in clinical settings.  

Therefore, to address the above limitations, Gao et 

al. (Gao et al., 2022) used U-Net to segment the three 

layers of the mouse skin tissue structure in OCT images 

and quantify the volume of laser-damaged areas. Keep 

et al. (Keep et al., 2019) added dense linked blocks to 

U-Net for segmenting the skin tissue structures in mouse 

skin OCT. Strikingly, the deep learning method seg-

mented more accurately with higher Dice similarity co-

efficients than the previously proposed random forest 

RF+GC-based algorithm. Ji et al. (Ji et al., 2022) used 

multiple deep-learning models to segment the epidermal 

and scabbing areas in OCT mouse skin images, based on 

which epidermal and crustal region thicknesses were 
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calculated during healing in rodent skin injury models. 

Nonetheless, these studies were limited to the structural 

segmentation of skin tissue or thickness measurements 

of the epidermal layer and did not involve quantitative 

analysis of deeper skin layers. Also, the studies used su-

pervised learning methods that did not facilitate obtain-

ing a large number of high-quality labeled biological im-

ages, which might have affected the accuracy of subse-

quent qualitative and quantitative analyses. Transfer 

learning (Zhuang et al., 2021) can achieve feature mi-

gration and parameter sharing, can improve the general-

ization ability of the model, and has been proven an ef-

fective model in several studies (Xu et al., 2022; Abu-

bakar et al., 2020). Specifically, it can obtain improved 

training results from small sample training data and, 

hence, has been widely used in image processing in 

medicine and biology (Shahoveisi et al., 2023). Atten-

tional mechanisms (Guo et al., 2022) mimic the human 

visual and cognitive systems and are widely used in nat-

ural language processing and computer vision (Li et al., 

2020). The introduction of an attention mechanism fa-

cilitates automatic learning of neural networks and se-

lective focus on vital information in the input, thereby 

improving the performance and generalization ability of 

the model. It also performs excellently in extracting in-

formation about lesions from pathological images 

(Gong et al., 2023; Chen et al., 2023). 

The present study used U-Net and U-Net with an 

added attention mechanism to segment the epidermis 

layer (EDL), subcutaneous fat layer (SFL), and muscle 

fascia layer (FML) in the skin tissue structure of mice 

based on transfer learning and to quantify the thickness 

of the three tissue structure layers with a segmentation 

quantization depth of up to 800 μm. This approach will 

have potential applications for noninvasive skin testing 

and automated qualitative and quantitative assessment 

of the tissue structures. 

MATERIALS AND METHODS 

In this study, the image was first preprocessed, 

based on which network models were used for training, 

and the images were segmented using the obtained 

model. Finally, the thickness of the three-layer mouse 

skin structure was calculated and analyzed quantita-

tively using the thickness calculation algorithm. The 

process is illustrated in Fig 1.  

 

Fig. 1. Flow of three-layer structure thickness assessment of mouse skin tissue 

 

EXPERIMENTAL ANIMALS AND  
SYSTEM CONFIGURATION  

A total of four specific pathogen free grade Kum-

ming mice (two males and two females; named sam-

ples 1–4), weighing 20–25 g, were purchased from 

Beijing Keyu Animal Breeding Center (Beijing, 

China). The animals were routinely housed in the Ex-

perimental Animal Center of Military Medical Re-

search Institute (Beijing, China) for 3 days before im-

age acquisition and were found to be free of abnormal-

ities before the experiments. For pre-image acquisition 

by OCT (OptoMedic Company, Model No.LVM-

1000; Guangzhou, China), mice were anesthetized in-

traperitoneally with 1% pentobarbital sodium and 

shaved (dorsal skin was depilated using depilatory 

creams, and the skin was cleaned with saline three 

times to remove maximal depilatory agent). All exper-

iments were approved by the Animal Ethics Commit-

tee of The Beijing Institute of Radiation Medicine 

(Beijing, China) and conducted according to the guide-

lines of the IACUC-DWZX-2019-502. 

