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ABSTRACT 

Hyperspectral image (HSI) classification is an important topic in remote sensing. In this paper, we improve 
the principal component analysis (PCA)-based edge preserving features (EPFs) for HSI classification. We 
select to use minimum noise fraction (MNF) instead of PCA to reduce the dimensionality of the hyperspec-
tral data cube to be classified. We keep all the rest steps from the PCA-based EPFs for HSI classification. 
Since MNF can preserve fine features of a HSI data cube better than PCA, our new method can outperform 
PCA-EPFs for HSI classification significantly. Experimental results show that our new method performs 
better than the PCA-based EPFs under such noisy environment as Gaussian white noise and shot noise. In 
addition, our MNF+EPFs outperform the PCA+EPFs even when no noise is added to the HSI data cubes 
for most testing cases, which is very desirable in remote sensing. 

Keywords: Edge preserving features (EPFs), hyperspectral image (HSI) classification, minimum noise 
fraction (MNF), principal component analysis (PCA), support vector machine (SVM). 

INTRODUCTION  
Hyperspectral imaging (HSI) generates vast amount 

of spectral and spatial information, which allows for a 
better characterization and exploitation of the Earth sur-
face by combining the rich spectral and spatial infor-
mation. Nevertheless, HSI introduces major challenges 
for supervised classification methods due to the high di-
mensionality of the data and the limited availability of 
training samples. These problems along with the high 
intraclass variability (and interclass similarity) may 
compromise the effectiveness of HSI classifiers.  

We briefly review several published methods for 
HSI classification in recent years here. Liu et al. (2020) 
developed a novel approach for dimensionality reduc-
tion of hyperspectral images based on improved spatial-
spectral weight manifold embedding and classifications. 
Zhou et al. (2019) analyzed hyperspectral image classi-
fication by using spectral-spatial long- and short-term 
memory (LSTM). Chen et al. (2013) studied hyperspec-
tral image classification by means of kernel sparse rep-
resentation. Melgani and Bruzzone (2004) investigated 
the classification of hyperspectral remote sensing im-
ages with support vector machines. Fauvel et al. (2012) 
worked on a spatial-spectral kernel-based approach for 
the classification of remote-sensing images. Camps-
Valls and Bruzzone (2005) investigated kernel-based 

methods for HSI classification. Li et al. (2013) presented 
a generalized composite kernel framework for HSI clas-
sification. Chen et al. (2011) analyzed HSI classification 
by using dictionary-based sparse representation. Li et al. 
(2013) studied on spectral-spatial classification of hy-
perspectral data using loopy belief propagation and ac-
tive learning. Kang et al. (2014) worked on spectral-spa-
tial HSI classification with edge-preserving filtering. 
Cheng et al. (2016) analyzed semi-supervised HSI clas-
sification via discriminant analysis and robust regres-
sion. Chen et al. (2014) investigated deep learning-
based classification of hyperspectral data with good re-
sults. Kang et al. (2017) proposed a novel principal com-
ponent analysis (PCA)-based edge preserving features 
(PCA-EPFs) method for HSI classification. First, the 
standard EPFs are constructed by applying edge-pre-
serving filters with different parameter settings to the 
considered image, and the resulting EPFs are stacked to-
gether. Then, the spectral dimension of the stacked EPFs 
is reduced by the PCA, which not only can represent the 
EPFs in the mean square sense but also highlight the sep-
arability of pixels in the EPFs. Finally, the resulting 
PCA-EPFs are classified by a support vector machine 
(SVM) classifier. 

In this paper, we improve the PCA-based edge pre-
serving features (EPF) method for HSI classification. 
We select minimum noise fraction (MNF) instead of 
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PCA to reduce the dimensionality of the input data cube. 
We then choose the MNF to represent the stacked EPFs 
and keep all the rest steps as same as the PCA-EPFs for 
HSI classification. Because MNF retains more fine fea-
tures of a HSI data cube than PCA, our new method can 
perform better than PCA-EPFs for HSI classification. 
Experiments demonstrate that our new method performs 
better than PCA-EPFs for both Gaussian white noise 
(GWN) and shot noise significantly. More importantly, 
our MNF+EPFs outperform the PCA+EPFs even when 
no noise is added to the HSI data cubes for most testing 
cases, which is very desirable in remote sensing. 

The organization of this paper is as follows. Section 
II proposes a novel method for HSI classification by us-
ing MNF-based EPFs. Section III performs experiments 
to demonstrate the effectiveness of our proposed 
method. Finally, Section IV draws the conclusions of the 
paper and proposes future research topics. 

