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ABSTRACT

Siamese network-based visual tracking algorithms have achieved excellent performance in recent years, but
challenges such as fast target motion, shape and scale variations have made the tracking extremely difficult.
The regression of anchor-free tracking has low computational complexity, strong real-time performance, and is
suitable for visual tracking. Based on the anchor-free siamese tracking framework, this paper firstly introduces
balance factors and modulation coefficients into the cross-entropy loss function to solve the classification
inaccuracy caused by the imbalance between positive and negative samples as well as the imbalance between
hard and easy samples during the training process, so that the model focuses more on the positive samples and
the hard samples that make the major contribution to the training. Secondly, the intersection over union (IoU)
loss function of the regression branch is improved, not only focusing on the IoU between the predicted box
and the ground truth box, but also considering the aspect ratios of the two boxes and the minimum bounding
box area that accommodate the two, which guides the generation of more accurate regression offsets. The
overall loss of classification and regression is iteratively minimized and improves the accuracy and robustness
of visual tracking. Experiments on four public datasets, OTB2015, VOT2016, UAV123 and GOT-10k, show
that the proposed algorithm achieves the state-of-the-art performance.
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INTRODUCTION

Visual tracking is a fundamental and important
task in computer vision, and has been widely used
in fields such as intelligent monitoring, human-
computer interaction, and autonomous driving in
recent years Cui et al. (2020). Its idea is to
establish a model based on video information from
sequence images, continuously infer the state of
the target based on spatiotemporal correlation, and
determine the parameters of the interested target at
each frame. However, the appearance, posture, scale,
and other variations of the target during its motion.
Therefore, achieving robust visual tracking in complex
environments still faces serious challenges Li et al
(2021).

In recent years, visual tracking methods based on
siamese networks have attracted widespread attention
due to their accuracy and robustness in tracking
effects. The key lies in transforming tracking tasks
into similarity matching. This type of method consists
of two branches: template branch and search branch.
It extracts deep convolution features for similarity
calculation without using features for online modeling.
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Therefore, it is also known as end-to-end tracking
methods. The SiamFC Bertinetto er al. (2016)
(Siamese Fully-Convolutional) network was the first
to apply this idea to visual tracking, establishing the
overall framework for tracking tasks. SiamRPN Li
et al. (2018) (Siamese Region Proposal Network)
introduces the RPN (Region Proposal Network)
structure Ren et al. (2017), which improves the cross-
correlation operation into two branches: classification
and regression. The former is used for the classification
of foreground and background, and the latter is used
for the regression of bounding boxes, improving
the accuracy and robustness of tracking. SiamDW
Zhang and Peng (2019) (Deeper and Wider Siamese
Networks) and SiamRPN++ Li et al. (2019) remove
the impact of padding and successfully apply deeper
backbone networks to siamese tracking. ResNet He
et al. (2016) replaces AlexNet Krizhevsky et al
(2017), greatly improving the performance of the
tracking algorithm. SiamRD Cheng et al (2021)
introduces two modules, relationship detection and
module optimization, into siamese tracking. The
relationship detection section adopts a comparison
training strategy to match and learn the same
target, and also learns how to distinguish different



JUEYU ZHU et al.: Sample-balanced and loU-guided anchor-free visual tracking

targets, improving the discrimination ability of the
algorithm. The module optimization section combines
classification and regression branches to alleviate the
imbalance between the two branches.

In the two branches of the siamese tracking
network described above, the classification branch
uses a cross-entropy (CE) loss function. The original
cross-entropy loss function is classified based on
the probability that the samples are calculated as
positive samples, ignoring the imbalanced distribution
of positive and negative samples as well as the
imbalance between hard and easy samples during the
training process, which greatly reduces the robustness
of the tracking model. In the regression branch, the
intersection over union (IoU) loss function is usually
used. However, using the intersection over union of
the prediction box and the ground truth box area to
predict the regression situation of the target cannot
reflect the real situation in the regression process.
Based on this, this paper proposed a sample-balanced
and IoU-guided anchor-free visual tracking algorithm.
Firstly, in the classification branch, the cross-entropy
loss function is improved, and balance factors and
modulation coefficients are introduced to reduce the
weight of negative and easy samples, making the
model pay more attention to positive and hard
samples in training, thereby improving the tracking
accuracy and robustness of the model. Secondly, in the
regression branch, a new intersection over union loss
function is proposed, using the minimum bounding
box area between the prediction box and the ground
truth box, as well as the difference in the aspect ratios
of the two boxes, as penalty terms, to make the distance
between the prediction box and the ground truth box
closer, thereby improving the tracking accuracy of
the model. Finally, the proposed algorithm is tested
and compared on four public datasets: OTB2015,
VOT2016, UAV123, and GOT-10k, and it reaches
the state-of-the-art performance, achieving a real-time
tracking speed of 54.40 FPS.

