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ABSTRACT 

The orthogonal moments are giving relevant results of these last years within the framework of object 
detection, pattern recognition and image reconstruction. This article is based on orthogonal functions 
called "Orthogonal Mountain functions (OMFs)" and we introduce a new set of moments called the 
multichannel Mountain Fourier moments (MMFMs), their performance is in reconstruction, noise invari-
ants, rotation, scale and translation for image color. To validate these proposed techniques, we made 
several experimental tests to analyse images. We compare the results obtained from invariant moments 
and other current orthogonal invariant moments; the experiments show the power of the proposed mo-
ments. 

Keywords: K-nearest neighbours (KNN), Mountain Fourier invariant moments, Multichannel invariant 
moments, orthogonal Mountain functions, pattern recognition, support vector machine (SVM). 

INTRODUCTION  
For image recognition and representation images, 

one applies one of the techniques which transform an 
image into a vector by requiring a decision to be made 
based on the specific class to that image. Clearly, the 
extracted feature vector is what gives the quality of the 
image representation. For this characteristic to be 
powerful, it must be at least invariant in rotation, in 
translation and in scale. And for this reason, in recent 
years, applications on image analysis and pattern 
recognition have known very important developments 
including; image identification by Hu (1962), collected 
and image recovery by Teague (1980), infrared 
analysis by Zhang et al. (2009), English and Chinese 
Letters analysis by Hjouji et al. (2021a), walking 
detection by Lahouli et al. (2018), dot spots by Hjouji 
et al. (2021b), image noise by Ji et al. (2009), face 
identification by El-Mekkaoui et al. (2021), image 
description by Hosny and Darwish (2018), color form 
test by Assefa et al. (2010), 3Dim image identification 
by Batioua et al. (2017), image content by Singh 
(2012), image evaluation by El Ogri et al. (2020), 
robust detection by Chen et al. (2018), pattern storage 
by Hmimid et al. (2015), use of sketches by Ansary et 

al. (2006), scene report by Lin et al. (2008), eye 
diseases detection and classification by Jenny et al. 
(2023), correction of noisy images by Chen et al. 
(2022), an accurate segmentation of the object of 
interest by Vite-Chávez et al. (2023) …etc. In this 
article we base ourselves on the principles of 
orthogonal moments, Hu (1962) first proposed an 
extraction feature using non-orthogonal invariant 
moments. After a few years, the idea of orthogonal 
moments was introduced by Teague (1980) which is 
based on orthogonal polynomials; we find Zernike, 
Laguerre, Jacobi and Legendre. We used a circular 
scale of polar coordinates on a disc of radius 1 to 
define the proposed moments, like moments of Zernike 
by Kim et al. (2000) and  Kanaya et al. (2002), 
moments of Legendre by Xiao et al. (2014), moments 
of  pseudo Zernike by Bailey et al. (1996), moments of 
Fourier Chebyshev by  Ping et al. (2002), moments of 
Fourier Mellin by Sheng et al. (1994), Radian-
harmonic by Ren et al. (2003), moments of Fourier 
Bessel by Xiao et al. (2010), Harmonic polar by Yap et 
al. (2009), Fourier exponent by Hu et al. (2014) and 
Fourier Harmonic polar by Wang et al. (2019). As 
these moments are invariant in rotation, we conclude 
that we have a very important characteristic in image 
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recognition. One can use the same principle to express 
on the basis of the polar coordinates and the descriptor 
matrices of the color images in invariant multichannel 
orthogonal moments, such as the moments of Fourier 
harmonics by Wang et al. (2018), the moments of 
Zernike quaternions (QZM) by Chen et al. (2012), 
multichannel orthogonal radial Chebyshev (MRSCMs) 
by Hosny et al. (2019), multichannel orthogonal 
Zernike (MZMs) by Singh et al. (2018), quaternion 
Pseudo Zernike (QPZMs) by Bao et al. (2019), 
quaternion Fourier Mellin (QFMMs) by Guo et al. 
(2011), generalized orthogonal quaternions Fourier 
Chebyshev (QGCFMs) and pseudo Jacobi Fourier 
(QPJFMs) Singh et al. (2018). If the distance between 
the moment of a normal image and the moment of the 
same image which has been geometrically transformed 
tends to be 0, then the moment is reliable and solid, and 
these moments represent the image descriptor vector 
which are real or complex values. To extract the 
invariants of the proposed moments, we used the 
principle of the theoretical method of numerical 
approximations which makes it possible to transform 
the integral to the addition because the moments are 
defined on integrals based on orthogonal functions 
called Mountain functions. 

We have proposed new moments, called multi-
channel orthogonal Fourier Mountain moments 
(MMFMs). We must have in the progress of this 
article; that the model is more efficient and invariant in 
rotation, in translation and in scale, moreover, the 
calculated average CPU times of proposed moments 
(MMFMs) should be very fast compared to the tested 
invariant moments. The main contribution of the 
proposed methods are as follows: 

− Presentation of the proposed orthogonal Mountain 
functions (OMFs). 

− Introduction of a new set of multichannel 
orthogonal Fourier-Mountain moments (MMFMs) 
based on orthogonal mountain functions (OMFs). 

− Test of the capacity of proposed moments 
MMFMs regarding the reconstruction of images 
either for geometric transformations; the rotation, 
the scale and the translation or for noisy images. 

− Comparison of the results obtained with different 
well-known orthogonal moments in terms of 
reconstruction and classification. 

− We have to use for classification two techniques; 
the first is MMFMs-KNN architecture using K-
NN, and the second is MMFMs-SVM architecture 
using SVM classifier. 

− We calculate the average CPU times of the 
proposed moments (MMFMs) and compare them 
with the invariant moments of the test. 

The axis of this article are organized as follows; in 
the section 2, presentation the orthogonal Mountain 
functions (OMFs). The proposed moments: 
multichannel orthogonal Fourier Mountain moments 
(MMFMs) and their geometric invariants for color 
images and all aspects are introduced in Sections 3.  
Section 4 presents the adopted computational methods 
and proposed overall system. The experimental and 
discussion are presented in section 5 and 6. Finally in 
section 7 we give a conclusion of this work. 