THE PROPOSED METHOD 
In this section, we briefly review the MNF, the 

PCA, the SVMs, and the edge-preserving features 
(EPF). We provide their definitions and their basic prop-
erties here first, then introduce our method proposed in 
this paper.  

The MNF (Green et al. 1988) transform is a linear 
transform that is made from two principal components 
(PCs) analysis rotations. The first rotation finds the PCs 
of the noise covariance matrix to decorrelate and rescale 
the noise in the data (a process known as noise whiten-
ing), resulting in transformed data in which the noise has 
unit variance and no band-to-band correlations. The sec-
ond rotation picks the PCs derived from the original im-
age data after they have been noise-whitened by the first 
rotation and rescaled by the noise standard deviation. 
Because further spectral processing will take place, the 
inherent dimensionality of the data is determined by ex-
amining the final eigenvalues and the associated images. 
We can divide the data space into two parts: one part 
associated with large eigenvalues and coherent eigen-
images, and a complementary part with near-unity ei-
genvalues and noise-dominated images. Using only the 
coherent portions separates the noise from the data, thus 
improving spectral processing results.  

 PCA (Jolliffe 2002) is a popular technique to re-
duce the dimensionality of a data set, which can increase 
interpretability and reduce information loss. The PCA 
builds new uncorrelated variables that can successively 
maximize variance. Nevertheless, the PCA requires to 
solve an eigenvalue/eigenvector problem. The PCA is 
adaptive since variants of the technique have been de-
veloped, which are suited for various data types and 

structures. The PCA projects every data point onto only 
the first a few principal components to obtain lower-di-
mensional data while preserving as much of the data's 
variation as possible. The first PCs can equivalently be 
defined as a direction that maximizes the variance of the 
projected data. The rest PCs can be taken as a direction 
orthogonal to the first a few PCs that maximize the var-
iance of the projected data.   

SVMs (Cortes and Vapnik 1995) are supervised 
learning method for classification, regression, and out-
lier’s detection. They are the most robust prediction 
methods that are based on the statistical learning frame-
work. For a given set of training samples, the SVM con-
structs a model which assigns new samples to one cate-
gory or the other, making it a robust binary linear clas-
sifier. The SVM is a representation of the samples as 
points in space, mapped so that the samples of the sepa-
rate categories are divided by a clear gap that is as wide 
as possible. New samples are then mapped into that 
same space and predicted to belong to a category based 
on the side of the gap on which they fall. 

The EPF (Kang et al. 2014) is a popular method that 
can smooth away textures and noise and retain signifi-
cant parts of the image content, typically edges, lines, or 
other details which are important for the interpretation 
of the HSI images. Due to this advantage, the EPF re-
ceives reasonable attention from the image processing 
and computer vision research communities for the last 
two decades. Recently, more powerful EPFs have been 
successfully applied to hyperspectral remote sensing ap-
plications. 

Kang et al. (2017) proposed a PCA-EPFs classifi-
cation, which consist of the following steps : 

1. The standard multi-parametric EPFs are constructed 
and stacked together by performing edge preserving 
features on the dimension-reduced (DR) hyperspec-
tral data.  

2. The PCA is used to represent the stacked EPFs in 
the mean square sense and highlight the spectral dif-
ferences.  

3. The SVM is used for the classification of the PCA-
EPFs.  

Experimental results reported in Kang et al. (2017) 
show that, by comparing with the standard EPFs and 
other recently published HSI classification techniques, 
their proposed PCA-EPFs can obtain much higher clas-
sification accuracies on three real hyperspectral data 
sets, especially when the number of training samples is 
limited. 
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In this paper, we improve the PCA-EPFs method for 
HSI classification from two aspects. First, we use MNF 
to reduce the dimensionality of the input HSI data cube 
instead of PCA. Since MNF can preserve more fine fea-
tures of a HSI data cube than PCA, our method can out-
perform PCA-EPFs for HSI classification significantly. 
Second, we choose the MNF to represent the stacked 
EPFs in the mean square sense and highlight the spectral 
differences. Experiments show that our new method is 
better than PCA-EPFs under the noisy environment for 
all three testing HSI data cubes. Furthermore, our 
MNF+EPFs outperform the PCA+EPFs even when no 
noise is added to the HSI data cubes for most testing 
cases, which is very desirable in remote sensing. 

Our proposed MNF-EPFs can be summarized as the 
following steps: 

1. By performing edge preserving features on the DR 
hyperspectral data, the standard multiparametric 
EPFs are constructed and stacked together.  