SIAMESE TRACKING ALGORITHM

TRACKING
ANCHOR

SiamFC transforms the tracking problem into a
similarity matching problem, and performs cross-
correlation operations on the features extracted from
two siamese branches to determine the location of the
target. SiamRPN introduces the RPN module, which
sets the anchor ratio of 5 scales, namely 1/3, 1/2, 1, 2,
and 3. Then, K boxes are generated at each location

ALGORITHM WITH
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to predict the location and size of the target. SiamRPN
uses classification branches to extract the features of
the initial frame template, and regression branches are
used to extract the features of the search area for the
current frame. The features of the two branches are
subjected to depthwise cross-correlation operations to
predict the classification and regression offset of the
target. However, the use of multi-scale anchor will
increase computing costs, especially the burden of
memory on GPU.

In order to better train the model, DaSiamRPN
Zheng et al. (2018) (Distractor-aware Siamese Region
Proposal Network) classifies samples, defines positive
and negative samples by determining whether the
overlap between the sample and the ground truth
box is greater than a preset threshold, and defines
negative samples that are easily removed as easy
negative samples, which have a small impact on
model training. This corresponds to hard negative
samples, which are difficult to remove, but have an
important role in improving the robustness of models.
SiamRPN++ Li et al. (2019) introduces three RPNs to
perform classification and regression on the feature of
different layers, and combines the results of multiple
classification and regression to determine the location
and shape of the target in the current frame.

ANCHOR-FREE TRACKING ALGORITHM

In recent years, anchor-free visual tracking
methods have become increasingly popular. These
methods do not use anchor and can directly obtain
the location of the target. The idea is to generate a
possible location of the target with each pixel as the
center, without using an anchor during the tracking
process, which can greatly reduce the parameters and
computational complexity. Typical methods include
SiamCAR Guo et al. (2020), SiamBAN Chen et al.
(2020), and SiamFC++ Xu et al. (2020). Based on
the original siamese tracking framework, using the
RPN module to perform depthwise cross-correlation
operations on extracted features for classification and
regression is a new trend in visual tracking tasks,
including algorithms based on key point detection,
such as CornerNet Law and Deng (2018) detecting
the upper left and lower right corners of candidate
boxes as key points to determine the location of the
target. After performing classification and regression,
the SiamCAR method adds the distance between the
center points of the two boxes as a metric to the loss
function, which can more accurately determine the
distance between the two objects through the center
metric, greatly improving the accuracy and robustness
of tracking.
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Fig. 1. Schematic diagram of the sample-balanced and loU guided anchor-free visual tracking algorithm.

LOSS FUNCTION
ALGORITHM

In visual tracking, the loss of a model is mainly
composed of classification loss and regression loss Li
et al. (2018). Then, a more robust model is trained
through iterative optimization of the loss. The lower
the loss, the higher the tracking accuracy, but at
the same time, there will be overfitting, manifested
as low loss on the training set and good results.
However, when applied to the test set, the effect is not
satisfactory.

IN  TRACKING

In the classification process, the loss used is 0-1
loss, indicating that the sample is a positive or negative
sample, that is, the weight of simple and complex
interferences is the same Zheng et al. (2018), which
leads to discontinuous loss functions and increased
difficulty in optimization. Currently, the widely used
cross-entropy loss function Giannakas et al. (2021)
calculates the probability of a positive sample and
performs a logarithmic operation. However, these
efforts did not take into account the imbalanced
distribution of positive and negative samples, as well
as the fact that the vast majority of samples are easy
samples.