RELATED WORKS 
Several works for image reconstruction and 

classification based on two-dimensional orthogonal 
moments and moment invariants have been presented 
in the literature. In recent years, an increasing number 
of researchers have shown real interest in the study of 
images moments. Fractional quaternion Zernike 
moments for robust color image copy-move forgery 
detection by Chen et al. (2018), new set of 
multichannel orthogonal moments for color image 
representation and recognition by Hosny et al. (2019), 
image classification using shifted Legendre Fourier 
moments and deep learning by Machhour et al. (2019), 
fractional quaternion cosine transform and its 
application in color image copy-move forgery detection 
by Yu et al. (2019), new fractional order Legendre 
Fourier moments for pattern recognition applications 
by Hosny et al. (2020), novel fractional order polar 
harmonic transforms for gray-scale and color image 
analysis by Darwish et al. (2020), image recognition 
using new set of separable three dimensional discrete 
orthogonal moment invariants by Batioua et al. (2020), 
a new separable moments based on Chebyshev 
Krawtchouk polynomials by Idan et al. (2020), 
accurate 2D and 3D images classification using 
translation and scale invariants of Meixner moments by 
Yamni et al. (2021), new fractional order shifted 
Gegenbauer moments for image analysis and 
recognition by Aboelenen et al. (2020), a survey of 
orthogonal moments for Image representation: theory, 
implementation, and evaluation by Qi et al. (2021), a 
robust handwritten numeral recognition using hybrid 
orthogonal polynomials and moments by Abdulhussain 
et al. (2021),quaternion fractional order color 
orthogonal moment based image representation and 
recognition  by He et al. (2021), 3D image recognition 
using new set of fractional order Legendre moments 
and deep neural networks  by El Ogri et al. (2021), face 
recognition algorithm based on fast computation of 
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orthogonal moments  by Abdulhussain et al. (2022), an 
efficient computation of discrete orthogonal moments 
for bio-signals reconstruction by Fathi et al. (2022), a 
new retrieval system based on quaternion radial 
orthogonal Jacobi moments for biomedical color 
images by Janati Idrissi et al. (2024). The modulus of 
these moments’ invariants is a crucial property in 
image recognition. This kind of orthogonal moments 
tends to express and recognize images. Similarly, using 
polar coordinates, the descriptor vectors for color 
images can be revealed via multichannel orthogonal. 
The quality and applicability in the field of pattern 
recognition are necessarily affected by the use of 
numerical approximations during the process of 
computing and extracting the invariants from these 
moments. 

ORTHOGONAL MOUNTAIN FUNCTIONS 
This part is divided into three axis; the first 

presents the new set of Mountain functions (OMFs) 
similar with the strictly increasing sequence of regular 
steps  {𝑟𝑟𝑖𝑖 , i = 1, … , N}. The second shows the property 
of discrete orthogonality. In the third we use the polar 

coordinates to define all orthogonal Mountain 
functions. 

The Mountain functions 
These functions are defined from two main 

properties: 
Property 1. A finite strictly increasing sequence of 
regular step 𝑑𝑑 is a finite succession {𝑟𝑟𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁}  of 
real numbers such that 

   𝑟𝑟1 < 𝑟𝑟2 < ⋯ < 𝑟𝑟𝑁𝑁  𝑎𝑎𝑎𝑎𝑑𝑑  |𝑟𝑟𝑖𝑖+1 − 𝑟𝑟𝑖𝑖| = 𝑑𝑑 , 
   𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 =  1, … ,𝑁𝑁; (1) 

Property 2. The collection of Mountain functions 
�𝑀𝑀𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁�  with the strictly increasing sequence 
of regular steps  {𝑟𝑟𝑖𝑖 , i = 1, … , N} is defined as 

  𝑀𝑀𝑗𝑗(𝑥𝑥) =  �1 − �𝑥𝑥−𝑟𝑟𝑗𝑗
𝑑𝑑
�
2

  𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ �𝑟𝑟𝑗𝑗 − 𝑑𝑑, 𝑟𝑟𝑗𝑗 + 𝑑𝑑�
0     𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑟𝑟𝑒𝑒

     (2) 

Fig.1 presents the Mountain functions (OMFs) 
associated with the strictly increasing sequence of 
regular steps {1,2, … ,6}, {1,2, … ,12} , {1,2, … ,25} and 
{1,2, … ,50}. 

  

  

Fig. 1. Graph of orthogonal mountain functions (OMFs) associated with the strictly increasing sequence of regular 
steps (a) {1,2, … ,6} ,(b)

 
{1,2, … ,12}, (c) {1,2, … ,25} and (d) {1,2, … ,50}. 
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Discrete orthogonality of Mountain func-
tions 

Note first that the Mountain functions presented in 
Eq.2 satisfy the following lemma. 

Lemma: 

� 
   𝑀𝑀𝑛𝑛(𝑟𝑟𝑛𝑛) = 1, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 = 1, . .
𝑀𝑀𝑛𝑛�𝑟𝑟𝑗𝑗� = 0,  𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ≠ 𝑎𝑎      (3) 

Based on equation (3), we can see that: 

If 𝑚𝑚 ≠ 𝑎𝑎  we have  𝑀𝑀𝑛𝑛(𝑟𝑟𝑖𝑖)𝑀𝑀𝑚𝑚(𝑟𝑟𝑖𝑖) = 0 for all i =
1, … , N, then   

    ∑ 𝑀𝑀𝑛𝑛�𝑟𝑟𝑗𝑗�𝑀𝑀𝑚𝑚�𝑟𝑟𝑗𝑗�𝑁𝑁
𝑗𝑗=1 = 0   (4) 

else 

∑ 𝑀𝑀𝑘𝑘(𝑟𝑟𝑖𝑖)𝑀𝑀𝑘𝑘(𝑟𝑟𝑖𝑖)𝑁𝑁
𝑖𝑖=1 = 𝑀𝑀𝑘𝑘(𝑟𝑟𝑘𝑘)𝑀𝑀𝑘𝑘(𝑟𝑟𝑘𝑘) = 1  (5) 

Therefore, the discrete orthogonality condition Eq.6 
holds for the set of Mountain functions: 

∑ 𝑀𝑀𝑛𝑛(𝑟𝑟𝑖𝑖)𝑀𝑀𝑚𝑚(𝑟𝑟𝑖𝑖)𝑁𝑁
𝑖𝑖=1 = 𝛿𝛿𝑛𝑛𝑚𝑚    (6) 

Orthogonal Mountain Fourier functions 
coupled to color image 

Hosny et al. (2011) modified the technique 
presented by Xin et al. (2007) which allows to map the 
color image from rectangle to circle, as shown in Fig.2. 
We take an image of size 2N × 2N and we obtain a new 
arrangement diagram of pixels. The unit disk Fig.2 is 
divided into N rings along the radial direction  

{𝑟𝑟𝑘𝑘 = 𝑘𝑘,𝑘𝑘 = 1, … ,𝑁𝑁}    (7) 

In Fig.2, we separate the RGB color then transform 
into polar coordinates so that the number of rings “i” 
can be divided into 4+8i equal parts determined by the 
angles  𝛼𝛼𝑖𝑖𝑘𝑘then we combine the three colors. 