In this study, a swept-source OCT imaging system 

with a central wavelength of 1,310 nm, a main fre-

quency scan of 100 kHz, and spectral broadband of 

91.5 nm was used to scan and image the skin area on 

the back of the mice; a longitudinal resolution of 22 μm 

and a lateral resolution of 12 μm was applied to gener-

ate 200 images per scan cycle. 

DATASETS AND PREPROCESSING  

A total of 50 OCT images were acquired from each 

mouse at different locations of the dorsal skin, and each 

3D image block contained 200 B-scan images 460 × 
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500 in size. 5/200 B-scan images were randomly se-

lected from each OCT image block for manual annota-

tion of three specialized physicians with two days of 

training. They identified the boundaries between the 

different skin layers by comparing the OCT B-scan im-

ages with the hematoxylin-eosin (HE)-stained images, 

followed by annotation. The labeling software was 

Labelme (MIT Computer Science and Artificial Intel-

ligence Laboratory, version number 5.1.1). The image 

dataset comprised 1,000 B-scan images (each 460 × 

500) that were divided into training, validation, and test 

sets in the ratio of 7:2:1. Each image was resized before 

training to 512 × 512. 

To highlight the boundary of each layer in the im-

age and obtain an enhanced segmentation effect, we 

combined non-local mean filtering and bilateral filter-

ing for noise reduction on B-scan images. The radius 

of the non-local mean filter neighborhood window 

was 2, the radius of the search window was 5, the 

smoothing parameter of the Gaussian function was 

10, the spatial distance parameter of the bilateral fil-

tering was 5, the range of the color difference was, 

and the sigma value of the coordinate space was 150. 

In order to prevent overfitting, the image was data-

augmented based on noise reduction in the original B-

scan by flipping the image horizontally with a random 

rotation, a probability of 50%, and an angle rotation 

of ±15°. 

DEEP LEARNING ALGORITHM  

U-Net was selected as the base network for opti-

mal performance in semantic segmentation. In order to 

improve the training efficiency and model segmenta-

tion accuracy, an attention mechanism was added to 

the U-Net network for training. Unlike Gao et al., we 

used migration training to improve the training effi-

ciency, and two new attention mechanisms, CBAM 

and CA, were added to improve the segmentation ac-

curacy of the network model. 

Network structure 

Furthermore, to improve the segmentation accu-

racy of the model, we added attention modules in the 

feature map connection part of the U-Net decoder sec-

tion. The network model is depicted in Fig 2. 

 

 

 

Fig. 2. U-Net with the attention module. 

 

 

The selected attention mechanisms were squeeze-and-

excitation attention (SE) (Geoffrey et al., 2015), coor-

dinate attention (CA) (Hou et al., 2021), and 

convolutional block attention module (CBAM) (Woo et 

al., 2018). The attention mechanism structure is shown 

in Fig 3. 
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Fig. 3. SE, CBAM, CA attention mechanism structure. 

 

Evaluation metrics  
Three different evaluation metrics were used to assess 

the accuracy of model segmentation quantitatively: the 

mean intersection of union (MIoU), mean pixel accuracy 

(MPA), and precision. 

MIoU is a standard measure of semantic partitioning to 

calculate the difference between the intersection and the 

union of the two sets of predicted and formal labels within 

each class, followed by the average of all classes. MIoU 

can be calculated as in Eq. (1): 
k
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where k is the number of images to be classified in the 

image, in this paper the value of k is 3, TP represents true-

positives, indicating the number of positive samples that 

the model correctly predicts as positive; FN represents 

false-negatives, indicating the number of positive samples 

that the model incorrectly predicts as negative, i.e., the 

number of positive samples that the model fails to identify 

correctly; FP represents false-positives, indicating the 

number of negative samples that the model incorrectly pre-

dicts as positive, i.e., the number of negative samples that 

the model incorrectly identifies as positive. MPA is used to 

calculate the proportion of correctly classified pixels within 

each class. Then, the average of all classes is expressed as 

in Eq. (2): 
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Precision indicates the proportion of samples with pos-

itive predicted outcomes that are actually positive and can 

be expressed as in Eq. (3): 