In the regression process, the loss function is
mainly caused by the error between the regression
value and the ground truth, and is initially calculated
by L; loss and L, loss Oprea et al. (2020). This
calculation method is relatively simple, and it is not
possible to judge whether the regression is accurate in
the process of tracking the target. The existing work
Rezatofighi et al. (2019) calculates regression loss by
calculating the intersection over union between the
prediction box and the ground truth box. However, this
method only considers the degree of overlap between
the two boxes. When there is no overlap or there is
a significant difference in the shape of the two boxes,
this metric loses its original effect.
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SAMPLE-BALANCED AND IOU-
GUIDED ANCHOR-FREE VISUAL
TRACKING ALGORITHM

The visual tracking algorithm is used to estimate
the state of the target in subsequent video sequences
by learning the target feature of the initial frame. In
recent years, the mainstream target tracking method
based on siamese networks is to generate multiple
candidate boxes at each pixel point by preset anchors,
and calculate the similarity to the target one by one
to improve the recall of the network. However, setting
anchor requires a large amount of prior knowledge,
which can bring a heavy computational burden. During
model training, the dataset is mainly composed of
negative samples with a small proportion of positive
samples, which makes it difficult to learn effective
information about the target and is not conducive to
continuous tracking. In the regression process, the loss
function is only calculated based on the intersection
over union of the prediction box and the ground truth
box area, which cannot truly and comprehensively
reflect the regression state of the prediction box.

In order to effectively alleviate the above-
mentioned problems, this paper proposed a sample-
balanced and IoU guided visual tracking algorithm
based on the efficient calculation of the anchor-free
tracking framework. The algorithm schematic diagram
is shown in Fig. 1. The tracking model consists
of a feature extraction section and a classification
and regression section. The backbone network of the
feature extraction section is ResNet-50. The upper
and lower branches share weights to extract the
target template features Z and the current frame
search area features X, respectively. The depthwise
cross-correlation feature is obtained by performing
correlation operations between the two, and is used for
classification and regression. The focal cross-entropy
(FCE) loss function Lin et al. (2020) is used in the
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classification branch, which can effectively utilize the
role of positive and hard samples, making the trained
tracking model more robust. In the regression branch,
a loss function called the square ratio intersection
over union (SRIoU) was first proposed to measure
the distance between the prediction box and the
ground truth box, as well as the difference in
shape. Then, the difference in the shape of the two
boxes and the minimum area containing both were
added to the regression loss function as a penalty
term. Therefore, classification loss and regression loss
together constitute the final loss. During training, the
minimum loss is iteratively optimized to obtain the
precise location and shape of the target.

FEATURE EXTRACTION

In the proposed method, the ResNet-50 network
is used for feature extraction because of its deeper
convolution layers and stronger feature extraction
capabilities. Shallow convolution features usually
contain more texture information, which has a good
guiding role for target localization. Deep convolutional
features contain more semantic information, which can
well cope with the interference of similar objects on
the target. We have introduced the features of layers 3,
4, and 5 in a network, and conducted cross-correlation
operations on these features channel by channel to
obtain different responses from different channels.

CLASSIFICATION LOSS FUNCTION
CONSTRUCTION

Single target tracking algorithm regards visual
tracking as a binary classification problem, and its
purpose is to find the target in the surrounding
background, so the accuracy of tracking depends
largely on the accuracy of classification. We use the
extracted features to classify and judge whether the
current object is the target. The original cross-entropy
function is defined as follows:

ify=1)

else’

x = —log(p)

CE@»OZ{y:_mgl—m

(1

where p is the probability that the sample is predicted
as a positive sample. The value of label y is 1 and -1,
where 1 means positive sample and -1 means negative
sample.

The original cross-entropy loss function thinks that
all samples have the same importance and contribution
to training, ignoring the imbalance between positive
and negative samples as well as the imbalance between
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hard and easy samples in the training process. Zheng
et al. Zheng et al. (2018) explained that most of the
samples in the training process are negative samples,
and positive samples only account for a small part.
In addition, most samples are relatively easy, and the
proportion of hard samples is relatively small.

In order to solve the problem of imbalance between
positive and negative samples, a balance factor is
introduced into the cross-entropy loss function , and
different weights are given to positive and negative
samples. The loss function after addition is shown in
Equation (2).

if(y=1)

)
else

—log(p) x o

“log(1— p) x (1) @

CE(p,y) = {

where o is the balance factor, and the value is set to the
proportion of the positive sample to the total sample.
The proportion of cross-entropy loss for positive
samples is o, and the proportion of loss for negative
samples is 1 — a. In this way, the loss of negative
samples will increase, and the model will focus more
on learning the features of positive samples.