𝛼𝛼𝑖𝑖𝑘𝑘 = 2𝜋𝜋(𝑘𝑘+0.5)
4+8𝑖𝑖

,𝑘𝑘 = 0, … ,3 + 8𝑖𝑖   (8) 

We consider the strictly increasing sequence of 
regular steps  {𝑟𝑟𝑘𝑘 = 𝑘𝑘,𝑘𝑘 = 1, … ,𝑁𝑁}.  The step of this 
strictly increasing sequence is 𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆 = 1 . The set of 
mountain functions {𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀N, }  associated with 
the sequence  {𝑟𝑟𝑘𝑘 = 𝑘𝑘,𝑘𝑘 = 1, … ,𝑁𝑁} is defined as 

  𝑀𝑀𝑛𝑛(𝑥𝑥) = �1 − (𝑥𝑥 − 𝑎𝑎)2  𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ [n − 1, n + 1]
0     𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑟𝑟𝑒𝑒

  (9) 

Then, our basis function is the set 

𝐷𝐷𝑙𝑙𝑙𝑙�𝑟𝑟𝑗𝑗 ,𝛼𝛼𝑗𝑗𝑘𝑘� = 𝑀𝑀𝑙𝑙�𝑟𝑟𝑗𝑗�𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 ,    
 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎 = 1, . . ,𝑁𝑁 𝑎𝑎𝑎𝑎𝑑𝑑 𝑧𝑧 ∈ ℤ    (10) 

Where 𝑖𝑖2 = −1  and 𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗  is the complex 
polynomials. These polynomials are also orthogonal, 
the orthogonality demonstration is presented in 
Appendix 1. 

Moreover, 

� 𝑒𝑒𝑖𝑖𝑛𝑛𝑚𝑚𝑗𝑗𝑗𝑗𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗

3+8𝑗𝑗

𝑘𝑘=0

= 

� 𝑒𝑒𝑖𝑖
2𝜋𝜋𝑛𝑛(𝑘𝑘+0.5)

4+8𝑗𝑗 𝑒𝑒−𝑖𝑖
2𝜋𝜋𝑚𝑚(𝑘𝑘+0.5)

4+8𝑗𝑗

3+8𝑗𝑗

𝑘𝑘=0

= (4 + 8𝑗𝑗)𝛿𝛿𝑛𝑛𝑚𝑚 

(11) 

The orthogonality of 𝐷𝐷𝑙𝑙𝑙𝑙�𝑟𝑟𝑗𝑗 ,𝛼𝛼𝑗𝑗𝑘𝑘�  demonstration is 
presented in Appendix 2. 
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Fig. 2. The image RGB mapped from rectangle to cercle image. 
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THE PROPOSED MOMENTS AND 
INVARIANCE TO THE GEOMETRIC 
TRANSFORMATIONS 
We have divided this section into two parts; the 

first subsection presents the proposed moments 
(MMFMs). The second subsection verifies the 
invariants of MMFMs for rotation, translation and 
scale. 

The proposed moments multichannel 
orthogonal mountain Fourier moments 

Each color image 𝑓𝑓(𝑟𝑟,𝛼𝛼) is represented by three 
primary channels Red(R), Green(G) and Blue(B), i.e 

𝑓𝑓(𝑟𝑟,𝛼𝛼) = �𝑓𝑓𝑅𝑅(𝑟𝑟,𝛼𝛼),𝑓𝑓𝐺𝐺(𝑟𝑟,𝛼𝛼),𝑓𝑓𝐵𝐵(𝑟𝑟,𝛼𝛼)�  (12) 

In order (𝑎𝑎 + 𝑚𝑚), the proposed moments MMFMs for 
the image 𝑓𝑓(𝑟𝑟,𝛼𝛼) are defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓) =
  �𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓𝑅𝑅),𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓𝐺𝐺),𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓𝐵𝐵)�  (13) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄�,𝑄𝑄 ∈ {𝑅𝑅,𝐺𝐺,𝐵𝐵} is defined by: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄� = 

� �
1

4 + 8𝑎𝑎
𝑀𝑀𝑛𝑛�𝑟𝑟𝑗𝑗�𝑒𝑒−𝑖𝑖𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑓𝑓𝑃𝑃�𝑟𝑟𝑗𝑗 ,𝛼𝛼𝑗𝑗𝑘𝑘�

3+8𝑗𝑗

𝑘𝑘=0

𝑁𝑁

𝑗𝑗=1

 (14) 

With Eq.3 gives: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄� = 

�
1

4 + 8𝑎𝑎
𝑒𝑒−𝑖𝑖𝑚𝑚𝑚𝑚𝑛𝑛𝑗𝑗𝑓𝑓𝑄𝑄(𝑟𝑟𝑛𝑛,𝛼𝛼𝑛𝑛𝑘𝑘)

3+8𝑛𝑛

𝑘𝑘=0

,  

𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 = 1, … ,𝑁𝑁 𝑎𝑎𝑎𝑎𝑑𝑑 𝑚𝑚 ∈ ℤ 

(15) 

For 𝑄𝑄 ∈ {𝑅𝑅,𝐺𝐺,𝐵𝐵}, we take a finite number of MMFMs 
to approximately reconstruct the color image 𝑓𝑓(𝑟𝑟,𝛼𝛼) as 
follows: 

𝑓𝑓𝑄𝑄�𝑟𝑟𝑗𝑗 ,𝛼𝛼𝑗𝑗𝑘𝑘�    = 

� �  𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓)
𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥

𝑚𝑚=−𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥

𝑚𝑚𝑚𝑚𝑥𝑥

𝑛𝑛=1

𝑀𝑀𝑛𝑛�𝑟𝑟𝑗𝑗�𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 (16) 

The invariance to geometric transformations 
of MMFMs  

We have to present a new mathematical formula in 
these following parts which shows the rotation, 
translation and scaling invariances of the proposed 
moments because these geometric transformations play 
roles of power and performance of each moment. 