TP
precision

TP FP
=

+
                      (3) 

Training 
In this study, the official pretraining model ResNet50 

provided by PyTorch was used in the backbone network 

part of the U-Net model. The network models were trained 

using Adam optimizer and the cross-entropy loss function. 

The exponential decay rates of β1 and β2 of Adam were 0.9 

and 0.999, respectively, and the initial learning rate was 

0.0001. The learning rate was updated using the cosine 

learning rate decline strategy; the minimum learning rate 

was 0.01 times the initial learning rate. Each network 

model was trained for 200 epochs, with a batch size of 8 

sets. 

Herein, the training and testing of the network were 

conducted using Python 3.8, PyTorch 1.11, and CUDA 

12.0.89 on an Intel Xeon w-2255 CPU, Nvidia RTX 

A5000. 

SKIN LAYER THICKNESS MEASURE-
MENT METHOD 

Next, we calculated the area of different skin layers ac-

cording to Eq. (4). The percentage of pixel points corre-

sponding to that layer in the whole image was measured, 

and then the average thickness of different layers in the B-

scan image was determined.  

0
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where SB-scan is the area of the B-scan image, the size is 

0.5 cm²; the I(li) function is used to determine the class of 

pixels in the segmented image, and the total number of pix-

els of that class is obtained by accumulation; NB-scan is the 

number of pixels of the B-scan image with size 230,000; W 

is the width of the image to be calculated. 

 

 

RESULTS 

IMAGE PREPROCESSING RESULTS 

Scattering noise in OCT images reduces the resolu-

tion and contrast of the image, masks the image details, 

and blurs the image (Fig 4(a)). The effect of speckle 

noise in the images on the training effect of the model 

was reduced using non-local mean filtering and bilateral 

filtering. After non-local mean filtering, the visual effect 

of the image was less grainy, and the noise was sup-

pressed, as shown in Fig 4(c). In contrast, Fig 4(d) shows 
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the results of secondary denoising using bilateral filter-

ing based on non-local mean filtering. The scattered 

noise in the filtered image was suppressed, which clari-

fied the image and, thus, the layers. Fig 4(b) shows the 

labeled image: red indicates EDL, green indicates SFL, 

and yellow indicates FML. 

 

Fig. 4. B-scan image denoising effect. a. Original image; 

b. Artificially labeled image: red indicates EDL, green 

indicates SFL, and yellow indicates FML; c. Non-local 

mean filter; d. Non-local mean filter and bilateral filter. 

Scale bar is 500 μm. 

EFFECTIVENESS OF TRANSFER 
LEARNING 

To verify the effectiveness of transfer learning, we 

compared the validation loss of the four network 

models with and without transfer learning (Fig 5). The 

results showed that in the early stage of training, the 

model with migration training adapts better to the 

semantic segmentation task after adjusting the 

parameters and converges faster than the model 

without migration training. In addition, the model with 

migration training is more stable throughout the first 

and middle stages of training, with little fluctuation in 

validation loss than that without migration training. 

Finally, all four models showed a decrease in 

validation loss after using transfer learning, thus 

confirming that transfer learning can accelerate the 

convergence speed of the model and improve its 

performance.  

QUALITATIVE ANALYSIS OF NETWORK 
MODEL SEGMENTATION PERFORMANCE 

The trained models were used to segment the 

images in the test set, and the segmentation results of 

the four different network models were visualized and 

compared with the manually labeled images for 

qualitative analysis. Subsequently, three representative 

B-scan images in the test set were compared to assess 

the segmentation effects (Fig 6). 