In addition to the imbalance between positive and
negative samples, there is also an imbalance between
hard and easy samples during the training process.
Easy samples account for the majority of the total
samples, but hard samples contribute to the training
of network models. Hard samples are often extreme
cases, and learning the features of these samples
can greatly improve the robustness of the model.
Therefore, a modulation coefficient is added for the
imbalance between hard and easy samples, as shown
in Equation (3).

—log(p) x (1=p)" if(y=1)

3
—log(1—p) x p else’ ©)

Cﬂnw={

the modulation coefficient is (1 — p)? for positive
samples and p? for negative samples. The modulation
coefficient also performs different processing for
positive and negative samples. Therefore, the higher
the predicted probability p of the sample, the easier
the sample, and the lower the loss of the sample with
the addition of a balance factor. The corresponding loss
ratio of hard samples will increase, and the model will
also pay more attention to hard samples.

By improving the problem of imbalance between
positive and negative samples as well as imbalance
between hard and easy samples, a new focal cross-
entropy (FCE) loss function Lgcg is formed, as shown
in Equation (4).
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if(y=1)
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Lrce = FCE(p,y) = {

The new cross-entropy loss function not only
classifies more accurately, but also considers
more hard samples, thereby greatly improving the
robustness of the model.

SRIOU REGRESSION LOSS FUNCTION
CONSTRUCTION

Classification is used to determine whether the
current object is a target, while regression is used to
determine the offset between the predicted box and the
ground truth box. The anchor-free tracking algorithm
will generate a set of offsets for each pixel. As shown
in Fig. 2, the pixel will obtain offsets L, T, R, and B in
the left, top, right, and bottom directions respectively,
to represent the predicted box B),. The ground truth box
B, is also represented by a set of offsets LT RTTT,
and BT. The area of the predicted box S4 and the
ground truth box Sp can be calculated from these four
offsets, as shown in Equation (5) and (6).

Sq = (L+R) x (T +B), (5)

Sg= (LT +RT) x (1T +B"). (6)

The intersection over union loss function is
typically used to represent the degree of deviation
between the predicted box and ground truth box,
and its expression is shown in Equation (7). It only
considers the intersection over union of the predicted
box and the ground truth box areas, and does not
accurately reflect the predicted box shape and distance
from the ground truth box. Such metric are neither
comprehensive nor effective in reflecting the true state
of regression.

. SaNSp
- S4USE’

(7
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Fig. 2. Schematic diagram of the intersection over
union between the predicted box (By) and the ground
truth box (Byg).

In order to make the shapes of the predicted box
and the ground truth box closer, the aspect ratio penalty
term 3 x R is added on the basis of the intersection over
union loss, as shown in Equation (8) and Equation (9)
respectively.

4 wt W
R= E(aretanﬁ - arctanﬁ)z, (8)
R
== 9
P 1—IoU+R’ ©)

where R is a metric used to compare the aspect ratio
of the predicted box and the ground truth box, which
can reflect the shape difference between them. The
greater the shape difference, the greater the value of
the penalty term and the greater the corresponding
loss. W,H and W7 H” are the width and height of the
predicted box and the ground truth box, respectively. 8
it is the weight of the aspect ratio, which also contains
the IoU, which can well reflect the shape between the
predicted box and the ground truth box.

Furthermore, we effectively measure the distance
between the predicted box and the ground truth box.
The predicted box moves to the location of the ground
truth box by adding the area of the minimum bounding
box S.. The added minimum bounding box is the
smallest rectangular area that encloses the predicted
box and the ground truth box, and its expression is
shown in Equation (10).

S, = [max(L,L") + max(R,R")] x [max(T,T") + max(B,BT)].  (10)

Add the area of the minimum bounding box to
the intersection over union loss function, as shown in
Equation (11).
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Se— (SA U SB)

SloU = IoU — (11)

c

The aspect ratio of the predicted box and the
ground truth box, as well as the area of the minimum
bounding box, form a new SRIoU, where S represents
the minimum area that can contain the predicted box
and the ground truth box, and R represents the aspect
ratio of the predicted box and the ground truth box, as
shown in Equation ((12).

Se — (SA USB)

SRIoU = IoU — B x R —
Se

(12)

The loss construction of the corresponding
regression part is completed, as shown in Equation
(13).

S.— (SA USB)

Lsrioy = 1 —IoU 4+ B x R+ = (13)

c

By including two penalty items, the shape of
the predicted box is closer to the ground truth box,
allowing the predicted box to more accurately reflect
the target’s location and shape information. Finally,
the loss of the proposed tracking model consists of
the improved classification loss and regression loss, as
shown in Equation (14).