Rotation invariance of MMFM 

We will conclude from Wang X. Y. et al. (2015) 
that the calculated moments MMFMs of the color 
image are invariant to rotation. 

Let  𝑓𝑓𝑚𝑚0(𝑟𝑟,𝛼𝛼)  rotated image 𝑓𝑓(𝑟𝑟,𝛼𝛼)of the original 
image 𝑓𝑓(𝑟𝑟,𝛼𝛼) = �𝑓𝑓𝑅𝑅(𝑟𝑟,𝛼𝛼),𝑓𝑓𝐺𝐺(𝑟𝑟,𝛼𝛼),𝑓𝑓𝐵𝐵(𝑟𝑟,𝛼𝛼)�.  The 
image treated is  color image for that one must study 
the invariance of rotation of the three levels of gray, to 
obtain 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄

𝑚𝑚0� of 𝑓𝑓𝑚𝑚0(𝑟𝑟,𝛼𝛼),  as a function of 
𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄� 𝑓𝑓𝑓𝑓 𝑓𝑓𝑄𝑄(𝑟𝑟,𝛼𝛼) , as follows ,as follows 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄
𝑚𝑚0� = 𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚0𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄�,  

∀𝑄𝑄 ∈ {𝑅𝑅,𝐺𝐺,𝐵𝐵} 

(17) 

Therefore, 

�𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄
𝑚𝑚0�� = �𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄��,  

∀𝑄𝑄 ∈ {𝑅𝑅,𝐺𝐺,𝐵𝐵} 
(18) 

Then we can follow the same technique to re-formulate 
NMMFMs of proposed moments MMFMs to show 
invariants to rotation, as follows: 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛,𝑙𝑙�𝑓𝑓𝑄𝑄� = 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛¸,𝑚𝑚�𝑓𝑓𝑄𝑄�.𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙,−𝑚𝑚(𝑓𝑓𝑃𝑃),∀𝑄𝑄 ∈ {𝑅𝑅,𝐺𝐺,𝐵𝐵}   
(19) 

Translation invariance of MMFMs 

We follow the same technique of Suk T. et al. (2009) 
for translation invariance by moving the origin of the 
coordinates to the barycentre (�̅�𝑥,𝑦𝑦�) of the color image 
𝑓𝑓, such that 

�̅�𝑥 =
𝑚𝑚10(𝑓𝑓𝑅𝑅) + 𝑚𝑚10(𝑓𝑓𝐺𝐺) + 𝑚𝑚10(𝑓𝑓𝐵𝐵)

𝑚𝑚00
  (20) 

𝑦𝑦� =
𝑚𝑚01(𝑓𝑓𝑅𝑅) + 𝑚𝑚01(𝑓𝑓𝐺𝐺) + 𝑚𝑚01(𝑓𝑓𝐵𝐵)

𝑚𝑚00
   (21) 

𝑚𝑚00 = 𝑚𝑚00(𝑓𝑓𝑅𝑅) + 𝑚𝑚00(𝑓𝑓𝐺𝐺) + 𝑚𝑚00(𝑓𝑓𝐵𝐵)  (22) 

Such that each 𝑓𝑓𝑄𝑄  color channel is associated with 
these calculated moments 𝑚𝑚𝑝𝑝𝑝𝑝�𝑓𝑓𝑄𝑄�;𝑆𝑆,𝑞𝑞 = 0; 1; 2.... 

Scale invariance of MMFMs 

Let 𝑓𝑓𝑠𝑠(𝑟𝑟,𝛼𝛼)   is the scale version image of the 
original image 𝑓𝑓(𝑟𝑟,𝛼𝛼) ) with 𝑓𝑓(𝑟𝑟,𝛼𝛼) =
�𝑓𝑓𝑅𝑅(𝑟𝑟,𝛼𝛼),𝑓𝑓𝐺𝐺(𝑟𝑟,𝛼𝛼),𝑓𝑓𝐵𝐵(𝑟𝑟,𝛼𝛼)� with factor s of the 
𝑓𝑓(𝑟𝑟,𝛼𝛼)The image treated is a color image. For that, one 
must study the invariance of scale of the three gray-
levels images. To obtain  𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄s�  of 𝑓𝑓𝑠𝑠(𝑟𝑟,𝛼𝛼), as 
follow 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄s� =  
1
𝑁𝑁𝑛𝑛

 � 𝑒𝑒−𝑖𝑖.𝑚𝑚𝑛𝑛𝑗𝑗������.𝑓𝑓𝑄𝑄

𝑁𝑁𝑛𝑛−1

𝑡𝑡=0

�
𝑟𝑟𝑛𝑛�
s

,𝛼𝛼𝑛𝑛𝑡𝑡������ (23) 
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by the changing 𝑟𝑟′𝑛𝑛���� =  𝑟𝑟𝑛𝑛���
s

 , we have 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄s� =  
1
𝑁𝑁𝑛𝑛

 � 𝑒𝑒−𝑖𝑖.𝑚𝑚𝑛𝑛𝑗𝑗������. 𝑓𝑓𝑋𝑋

𝑁𝑁𝑛𝑛−1

𝑡𝑡=0

(𝑟𝑟′𝑛𝑛����,𝛼𝛼𝑛𝑛𝑡𝑡����) = 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄� ,𝑄𝑄 = {𝑅𝑅,𝐺𝐺,𝐵𝐵} 

(24) 

COMPUTATIONAL TECHNIQUES AND 
PROPOSED OVERALL SYSTEM 

The adopted computational methods 
We must adopt the cartesian image pixels to the 

polar image pixels technique which is developed by 
Xin Y. et al. (2007) and improved by Hosny K. M. et 
al. (2011) to calculation of the proposed moments 
MMFMs on images of size 2𝑁𝑁 ×  2𝑁𝑁 with concentric 
circles. We use the radial direction to divide the disk 
into N rings, we limit each ring by two circles of rays 
�𝑟𝑟𝑘𝑘 == k

N
 and 𝑟𝑟𝑘𝑘+1 = k+1

N
;  𝑘𝑘 = 0,1, 2 … ,𝑁𝑁 − 1� , and 

each number i of ring contains numbers 4+8j equals 
parts determined by the angles 𝛼𝛼𝑖𝑖𝑥𝑥 . As illustrated in 
Fig.4. 