In terms of the overall structure, the segmentation 

results of the four deep learning models showed high 

visual consistency with the manual segmentation 

results. Although all the models accurately segmented 

the three layers of the mouse skin tissue structure, the 

segmentation results of different models did not differ 

markedly.  

 

 

Fig. 5. Validation loss curves for whether the four 

models use transfer learning. 

 

 

Fig. 6. Visual comparison of the segmentation results of 

the four models. a-f are the B-Scan grey-scale map, 

manual labelling results, U-Net, CA-U-Net, CBAM-U-

Net and SE-U-Net segmentation results respectively. 

Based on Fig 6, we extracted the contours of the 

segmentation results to further compare the 

segmentation differences between the different 

models. As shown in Fig. 7, the segmentation results of 

U-Net on edges with the addition of the attention 

mechanism have a better overlap between the 

segmentation results and the real values, with higher 

accuracy.CA-U-Net is smoother in visual effect, and 

the segmentation results on SFL and FML are also 

better than those of CBAM-U-Net and SE-U-Net. 

Another aspect, segmenting the EDL and SFL was 

better than segmenting the FML. This might be 

because the FML is deeper than the EDL and FML and 

is more affected by the attenuation of light signals and 

blurred boundary information, resulting in greater 

errors in segmentation results. 
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Fig. 7. Visual comparison of the segmentation results of 

the four models. The red and green lines are the three-

layer organisational structure outlines of manual anno-

tation and deep learning model segmentation, respec-

tively. a-d are the segmentation results of U-Net, CA-U-

Net, CBAM-U-Net and SE-U-Net, respectively. 

QUANTITATIVE ANALYSIS OF NET-
WORK MODEL SEGMENTATION PERFOR-
MANCE  

Next, to compare the network performance 

quantitatively, the prediction results of the network 

models on the test set were evaluated using manually 

labeled images; the evaluation metrics were MIoU, 

MPA, and precision. 

As shown in Table 1, the three U-Nets 

incorporating the attention mechanism showed 

improved segmentation performance on different skin 

tissue structures compared to the original U-Net, 

proving the effectiveness of the attention mechanism. 

Taken together, CA-U-Net had the best performance 

with MIoU values of 93.94%, 91.29%, and 89.74% on 

EDL, SFL, and FML, respectively, and precision 

values of 96.86% and 94.21% on EDL and FML, 

respectively. However, the MPA value on EDL and 

precision value on SFL were lower at 96.99% and 

95.46%, respectively, for SE-U-Net. According to 

EDL, SFL, and FML evaluation indices, the deeper the 

tissue structure, the lower the evaluation index. The 

phenomenon might be attributed to the lighter 

attenuation effect in OCT imaging; the deeper the 

imaging depth, the stronger the light attenuation, and 

the worse the imaging quality, resulting in poor 

segmentation results.  

 

Table 1. Average evaluation metrics of network models on the test set: MIoU, MPA and Precision(Bold highlights 

the best results) 

Parameters Models EDL SFL FML 

MIoU/% 

U-Net 92.77 90.04 88.67 

SE-U-Net 93.57 90.97 89.34 
CA-U-Net 93.94 91.29 89.74 

CBAM-U-Net 93.73 91.08 89.29 

MPA/% 

U-Net 95.49 94.44 94.11 

SE-U-Net 96.99 95.01 94.72 
CA-U-Net 96.90 95.58 95.27 

CBAM-U-Net 96.33 95.19 94.89 

Precision/% 

U-Net 95.87 94.17 93.00 

SE-U-Net 96.38 95.46 93.95 
CA-U-Net 96.86 95.31 94.21 

CBAM-U-Net 96.51 95.39 94.05 

 
In order to analyze and observe the improvement of U-

Net on different evaluation metrics intuitively after the ad-

dition of the attention mechanism, box-and-line plots were 

used to analyze the results of the four models on the test 

set, as shown in Fig 8. The results showed that the U-Net 

with added attention mechanism improved and stabilized 

the prediction results. However, the CA-U-Net with the CA 

attention mechanism added displayed the best prediction 

results.  
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Fig. 8. Box line plots of quantitative assessment results for the four models. SE, CA, and CBAM for U-Net with 

the addition of the three attention modules. 
 