2. We choose the MNF to represent the stacked EPFs 
in the mean square sense and highlight the spectral 
differences.  

3. We select the SVM for the classification of the 
MNF-EPFs.  

EXPERIMENTAL RESULTS 
We test three HSI data cubes for HSI classification, 

which can be described as follows. 

a. Indian Pines. This data cube was acquired by 
the airborne visible/infrared imaging spectrometer 
(AVIRIS) sensor over the Indian Pine test site in north-
western Indiana, USA, on June 12, 1992. This data cube 
has 145×145 pixels with 200 spectral bands. Fig. 1 de-
picts the false-colour composite image and the ground-
truth map. Table 1 tabulates ground truth classes and the 
pixel number for every class in this data cube. 

 
Fig. 1. Indian Pines data cube. (a) False-color compo-
site image (b) Ground-truth map with 16 classes. 

 

Table 1. Ground truth classes and the total pixel number 
for each class in Indian Pines data cube. 

No Class Names Total Samples 
C1 Alfalfa 46 
C2 Corn notill 1428 
C3 Corn mintill 830 
C4 Corn 237 
C5 Grass pasture 483 
C6 Grass trees 730 
C7 Grass pasture mowed 28 
C8 Hay windrowed 478 
C9 Oats 20 
C10 Soybean notill 972 
C11 Soybean mintill 2455 
C12 Soybean clean 593 
C13 Wheat 205 
C14 Woods 1265 
C15 Buildings Grass Trees Drives 386 
C16 Stone Steel Towers 93 

b. Pavia University. This data cube was acquired 
by the ROSIS sensor during a flight campaign over Pa-
via, northern Italy, on July 8, 2002. This data cube has 
610×340 pixels with 115 spectral bands. Fig. 2 depicts 
a 3-band false-colour composite image and the ground 
truth map. There are 9 classes of land covers, which is 
tabulated in Table 2.

Fig. 2. Pavia University data cube. (a) False-color 
composite image (b) Ground- truth map with 9 classes. 

Table 2. Ground truth classes and the total pixel num-
ber for each class in Pavia University data cube. 

No Class Names Total Samples 
C1 Asphalt  6631 
C2 Meadows 18649 
C3 Gravel 2099 
C4 Trees 3064 
C5 Painted metal sheets 1345 
C6 Bare Soil 5029 
C7 Bitumen 1330 
C8 Self-Blocking Bricks 3682 
C9 Shadows 947 
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c. Salinas. This data cube was collected by the 
AVIRIS sensor over Salinas Valley, California. This 
data cube has 512×217 pixels with 204 spectral bands. 
Fig. 3 demonstrates a false-colour composite image 
and the ground truth map. Table 3 shows ground truth 
classes and the total pixel numbers for all classes. 

 
Fig. 3. Salinas data cube. (a) False-color composite im-
age (b) Ground-truth map with 16 classes. 

Table 3. Ground truth classes and the total pixel num-
ber for each class in Pavia University data cube. 

No Class Names Total Samples 
C1 Broccoli green weeds 1 2009 
C2 Broccoli green weeds 2 3726 
C3 Fallow 1976 
C4 Fallow rough plow 1394 
C5 Fallow smooth 2678 
C6 Stubble 3959 
C7 Celery 3579 
C8 Grapes untrained 11271 
C9 Soil vinyard develop 6203 
C10 Corn senesced green weeds 3278 
C11 Lettuce romaine 4wk 1068 
C12 Lettuce romaine 5wk 1927 
C13 Lettuce romaine 6wk 916 
C14 Lettuce romaine 7wk 1070 
C15 Vinyard untrained 7268 
C16 Vinyard vertical trellis 1807 

We test our proposed method when Gaussian white 
noise (GWN) is added to the noise-free HSI data cubes 
with noise standard deviation  σn=100, 200, 300, 400, 
and 500. A noisy HS data cube can be generated by 
adding GWN to a noise-free data cube. 

B=A+ σn Z,    (1) 

where A is the noise-free data cube, B is the simulated 
noisy data cube, Z obeys normal distribution with zero 
mean and unit variance, and n is the noise standard 
deviation. We also conduct experiments with shot 
noise added to the noise free data cube using the fol-
lowing Matlab command:  

B(i) = imnoise(A(i),'poisson'),   (2) 

where A(i) is the i=th noise-free spectral band image of 
the HSI data cube and B(i) is the noisy spectral band 
image. Shot noise does not have a noise level in the 
generation of the noisy data cube, which is totally dif-
ferent from the GWN.  