𝛼𝛼𝑖𝑖𝑥𝑥 =
2(𝑥𝑥 + 1

2)𝜋𝜋
4 + 8𝑖𝑖

, 𝑥𝑥 = 0, … ,4 + 8𝑖𝑖. (25) 

Then we calculate for the discrete image the moments 
(MFMs) presented in Eq.15 by a numerical integral 
{𝑓𝑓(𝑟𝑟𝑖𝑖 ,𝛼𝛼𝑖𝑖𝑥𝑥), 𝑖𝑖 = 0, 1, 2 … ,𝑁𝑁 − 1,   𝑥𝑥 = 0, … ,4 + 8𝑖𝑖 } of 
size 𝑁𝑁 ×  2𝑁𝑁 as follows: 

𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓) = 

                
1

2𝜋𝜋� � 𝑓𝑓(𝑟𝑟,𝛼𝛼)𝑀𝑀𝑛𝑛(𝑟𝑟)𝑒𝑒−𝑗𝑗𝑚𝑚𝑚𝑚
2π

0

1

0
𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑𝛼𝛼     

≈
1

2𝜋𝜋
�� 𝑀𝑀𝑛𝑛(𝑟𝑟𝑖𝑖)𝑟𝑟𝑖𝑖𝑒𝑒−𝑗𝑗𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗𝑓𝑓(𝑟𝑟𝑖𝑖 ,𝛼𝛼𝑖𝑖𝑥𝑥)

3+8𝑖𝑖

𝑥𝑥=0

𝑁𝑁

𝑖𝑖=1

∇𝑟𝑟𝑗𝑗∇𝛼𝛼𝑗𝑗𝑥𝑥  

(26) 

where 

∇𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖+1 − 𝑟𝑟𝑖𝑖 = 𝑖𝑖+1
𝑁𝑁
− 𝑖𝑖

𝑁𝑁
= 1

𝑁𝑁
 )   (27) 

∇𝛼𝛼𝑖𝑖𝑥𝑥 = 𝛼𝛼𝑖𝑖,𝑥𝑥+1 − 𝛼𝛼𝑖𝑖,𝑥𝑥 = 

2𝜋𝜋(𝑥𝑥 + 1 + 0.5)
4 + 8𝑖𝑖

−
2𝜋𝜋(𝑥𝑥 + 0.5)

4 + 8𝑖𝑖
=

2𝜋𝜋
4 + 8𝑖𝑖

 
(28) 

with 

⎩
⎪
⎨

⎪
⎧
𝑀𝑀𝑛𝑛(𝑟𝑟𝑛𝑛) =

𝑑𝑑

�𝑟𝑟𝑛𝑛
=

1
2𝑁𝑁

�𝑎𝑎𝑁𝑁

=
1

2√𝑎𝑎𝑁𝑁
  𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 = 1, . .

𝑀𝑀𝑛𝑛�𝑟𝑟𝑗𝑗� = 0,  𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ≠ 𝑎𝑎

 (29) 

We use Eq.29 in Eq.26, we get  

𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓) ≈ 

1
2𝜋𝜋

� 𝑀𝑀𝑛𝑛(𝑟𝑟𝑛𝑛)𝑟𝑟𝑛𝑛𝑒𝑒−𝑗𝑗𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑓𝑓(𝑟𝑟𝑛𝑛,𝛼𝛼𝑛𝑛𝑥𝑥)∇𝑟𝑟𝑛𝑛∇𝛼𝛼𝑛𝑛𝑥𝑥

3+8𝑖𝑖

𝑥𝑥=0

 

  𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓) ≈ 

𝑟𝑟𝑛𝑛∇𝑟𝑟𝑛𝑛
4𝜋𝜋√𝑎𝑎𝑁𝑁

 � 𝑒𝑒−𝑗𝑗𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑓𝑓(𝑟𝑟𝑛𝑛,𝛼𝛼𝑛𝑛𝑥𝑥)∇𝛼𝛼𝑛𝑛𝑥𝑥

3+8𝑛𝑛

𝑥𝑥=0

 

 (30)       

by substituting Eq.27, Eq.28 and 𝑟𝑟𝑛𝑛 = 𝑛𝑛
𝑁𝑁

 in Eq.30, we 
get 

𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓) ≈ 

          
√𝑎𝑎

2𝑁𝑁2√𝑁𝑁(4 + 8𝑎𝑎)
 � 𝑒𝑒−𝑗𝑗𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑓𝑓(𝑟𝑟𝑛𝑛,𝛼𝛼𝑛𝑛𝑥𝑥)
3+8𝑛𝑛

𝑥𝑥=0

 
(31) 

Also, the calculation of the moments MMFMs present 
in Eq.15 as following: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄� ≈ 

      
√𝑎𝑎

2𝑁𝑁2√𝑁𝑁(4 + 8𝑎𝑎)
 � 𝑒𝑒−𝑗𝑗𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑓𝑓𝑄𝑄(𝑟𝑟𝑛𝑛,𝛼𝛼𝑛𝑛𝑥𝑥),
3+8𝑛𝑛

𝑥𝑥=0

 

𝑄𝑄 ∈ {𝑅𝑅,𝐺𝐺,𝐵𝐵} 

(32) 

From Eq.16, we have the color image reconstruction 
formula: 

𝑓𝑓𝑄𝑄(𝑟𝑟𝑖𝑖 ,𝛼𝛼𝑖𝑖𝑥𝑥) = 

� �  𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚�𝑓𝑓𝑄𝑄�𝑀𝑀𝑛𝑛(𝑟𝑟𝑖𝑖)𝑒𝑒𝑗𝑗𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥

𝑚𝑚=−𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥

𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥

𝑛𝑛=0

 
(33) 

For all 𝑖𝑖 = 0, 1, 2 … ,𝑁𝑁 − 1,   𝑥𝑥 = 0, … ,4 + 8𝑖𝑖 

From Eq.29 and Eq.33 we deduce 

⎩
⎨

⎧�̂�𝑓𝑄𝑄(𝑟𝑟𝑖𝑖,𝛼𝛼𝑖𝑖𝑥𝑥)   =
1

2√𝑖𝑖𝑁𝑁
� 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑚𝑚�𝑓𝑓𝑄𝑄�
𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥

𝑚𝑚=−𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥

𝑒𝑒𝑗𝑗𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛    𝑖𝑖𝑓𝑓 𝑖𝑖 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥

�̂�𝑓𝑄𝑄(𝑟𝑟𝑖𝑖,𝛼𝛼𝑖𝑖𝑥𝑥)   = 0                                                                   𝑖𝑖𝑓𝑓 𝑖𝑖 > 𝑀𝑀𝑎𝑎𝑥𝑥

 (34) 

Proposed model for object recognition by 
MMFMsadopted computational methods 

We use in this article for image recognition an 
application of MMFMs using machine learning SVM 
and KNN. After pre-processing, we obtain a 
characteristic vector which allows to do the learning. 
The proposed method is illustrated in Fig.3. To do the 
test, we take a test image, we calculate the MMFMs 
moments to obtain the final characteristic vector for the 
test image, so to get the decision about the target value 
we compare with the data space of the SVM decision 
limit. 
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Fig.3: Block diagram for images recognition. 

 

EXPERIMENTS RESULTS  
We explain in these three upcoming parts; the powers 
of the moments proposed and the techniques used. In 
the first, we evaluate the power of MMFMs for image 
reconstruction. In the second, we present the 
experiments carried out which make it possible to 
clarify the invariance of the orthogonal moments 
proposed MMFMs with respect to translation, rotation 
and scaling transformations and to noise. In the last 
part, we must present the precisions of the proposed 
descriptor vector for classification and recognition. In 
this work, we used four image databases; COIL_100 
Nene et al. (1996), ETHZ_53Obj VIS @ ETH Zurich 
(2003), Caltech_101 Li et al. (2022) and 
256_ObjectCategories Griffin (2007) to study image 
situations according to geometric transformations, 
noise and normal image, and we compare with some 

invariant moments; multichannel Chebyshev 
substituted radial invariant (MRSCMs) Hosny et al. 
(2019), multichannel Zernike (MZMs) Singh et al. 
(2018), fractional order multichannel Fourier-Jacobi 
(FrMJFMs) Aboelenen et al. (2020), fractional order 
Fourier-Legendre (MFrLFMs) Hosny et al. (2020) and 
multichannel fractional order radial Fourier-harmonic 
(FrMRHFMs) Darwish et al. (2020). After all, the 
efficiency of the proposed moments is related to CPU 
response time. By comparing the precisions that we 
found during learning to show the excellence of our 
proposed method compared to existing methods 
MRSCMs, MZMs, FrMJFMs, MFrLFMs and 
FrMRHFMs. Experiments and algorithms are 
implemented and executed using a following system; 
Processor (Intel(R)Core (TM) i5-4200M CPU @ 2, 5 
GHz), Memory (8GB) and Microsoft Windows 64 bits 
under MATLAB R2019b. 
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Image Reconstruction by MMFMs 
We employed the color images and the proposed 

MMFMs moments to reconstruct it using the Eq.34, 
algorithm shows the different steps of image 

reconstruction and using Eq.35 which represents the 
NIRE error to analyse the reconstruction. 

𝑁𝑁𝑁𝑁𝑅𝑅𝑁𝑁 =
∑ ∑ (𝑓𝑓(𝑥𝑥,𝑦𝑦)− 𝑓𝑓𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦))2𝑚𝑚−1

𝑦𝑦=0
𝑁𝑁−1
𝑥𝑥=0

∑ ∑ (𝑓𝑓(𝑥𝑥, 𝑦𝑦))2𝑚𝑚−1
𝑦𝑦=0

𝑁𝑁−1
𝑥𝑥=0

 (35) 

According to the results that we have found and 
which are presented in Fig.4, we can conclude that our 
proposed moments MMFMs for the reconstruction of 
the images are similar to the original image when the 
max order arrives at 63.  

The visualization could easily give the quality of 
the simulation between the original image and the 
reconstructed image. Fig.5 gives experimental studies 
of the NIRE error with respect to some existing 
invariant moments MRSCMs, MZMs, FrMJFMs, 
MFrLFMs and FrMRHFMs. 

 
Fig.5. The variation of reconstruction NIRE error 
according to the maximum order.  

 
original 
image 

Order 
10 20 30 40 50 60 63 

        

        

        
Fig.4. Reconstructed color images ‘ 128×128 ‘ using the proposed moments (MMFMs). 
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Algorithm: 

 Reconstruction image color using multichannel 

orthogonal Mountain Fourier Moment  

Inputs:  

n: The maximum order of moments and 𝑓𝑓: 

The origin image color. 

Output: 

The color image reconstructed 𝑓𝑓  

Step 1 
Compute Mountain functions 

  𝑀𝑀𝑛𝑛(𝑥𝑥) sing Eq. (9). 

Step 2 

Compute multichannel orthogonal 

Mountain Fourier moments 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑚𝑚(𝑓𝑓𝑄𝑄) using Eq.32 

Step 3 

Compute image reconstructed 𝑓𝑓𝑄𝑄 for 

each color Q= {R, G, B} using 

Eq.34 

Step 4 

We obtain the color image 

reconstructed  𝑓𝑓  by the 

concatenation of  𝑓𝑓𝑄𝑄 with Q= {R, G, 

B} 
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The geometric transformations and noise 
in the image 
The study of geometric and noisy transformations 

is essential in this work to know the object exactly in 
the image. 

We worked on the color images Fig.6 to assess the 
stability quality of the proposed moments MMFMs to 
remain invariant under different image transformations 
and noise. We use the relative error (RE) between 
moments of the original image 𝑀𝑀(𝑓𝑓)  and moments of the 
transformed image 𝑀𝑀(𝑓𝑓𝑡𝑡𝑟𝑟), which is defined as follows: 

𝑅𝑅𝑁𝑁(𝑓𝑓, 𝑓𝑓𝑡𝑡𝑟𝑟)  =   �𝑚𝑚(𝑓𝑓)−𝑚𝑚�𝑓𝑓𝑡𝑡𝑡𝑡��
‖𝑚𝑚(𝑓𝑓)‖    (36) 

𝑀𝑀(𝑓𝑓), 𝑀𝑀(𝑓𝑓𝑡𝑡𝑟𝑟) and || || respectively, designate moments 
of the original image f, moments of the transformed 
image 𝑓𝑓𝑡𝑡𝑟𝑟 and the Euclidean norm. 

||𝑀𝑀(𝑓𝑓)|| = 

�||𝑀𝑀(𝑓𝑓𝑅𝑅)||2 + ||𝑀𝑀(𝑓𝑓𝐺𝐺)||2 + ||𝑀𝑀(𝑓𝑓𝐵𝐵)||2 
(37) 

The good result which has a very low or negligible 
relative error. 