QUANTITATIVE ASSESSMENT OF SKIN 
LAYER THICKNESS IN MICE  

To verify the scientific validity and effectiveness of 

the deep learning method, we quantified different skin 

layers of four mice and compared them with manually 

labeled images using the CA-U-Net deep learning model. 

The three tissue layers were quantitatively evaluated us-

ing the thickness calculation method proposed in the 

Methods section: skin layer thickness measurement. 

Fig 9(a) shows the thickness and average thickness 

of the EDL of the four mice. Compared to the labeled 

image, the average thickness segmentation error of CA-

U-Net in the four mice was 0.6 μm, proving its highest 

segmentation accuracy for EDL. Nonetheless, the imag-

ing quality decreased with increasing imaging depth 

(Fig 9(b),(c)). The prediction errors of CA-U-Net for 

SFL and FML increased gradually, and the average 

thickness prediction errors of the four mice were 2.2 μm 

and 3.8 μm, respectively. Fig 9(d) shows the overall 

thickness of the mouse skin tissue structure, and the av-

erage thickness segmentation error of CA-U-Net for 

four mice was 6.0 μm. The comparison of the quantified 

skin thickness results of the four mice revealed that the 

segmentation errors of the EDL were within 1 μm and 

did not differ significantly. Also, the prediction errors of 

Samples 1, 3, and 4 were not significantly different from 

the mean prediction errors for SFL, MFL, and overall 

skin tissue thickness in mice. On the other hand, the pre-

diction errors of Sample 2 were 2.6 μm, 3.4 μm, and 5.7 

μm for SFL, FML, and overall skin tissue thickness in 

mice, respectively. These errors were larger than the pre-

diction errors of other mice and the average prediction 

errors because of the lack of curved skin tissue structure 

images in Sample 2. The mean thicknesses of the EDL, 

SFL, FML, and skin tissue as a whole in the four mice 

were 235 ± 20 μm, 264 ± 42 μm, 275±40 μm, and 

774±91 μm, respectively. 
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Fig. 9. Structure and overall thickness of the three layers of mouse skin. Average thickness of labeled images with 

CA-U-Net predicted the average skin thickness in four mice; (a) is the average thickness of EDL, (b) is the average 

thickness of SFL, (c) is the average thickness of FML, and (d) is the average thickness of overall skin tissue structure. 

Samples 1–4 represent four mice. Average indicates the average thickness of skin tissue in four mice. Error bars 

indicate standard deviation; t-test was used to verify the differences between CA-U-Net prediction results and labeled 

images in each group, and the p-values were > 0.05. No significant difference was detected between CA-U-Net pre-

diction results and labeled images in each group. 

 

DISCUSSION 

In recent years, deep learning methods have been 

applied gradually in the skin OCT. In this study, we used 

U-Net and U-Net with attention mechanism, based on 

transfer learning, for accurate segmentation of the three-

layer structure of mouse skin tissue. Herein, a method 

for automatic segmentation and quantitative assessment 

of the thickness of the three-layer structure of mouse 

skin tissue is proposed. The quantification of the skin 

tissue structure thickness deemed the CA-U-Net model 

segmentation most effective as the prediction error of 

the mouse skin three-layer tissue structure thickness was 

within 7 μm. 