Lan = Lrce + Lsriou - (14)

EXPERIMENTAL
AND ANALYSIS

EVALUATION

In order to verify the effectiveness of the
innovative points in the proposed visual tracking
algorithm, rigorous ablation experiments were
conducted on two datasets, OTB2015 and VOT2016.
The final algorithm is compared with five algorithms
on OTB2015, VOT2016, UAVI23 and GOT-10k
respectively, which shows that the proposed algorithm
is progressive. The proposed algorithm is implemented
using Python. The deployment platform is Ubuntu
16.0, with 32G of memory, and a GPU of RTX2080Ti.
The training set includes ImageNet Russakovsky et al.
(2015) (VID, DET), YouTube-BB Real er al. (2015),
and MS COCO Lin et al. (2014) datasets. During
training and testing, 127 x 127 images are used as
templates, and 255 x 255 images are used as search
areas. The training batch size is set to 28, optimized

.2 Sample-balanced and loU-guided anchor-free visual tracking
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using the stochastic gradient descent (SGD) method,
and the initial learning rate is set to 0.005. v is set to
2. In the last 10 batches, the last three layers of the
tracking network are trained in combination with the
backbone network loading dataset.

ABLATION EXPERIMENT

To verify the effectiveness of the improvement of
the cross-entropy loss function and the intersection
over union loss function, ablation experiments were
conducted on OTB2015 and VOT2016, respectively.
The experimental results are shown in Table 1. FCE
is a focal cross-entropy loss function that considers
positive and negative samples as well as hard and
easy samples. After adding FCE, the improvement
in robustness and EAO compared to the baseline is
more obvious. SRIoU is a loss function that takes
into account the aspect ratio of predicted box and
the ground truth box, as well as the intersection over
union that surrounds the minimum area of both. It has
increased in precision and success rate, especially in
terms of EAO. The proposed algorithm is based on the
benchmark algorithm, introducing FCE and SRIoU,
achieving state-of-the-art performance of precision
and success rate.

PERFORMANCE COMPARISON
EXPERIMENTS

OTB2015 Wu et al. (2015) is a widely used
test dataset that contains 100 image sequences with
varying challenges, including fast motion, background
clutter, scale variation, motion blur, occlusion,
rotation, and deformation. During testing, the various
tracking algorithms are evaluated using success rate
and precision in the one pass evaluation (OPE). The
proposed algorithm is tested with DaSiamRPN Zheng
et al. (2018), SiamRPN Li et al. (2018), SiamFC
Bertinetto et al. (2016), ECO-HC Danelljan et al.
(2017), and BACF Kiani et al. (2017) in the OTB2015
dataset, and the results of its success rate and precision
are shown in Fig. 3.

OTB2015-Precision plots of OPE OTB2015-Success plots of OPE

Precision
o o o

Success rate

0 15 20 2 3 3% 40 03 04 05 06 o7
Location error threshold Overlap threshold

(a) Average tracking precision (b) Average tracking success rate

Fig. 3. Evaluation results of different trackers at
OTB2015.
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Table 1. Ablation experiments.

. . 0TB2015 vOT2016
Evaluating metrics
Precision Success Accuracy Robustness EAO
Baseline 0.676 0.885 0.646 0.186 0.443
Baseline + FCE 0.680 0.891 0.635 0.158 0.470
Baseline + SRIoU 0.684 0.893 0.629 0.168 0.468
Baseline + FCE + SRIoU 0.689 0.905 0.623 0.149 0.477
Table 2. Evaluation results of different tracking algorithms on VOT2016.
Tracker ROAM SPM SiamFC SiamRPN DaSiamRPN OURS
Accuracy 0.599 0.620 0.530 0.560 0.610 0.623
Robustness 0.174 0.210 0.460 - 0.220 0.149
EAO 0.441 0.434 0.235 0.344 0.411 0.477
Table 3. Evaluation results of different trackers on GOT-10k.
Tracker SiamCAR SiamRPN++ SPM SiamFC ECO-HC OURS
AO 0.569 0.517 0.513 0.374 0.286 0.565
SRy 5 0.670 0.616 0.593 0.404 0.276 0.677
SRy.75 0.415 0.325 0.359 0.144 0.096 0.420
FPS 52.27 49.83 72.30 25.81 44.55 54.40

Fig. 3 shows that the proposed algorithm achieved
good results in both precision and success rate, with
values of 0.906 and 0.689, respectively. DaSiamRPN
uses data augmentation to alleviate the problem of
sample imbalance to some extent, but there is still a
significant difference between the proposed algorithm
and the overall experimental effect.