The geometric transformations using MMFMs 

In this experiment, we have to verify the invariants 
derived from the MMFMs must be identical with error 
tending to 0 if the image is transformed. For this we 
use the color image Fig.6 of size 128×128. Figs. 8, 10 
and 12 to show some transformed images. 

We also compared the error results of the proposed 

   

Fig.6. The color images (a), (b) and (c). 

MMFMs moments and some recent orthogonal 
invariant moments; MRSCMs, FrMJFMs, MFrLFMs 
and FrMRHFMs. Figs. 8,10 and 12, we present the 
results obtained from the RE error for the study carried 
out. According to the obtained results, we can say that 
proposed moments MMFMs are more powerful. Then 
these moments could be effective techniques for image 
recognition. 

 
Fig.8. RE error for the rotated images. 

 
       

       
𝑟𝑟 = 0° 𝑟𝑟 = 30° 𝑟𝑟 = 60° 𝑟𝑟 = 90° 𝑟𝑟 = 120° 𝑟𝑟 = 150° 𝑟𝑟 = 180° 

Fig.7: Rotated images. 
 
 

       
�⃗�𝑣(0; 0) �⃗�𝑣(5; 5) �⃗�𝑣(8; 8) �⃗�𝑣(15; 15) �⃗�𝑣(−5;−5) �⃗�𝑣(−10;−10) �⃗�𝑣(−20;−20) 

Fig.9. Translated images. 
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First experiment: The color image of Fig.6 (a) 
with size 128 × 128 is rotated by different angles from 
0° to 90° in the counter-clockwise direction Fig.7. We 
have evaluated the RE error for the rotated images, 
using the proposed moments MMFMs and the other test 
moments, the results obtained are displayed in Fig.8. 

 
Fig.10. RE error for the translated images 

Second experiment: The color image of Fig.6(b) 
with size 128 × 128 is translated using various 
translation parameters in horizontal and vertical 
directions Fig.9. We have evaluated the RE error for 
the translated images, using the proposed moments 
MMFMs and the other test moments, the results 
obtained are displayed in Fig.10. 

Third experiment: The color image of “Fig.6(c)” 
with size 128 × 128 is scaled using seven reduction 
scaling factors Fig.11. We have evaluated the RE error 
for the scaled images using the proposed moments 
MMFMs and the other test moments, the results 
obtained are displayed in Fig.12  

 
Fig.12. RE error for the scaled images 

We find as maximum value of RE error is 
1.07 𝑒𝑒−07  of our moments MMFMs for the three 
geometric transformations. Also, we notice that; the 
MMFMs moments take very small values for the RE 
error compared to tested moments. 

   

 

               𝛼𝛼 = 0.5        𝛼𝛼 = 0.75  𝛼𝛼 = 1   𝛼𝛼 = 1.25 
   

𝛼𝛼 = 1.5 𝛼𝛼 = 1.75 𝛼𝛼 = 2 

Fig.11. Scaled image. 
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Gaussian 
(vect=0,m=0) 

 
Gaussian 
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Fig.13. Contaminated images using white Gaussian noise. 

Rigidity against noise 

In this subsection, we have to study the perfor-
mance of the proposed moment invariants with respect 
to noise invariance. Therefore, the experiment was 
performed to evaluate the sensitivity of different types 
of noise on the numerical accuracy of the proposed 
invariant MMFMs. In fact, the image of database 
256_ObjectCategories Griffin (2007) was contaminated 
with different densities of Gaussian. Fig.13 shows 
noisy images distorted by Gaussian noise with zero 
mean and standard deviation varying from 0 to 0.5 with 
a step of 0.1. Fig.14 illustrates the robustness of 
MMFMs against Gaussian noise. RE error values are 
calculated using the proposed MMFMs and existing 
methods MRSCMs, FrMJFMs, MFrLFMs and 
FrMRHFMs. 

Recognition Rates using MMFMs 
In this subsection, we must use two techniques to 

evaluate the effectiveness of the proposed method, the 
first is the MMFMs-KNN architecture used K-NN (K-
Nearest Neighbours with k = 1) as a classifier with the 
quintuple cross-validation technique, the second is the 
MMFMs-SVM architecture used the SVM classifier. 
Two databases were used; the ETHZ_53Obj database 

VIS @ ETH Zurich (2003) contains 270 objects 
classified in 70 categories where the image sizes are 
320×240, and the COIL-100 database Nene et al. 
(1996) contains 7202 color images classified in 100 
categories with a size unified image of 128×128 to 
make several experiments and tests. 

Fig.14. RE error values of the noisy color images of 
256_ObjectCategories Griffin. (2007). 

 

 

        

        

        

        

        
Fig.15. The selected images from database: ETHZ_53Obj VIS @ ETH Zurich (2003) 
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Table 1: Object recognition accuracy (%) on ETHZ-53Obj database, by using existing methods. 

Moment invariants Noise-free Speckle noise Average 
0.2% 0.4% 0.6% 0.8% 1% 

MMFMs-KNN 99,89 93,17 90,22 87,46 85,63 81,57 89,65 
MMFMs-SVM 99,91 94,33 91,08 88,44 86,59 83,72 90,67 

MRSCMs 99,70 82,80 79,03 72,37 69,17 64,18 77,87 
FrMJFMs 99,45 81,01 78,24 71,58 67,38 61,39 76,50 
MFrLFMs 99,87 83,93 80,16 75,45 70,3 55,31 77,50 

FrMRHFMs 99,81 80,89 76,12 70,46 64,26 52,27 73,96 
MZMs 98,77 75,67 70,9 65,24 62,04 54,05 71,11 

 

        

       
 

        

        

        

Fig.16: The selected images from database: COIL_100 Nene S. A. et al. (1996) 

 

We selected from the data illustrated in Figs.15 
and 16 random examples of images to test our 
technique in a way to make several transformations, 
rotation, translation, scaling and mixed, in order to 
generate the objects from the COIL_100 Nene et al. 
(1996) database and the objects from the ETHZ_53Obj 
VIS @ ETH Zurich (2003) database, so we created two 
additional databases by adding different speckle noise 
densities, to see the performance of the proposed 
MMFMs moments about the accuracy of the 
classification. 