The overall classification accuracy and standard 
deviation (STD) are shown in Tables 4-6 for the Indian 
Pines data cube, the Pavia University data cube, and 
the Salinas data cube, respectively. We randomly select 
2%, 4%, 6%, 8%, and 10% of pixels as training data set 
and the rest of pixels as testing data set for each class. 
We run the two methods for five times and take the 
mean and STD in our experiments. The best classifica-
tion results are highlighted in bold font. Our proposed 
method in this paper improves upon PCA-EPFs signif-
icantly in classification accuracies for all noise levels 
in our experiments. Our new method outperforms the 
PCA-EPFs even when no noise is added to the HSI data 
cubes for most testing cases, which is very desirable. 
Fig. 4 shows the original noise-free band (#50) from 
the Indian Pines data set and the noisy bands with dif-
ferent noise levels whereas Fig.5 displays the noise-
free band and that with shot noise added. 

Table 4. Overall classification accuracy (%) and STD for the Indian Pines data set (Overall Accuracy ± STD). The 
best results are highlighted in bold font. 

Method Training 
Sample 

Percentage 

No 
Noise 

GWN (σn) Shot  
Noise 100 200 300 400 500 

 
 

PCA 

2 97.71±1.56 90.12±0.80 85.16±1.28 84.23±1.20 84.01±1.50 82.81±0.63 42.27±1.42 
4 97.70±0.42 93.96±0.91 93.16±0.45 91.06±0.74 91.40±1.16 89.73±0.54 53.42±0.41 
6 98.39±0.34 96.45±0.20 94.58±0.68 94.30±0.56 92.75±0.58 93.07±0.43 59.53±0.84 
8 98.62±0.40 97.43±0.70 95.98±0.50 94.88±0.46 95.49±0.39 94.07±0.44 64.45±0.51 

10 99.02±0.16 97.74±0.34 96.79±0.57 96.13±0.45 96.14±0.23 95.68±0.30 67.15±0.98 
 
 

MNF 

2 93.39±0.97 91.16±1.11 90.62±1.26 90.48±1.55 89.79±1.97 88.32±1.24 72.25±2.79 
4 97.01±0.82 95.78±0.98 95.56±0.71 95.03±0.42 94.45±0.89 95.13±0.34 85.09±2.23 
6 98.21±0.29 97.50±0.16 97.27±0.41 96.68±0.38 96.34±0.55 96.70±0.51 91.46±1.05 
8 98.75±0.46 97.77±0.29 98.13±0.36 97.44±0.49 97.05±0.32 97.05±0.70 93.56±0.58 

10 98.93±0.28 98.55±0.22 98.38±0.18 98.10±0.29 97.85±0.18 98.16±0.18 94.55±0.50 
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Table 5. Overall classification accuracy (%) and STD for the Pavia University data set (Overall Accuracy ± STD). 
The best results are highlighted in bold font. 

Method Training 
Sample 

Percentage 

No 
Noise 

GWN (σn) Shot  
Noise 100 200 300 400 500 

 
 

PCA 

2 98.63±0.43 98.57±0.30 98.59±0.46 98.43±0.23 98.30±0.42 98.31±0.17 88.39±1.73 
4 99.41±0.09 99.48±0.13 99.38±0.18 99.38±0.12 99.21±0.17 99.00±0.16 92.32±1.02 
6 99.64±0.07 99.64±0.09 99.44±0.05 99.45±0.06 99.40±0.14 99.37±0.11 92.92±0.89 
8 99.68±0.09 99.73±0.08 99.70±0.08 99.62±0.06 99.57±0.07 99.56±0.09 94.61±0.54 

10 99.78±0.06 99.70±0.05 99.74±0.06 99.69±0.05 99.69±0.04 99.59±0.09 94.68±0.94 
 
 

MNF 

2 98.86±0.29 98.75±0.27 98.83±0.42 98.82±0.24 98.74±0.13 99.08±0.26 90.90±0.45 
4 99.48±0.17 99.52±0.08 99.42±0.15 99.39±0.07 99.28±0.22 99.39±0.12 94.48±0.59 
6 99.65±0.06 99.69±0.09 99.62±0.05 99.61±0.10 99.64±0.10 99.59±0.04 95.61±0.24 
8 99.71±0.10 99.74±0.04 99.71±0.07 99.76±0.06 99.75±0.08 99.76±0.05 96.48±0.44 

10 99.82±0.05 99.79±0.08 99.78±0.03 99.82±0.02 99.78±0.05 99.77±0.11 97.26±0.17 

Table 6. Overall classification accuracy (%) and STD for the Salinas data set (Overall Accuracy ± STD). The best 
results are highlighted in bold font. 