Furthermore, the proposed tracking algorithm
improves the classification function and does not
require any additional data augmentation. Fig. 4
and Fig. 5 compare the precision and success rate
of different tracking algorithms in the subdivision
properties of the OTB2015 dataset. We can see
three challenges in fast motion, scale variation, and
deformation. The proposed algorithm produces good
results, demonstrating that it can adapt to fast motion,
scale variation, and deformation of tracking targets.

VOT2016 Hadfield et al. (2016) is a popular
evaluation dataset in the field of single target tracking
in recent years, containing 60 image sequences with
varying challenge factors and more accurate labeling
for target location and size. Accuracy, robustness,
and expected average overlap (EAO) are the general
dataset evaluation metrics used in the VOT2016
evaluation system Yang et al. (2020). The proposed
algorithm is compared to popular tracking methods
in recent years, with experimental results shown in
Table 2. The proposed tracking algorithm not only
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has the highest accuracy and EAO, but also the best
robustness, demonstrating that the proposed algorithm
is robust and can handle a variety of challenges Wang
et al. (2019).

UAV123 Mueller et al. (2016) is an aerial
photography test dataset that contains 123 image
sequences obtained from low-altitude aerial
photography, and the average length of each sequence
is 915 frames, and all the sequences are marked
with rectangular boxes, mainly including challenges
such as fast motion speed, large scale variation, long
video, and the target beyond the field of vision, which
brings great challenges to the tracking task, so the
difficulty of this dataset is high. UAV123 uses the
same evaluation metrics as the OTB2015 dataset, and
both use precision and success rate to measure the
performance of the tracking algorithm. In this dataset,
the proposed algorithm is compared to SiamCAR
Guo et al. (2020), DaSiamRPN Zheng et al. (2018),
SiamRPN Li et al. (2018), SRDCF Danelljan et al.
(2015), and BACF Kiani et al. (2017), and the results
are shown in Fig. 6. The proposed algorithm has some
advantages and achieved the best precision, but its
success rate is 0.3% lower than SiamCAR.

The China Academy of Sciences released GOT-
10k Huang et al. (2021), a general dataset used for
field target tracking. It has over 10,000 videos in
over 560 classes, all of which are moving objects
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Fig. 4. Precision of different tracking algorithms on OTB2015 single attributes.
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Fig. 5. Success rate of different tracking algorithms on OTB2015 single attributes.

in the real world. This dataset evaluation metrics
are average overlap (AO) and success rate (SR). AO
denotes the average degree of overlap between the
predicted box and the ground truth box, whereas
SR denotes the proportion of successfully tracked
frames. SRy s and SRg7s, for example, represent
the proportion of successfully tracked frames whose
overlapping rate exceeds 0.5 and 0.75, respectively.
FPS is used to measure the running speed of tracking
algorithms. Table 3 shows that the proposed algorithm
achieves 0.565 on AO, which is 0.4% lower than
SiamCAR, but ranks higher on SR. Furthermore, the
proposed tracking algorithm has a speed of 54.40 FPS,
indicating that the target can be tracked in real time.
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Fig. 6. Evaluation results of different trackers
UAVI23.
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CONCLUSION

In this paper, the imbalance of positive and
negative samples, as well as the imbalance of hard
and easy samples, are thoroughly considered in the
visual tracking training process, and a weight factor
is introduced into the anchor-free tracking frame
to reduce the influence of negative samples. The
anchor-free tracking regression method requires less
computation and has a higher real-time rate, as well
as better location precision. Through the modulation
coefficient, the model pays more attention to hard
samples, which improves the model’s robustness.
To solve the problem of a single metric and only
considering the intersection over union area of the
predicted box and the ground truth box in the
regression process, the shape difference between the
predicted box and the ground truth box, as well
as the minimum area surrounding the range of the
predicted box and the ground truth box, are added
to the regression loss function as penalty terms to
train the tracking model to improve the tracking
effect. The proposed algorithm was fully tested on
four datasets, OTB2015, VOT2016, UAV123, and
GOT-10k, reaching a state-of-the-art performance and
running at 54.40 FPS. As a result, this can accurately
predict the location and size of the target in the current
frame in real time.
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