Tables 1 and 2 present the comparison results in 
terms of object recognition accuracy for the two bases 
between two proposed techniques MMFMs-KNN, 
MMFMs-SVM and the existing methods MRSCMs, 
MZMs, FrMJFMs, MFrLFMs and FrMRHFMs. In 
addition, Fig.17 shows that our proposed models 
MMFMs-KNN and MMFMs-SVM provides high 
accuracy. 

We can conclude that the results obtained for our 
proposed MMFMs moments are better than test 
moments MRSCMs, MZMs, FrMJFMs, MFrLFMs and 
FrMRHFMs of two databases. In terms of recognition 
rate, we conclude that the proposed MMFMs moments 
are very useful for pattern recognition and image 
classification. 

Computation time 
In this part, we must evaluate the computational 

efficiency of the proposed moment MMFMs compared 
to existing methods MRSCMs, MZMs, FrMJFMs, 
MFrLFMs and FrMRHFMs. Experiments are carried 
out to quantitatively evaluate the computation time of 
the proposed MMFMs. In a first step, we will evaluate 
the computational executions of the proposed MMFMs 
moments. These experiments are performed using two 
well-known datasets of color images, COIL_100 and 
ETHZ_53Obj, respectively. These datasets have 
different sizes and numbers of color images. A few 
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images are randomly selected from these datasets and 
displayed in Figs.15 and 16. The elapsed CPU times in 
seconds for the moment computation of these color 
images is shown in Fig.18, using the proposed method 
MMFMs and recent existing methods, for an increasing 

order of the maximum moments from 0 to 60 with a 
fixed increment of 10. From the results presented in 
Fig.18, it can be observed that the computation time 
taken by the proposed method is much faster than the 
methods existing. 

Table 2: Object recognition accuracy (%) on COIL_100 database, by using existing methods. 

Moment invariants Noise-free Speckle noise Average 0.2% 0.4% 0.6% 0.8% 1% 
MMFMs-KNN 99,83 96,13 94,12 91,60 88,13 84,27 92,34 
MMFMs-SVM 99,92 97,23 95,56 93,04 91,57 88,71 94,33 

MRSCMs 97,70 84,70 82,24 74,72 70,25 61,39 78,5 
FrMJFMs 98,45 85,11 82,68 75,16 71,69 65,83 79,82 
MFrLFMs 98,43 82,91 85,14 77,62 72,15 66,29 80,42 

FrMRHFMs 97,81 86,59 84,04 79,52 76,05 70,19 82,36 
MZMs 93,77 80,37 78,23 71,71 68,24 62,38 75,78 

 

 
(a) 

 
(b) 

Fig.17. Object recognition accuracy (%) using MMFMs-SVM and MMFMs-KNN: (a) dataset ETHZ_53Obj (b) 
dataset COIL_100. 

 
        (a) 

 
         (b) 

Fig.18. The average CPU times for computing the proposed MMFMs and the existing methods :(a) dataset 
ETHZ_53Obj (b) dataset COIL_100. 
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In the second step, we take an increasing order 
from 0 to 60 to generate the moment invariants and we 
record the elapsed CPU times, then we repeat the 
process 10 times to calculate the average CPU times. 
The results obtained clearly show that the proposed 
MMFMs are very fast and much faster than recent 
existing methods. 

DISCUSSION 
In the first experiment, we demonstrated the 

orthogonality of the Mountain functions that we used to 
calculate the proposed moments MMFMs. In the 
second experiment, we used these moments to test the 
reconstruction, the geometrical transformation, noise 
and classification of images. The results presented 
show the performance of MMFMs in the ability to 
represent and therefore correctly reconstruct color 
images. In fact, according to the results obtained, 
MMFMs produced interesting results during the 
recovery of color images. The information extracted by 
MMFMs represents multidimensional image data. In 
addition, the orthogonality property of the Mountain 
functions results in no redundancy between the values 
of their features, with the value of each feature 
representing a unique and independent character of an 
image. The MMFMs features provide a total view of 
the image because they treat the image as a whole. The 
effect of noise on the magnitude of the moments 
becomes negligible, as the moments are calculated 
following a summation process. Furthermore, moments 
are translation, rotation and scale invariant, i.e. if the 
query image is in a rotated or scaled version of the 
images in the dataset, the characteristics of the 
MMFMs can efficiently match and extract the most 
relevant images with respect to the query. 

CONCLUSION 
In this paper, we have proposed a new set of 

orthogonal moments multichannel orthogonal 
Mountain Fourier moments (MMFMs), based on new 
set of orthogonal functions called orthogonal Mountain 
functions for the color images. The experience shows 
that the images reconstructed by the orthogonal 
moments MMFMs are very similar to the original 
image when the max order approaches 63 and 
visualization could easily give an opinion on the degree 
of resemblance between the original and reconstructed 
images. We made comparative analysis and tests 
between proposed invariant moments and the test 
moments about invariances of geometric transfor-
mations, the results obtained show the performance of 
the proposed moments MMFMs on object recognition 
using for classification. The two sets of image data: the 

COIL_100 database Nene S. A. et al. (1996) and the 
ETHZ_53Obj database VIS @ ETH Zurich (2003) 
were used in the extensive experiments under normal 
image conditions and under effects of rotation, 
translation, scale and noise. As a general conclusion, 
the analysis carried out puts the proposed descriptors in 
favour with respect to other existing descriptors for the 
problems of object recognition and image classification 
under normal image conditions and under geometric 
transformations and noise conditions. According to the 
experimental analysis and the proposed theoretical 
approach, we conclude that proposed MMFMs 
moments are more advantageous and perform better in 
image recognition. The quality and the facility of the 
calculation of orthogonal invariant moments MMFMs 
show its performance in front of other orthogonal 
moments of test. And in future works, we will use these 
results to classify 3D images. We will also add 
parameters to our function that will allow us to detect 
the types of plant diseases, by the use of one of the 
optimization algorithms. 
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APPENDIX 
Appendix 1 

If 𝑎𝑎 = 𝑚𝑚 then 
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Appendix 2 

From Eqs.6 and 11, we can get that 𝐷𝐷𝑛𝑛𝑚𝑚 are orthogonal 
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