Method Training 
Sample 

Percentage 

No 
Noise 

GWN (σn) Shot  
Noise 100 200 300 400 500 

 
 

PCA 

2 99.76±0.01 99.76±0.02 99.52±0.14 99.20±0.45 99.20±0.09 98.89±0.24 90.90±0.51 
4 99.84±0.05 99.78±0.04 99.60±0.12 99.66±0.05 99.52±0.20 99.48±0.16 95.47±0.24 
6 99.85±0.04 99.84±0.04 99.83±0.03 99.72±0.04 99.71±0.07 99.64±0.08 96.49±0.45 
8 99.88±0.04 99.88±0.02 99.85±0.06 99.83±0.03 99.77±0.02 99.81±0.03 97.72±0.13 

10 99.92±0.04 99.86±0.02 99.88±0.04 99.85±0.04 99.79±0.03 99.81±0.06 98.15±0.26 
 
 

MNF 

2 99.75±0.05 99.63±0.09 99.60±0.12 99.61±0.07 99.50±0.10 99.35±0.19 96.02±0.50 
4 99.84±0.03 99.79±0.02 99.81±0.05 99.77±0.11 99.78±0.06 99.72±0.07 97.99±0.31 
6 99.88±0.04 99.89±0.03 99.85±0.03 99.83±0.05 99.87±0.02 99.86±0.04 98.78±0.31 
8 99.92±0.03 99.90±0.03 99.91±0.03 99.89±0.04 99.92±0.03 99.82±0.05 99.05±0.11 

10 99.93±0.05 99.93±0.01 99.92±0.02 99.89±0.03 99.88±0.02 99.90±0.03 99.35±0.08 

 
Fig. 4. The noise-free #50 band in the Indian Pines data cube and the noisy spectral bands with GWN added. 
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Fig. 5. The noise-free #50 band in the Indian Pines data cube and the noisy band with shot noise added. 

Table 7 tabulates the execution time in seconds by 
using our unoptimized Matlab code with 2% of pixels as 
training samples and the rest of pixels as testing samples 
for the Indian pines data cube, the Pavia University data 
cube, and the Salinas data cube. Our experiments are 
done under the Linux operating system with Intel(R) 
Xeon(R) CPU E5-2697 v2 at 2.70GHz and 131 GB of 
random-access memory (RAM). Our new method is 
faster than PCA-EPFs for the Indian Pines data cube, but 
it is slower than PCA-EPFs for the Pavia University data 
cube and the Salinas data cube for HSI classification. 
Nevertheless, we can optimize our MNF-EPFs so that it 
can be faster than PCA-EPFs significantly. 

Table 7. The execution time in seconds by using our un-
optimized Matlab code with 2% of pixels as training 
samples for the Indian pines data cube, the Pavia Uni-
versity data cube, and the Salinas data cube. The best 
results are highlighted in bold font. 

Method Indian Pines Pavia University Salinas 
PCA 8.49 31.18 39.69 
MNF 4.48 33.53 41.41 

CONCLUSIONS 

Image classification is a phenomenal mechanism 
for analyzing diversified land cover in remotely sensed 
hyperspectral images. In remote sensing, HSI classifica-
tion has been an established research topic, and hence, 
the inherent primary challenges are (a) curse of dimen-
sionality and (b) insufficient samples pool during train-
ing. With the available high spectral resolution, subtle 
objects and materials can be extracted by hyperspectral 
imaging sensors with very narrow diagnostic spectral 
bands. 

In this paper, we have presented a novel method for 
HSI classification by using MNF-based EPFs instead of 
PCA-based EPFs method. Our new method MNF-EPF 
is very robust to both GWN and shot noise for HSI clas-
sification. Experiments demonstrate that our new 
method compares favorably to PCA-EPFs for HSI clas-
sification especially under the noisy environment. In ad-
dition, our MNF+EPFs outperform the PCA+EPFs even 
when no noise is added to the HSI data cubes for most 
testing cases, which is very desirable in remote sensing. 

Future research will be carried out in the following 
aspects. We may perform PCA-based denoising meth-
ods (Chen ang Qian 2011, Chen et al. 2014, Luo et al. 
2016) for HSI image classification as a preprocessing 
step. We may investigate deep learning for HSI classifi-
cation. Also, we may use low-rank matrix approxima-
tion for HSI classification. Furthermore, it is important 
to take advantages of both spatial and spectral infor-
mation for HSI classification. 
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