In the present study, we first combined non-local 

mean filtering with bilateral filtering for noise reduction 

in B-scan images, distinguished the layer boundaries of 

the mouse skin tissue, and improved the segmentation 

accuracy of the network model to obtain accurate results 

for subsequent quantification of skin tissue thickness. To 

prevent overfitting, data augmentation was performed 

using flip and random rotation, followed by training 

using U-Net and U-Net with different attention mecha-

nisms (SE, CA, and CBAM). The quantitative results in-

dicated that the U-Net incorporating all three attention 

mechanisms performed better than the base U-Net, im-

proving all performance metrics (Table 1, Fig 8). 

Among these, the CA-U-Net with CA attention mecha-

nism achieved the best segmentation performance with 

MIoU and precision of 93.94% and 96.86%, respec-

tively, better than the other models. This finding could 

be attributed to the fact that the CA attention mechanism 

not only acquires the inter-channel information but also 

considers the direction-related position information, 

which can simultaneously consider the inter-channel re-

lationship and long-distance position information, 

thereby enhancing the feature extraction. In a previous 

study, Gao et al. estimated the Dice values of the im-

proved model for the three layers of skin segmentation 

as 0.93, 0.84, and 0.86, respectively, which are lower 

than our evaluation metrics, indicating higher segmenta-

tion accuracy in this study. The prediction effects of the 

four network models were visualized and compared with 

respect to the images with different thicknesses and de-

grees of curvature of the skin tissue structures. All four 
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models accurately segmented the three-layer structure of 

the mouse skin tissue, proving the scientific effective-

ness of the deep learning method. Then, based on the 

segmentation effect of the three structural layers, we de-

duced that due to the relatively shallow imaging depth 

of the EDL, the imaging quality was higher, the segmen-

tation accuracy was higher than that of the SFL and the 

FML, and the overlap with the labeled image was also 

higher. The upper and lower boundaries of the EDL 

were visually smoother and closest to the label image, 

and with increasing imaging depth, the segmentation ac-

curacy of SFL and FML was lower than that of EDL. 

Furthermore, B-scan image data from the skin of 

four mice were input into the CA-U-Net model with the 

best segmentation performance for prediction, and the 

thickness of the predicted images was calculated using 

the thickness calculation algorithm. Compared to the la-

beled image thickness results, CA-U-Net segmented the 

EDL with high accuracy, small prediction error, and an 

average prediction error of 0.6 μm in all four mice. How-

ever, due to the deeper imaging depth of the SFL and the 

FML, the boundary information was more blurred than 

that of the EDL, resulting in a larger prediction error in 

this region, with an average prediction error of 2.2 μm 

vs. 3.8 μm on the four mice and an error of 6.0 μm in the 

overall skin tissue structure thickness of the mice. The 

mean thicknesses of the EDL, SFL, DFL, and overall 

skin tissue of the four mice were 235 ± 20 μm, 264 ± 42 

μm, 275 ± 40 μm, and 774 ± 91 μm, respectively. T-test 

analysis of the CA-U-Net prediction results compared to 

the labeled images revealed that the p-values of the 

three-layer structure and the overall structure of each 

sample were > 0.05, i.e., no significant difference, prov-

ing the scientific validity and effectiveness of the deep 

learning method in this task. Taken together, the quanti-

tative assessment results of skin tissue thickness in mice 

indicated that the deep learning method has high accu-

racy and small error. Hence, it can be applied to measure 

skin thickness and matrix quality in esthetic medicine 

and skin injury treatment. 

Nevertheless, the present study has some limita-

tions. First, the low resolution of the OCT device led to 

scattered noise in the images, blurring the boundary in-

formation in the mouse skin tissue structure, affecting 

the subsequent network segmentation performance, and 

causing errors in the assessment of the skin layer thick-

ness. Second, although CA-U-Net shows better perfor-

mance than the other three network models, the segmen-

tation effect can be improved further. Therefore, future 

studies will focus on improving the model, increasing its 

segmentation accuracy, and extending the current results 

to segmenting and assessing damaged skin tissue 

structures in mice to enhance the application prospects 

of the method. 
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