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ABSTRACT

Magnetic resonance (MR) imaging is considered as a very powerful imaging modality in clinical examination,
but the process of image acquisition and transmission will be affected by noise, resulting in the degradation
of imaging quality. In this paper, based on the Laplacian prior sparsity constraint and the nonconvex second-
order total variation (TV) penalty, we propose a MR images denoising model which consists of three terms.
Specifically, in the first term, we use the L2-norm as the fidelity term to control the proximity between the
observed image and the recovered MR image. Then, we introduce the Laplacian sparse prior constraint as
the second term to mitigate the staircase artifacts in the recovered image. In the third term, we adopt the
nonconvex second-order TV penalty to preserve important textures and edges. Finally, we use the alternating
direction method of multipliers to solve the corresponding minimization problem. Comparative experiments
on clinical data demonstrate the effectiveness of our approach in terms of PSNR and SSIM values.

Keywords: image denoising, Laplacian prior, magnetic resonance imaging, second-order total variation,
sparsity constraint.

INTRODUCTION

MR imaging is a remarkable imaging technology
that provides highly detailed images of human
tissues and organs. It is mainly used to demonstrate
pathological or other physiological changes in living
tissues (Mohan et al., 2014). The visual quality
of MR images plays an important role in the
accuracy of clinical diagnosis. However, MR images
are susceptible to noise corruption during image
acquisition and transmission, which can degrade
the image quality and hinder the effective feature
extraction, recognition, and analysis. Therefore, for
clinical diagnosis, the recovery value of MR images
is of significant importance.

Many methods have been proposed for MR
images denoising, such as wavelet transform, partial
differential equation, and TV regularization. First of
all, the usage of wavelets in MR images denoising was
pioneered by Weaver et al. (1991), which used the
wavelet transform instead of the Fourier transform to
reduce noise from 10% to 50%. In order to denoise
brain imaging resonances used for medical purposes,
(Sonia and Sumathi, 2022) analyzed the effectiveness
of various wavelet-based thresholding methods in
the presence of scattered noise for different wavelet

families including Morlet, Symlet, Daubechies, and
Haar. Al-Shayea et al. (2020) proposed a four-level
discrete wavelet transform medical image denoising
algorithm that utilized different wavelet families and
median filtering to remove Gaussian noise from
multiple medical images.

There exist some denoising methods that are
based on partial differential equations (PDE). In
(El Hakoume et al., 2022), an improved coupled
PDE denoising model based on diffusion tensor was
proposed, which was more suitable for representing
small details in texture images. Hadri et al. (2021)
investigated a novel PDE constraint optimization
model with discontinuous variable indices for the
removal of different noise types from MR images.
Tong et al. (2012) proposed a scheme for anisotropic
diffusion filtering of MR images, an automatic
parameter selection method to obtain better denoising
results.

In addition to the above methods, this paper
mainly considers the denoising method based on the
TV regularization. Rudin et al. (1992) first proposed
the Rudin-Osher-Fatemi model based on TV, which
can preserve edges and remove image noise in
homogeneous regions. In this method, the noisy image
is represented as g = f + n, where f denotes the
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original clean image and n denotes the noise. In
order to reconstruct f from g, the corresponding
minimization problem is formulated as

min
f

1
2
||g− f ||22 +λφTV ( f ), (1)

where ||.||2 denotes the Euclidean norm, λ >
0 is the regularization parameter, φTV ( f ) is the
TV regularization function denoted as φTV ( f ) =
∑

n
i, j=1 ||(∇ f )i, j||1 and the discrete gradient operator

∇ : Rn2 → R2×n2
is defined by (∇ f )i, j =

((∇x f )i, j,(∇y f )i, j) with

(∇x f )i, j =

{
fi+1, j − fi, j, if i < n,
f1, j − fn, j, if i = n,

and,

(∇y f )i, j =

{
fi, j − fi, j+1, if j < n,
fi,1 − fi,n, if j = n.

for i, j=1, · · · , n, where fi, j refers to the (( j−1)n+ i)-
th entry of the vector f 1.

However, traditional TV regularizations may lead
to staircase artifacts. To mitigate staircase artifacts,
Liu et al. (2015b) proposed the overlapping group
sparsity total variation (OGSTV) image restoration
model. Further, (Shi et al., 2016) proposed a model
that combines OGSTV and hyper-Laplacian prior.
New regularizations have been proposed for the
hyper-Laplacian prior with OGSTV, integrating pixel-
level and structural sparseness of natural image
gradient (Jon et al., 2021a;b). Adam and Paramesran
(2019) combined the overlapping group sparsity
regularization with nonconvex high-order TV, and
the proposed model has the advantages of both the
overlapping group sparsity regularization smoothing
staircase artifacts and nonconvex high-order TV
preserving sharp edges. There are also many TV
methods applied to MR images. For example,
integrating TV denoising, curvilinear wave denoising,
and edge information has been shown to significantly
improve the noise suppression of medical images
(Bhadauria and Dewal, 2013). Snehalatha (2020)
proposed a spectral TV algorithm to denoise brain
MR images while preserving edges. In (Zhu et al.,
2020), an improved TV algorithm was proposed for
removing Gaussian noise in compression-sensing MR
images reconstruction. Gu et al. (2023) proposed a new
MRI image recovery model combining least absolute
deviations measure and isotropic total variation, which
can effectively suppress noise and preserve image
smoothness.

According to the literature survey, it is found
that most of the existing methods mainly focus on
alleviating the staircase effect, ignoring the texture and
edge of the image. In order to further improve the
denoising performance of the model based on TV, we
propose a MR images denoising method that combines
the hyper-Laplacian prior regularization with OGSTV
and nonconvex second-order TV. The proposed
method takes into account the gradient distribution
and structural information of MR images to reduce
staircase artifacts, while also preserving local textures
and edges through nonconvex second-order terms.
Due to the computational problems caused by the
complexity of the model, we use the alternate direction
multiplier algorithm to solve the subproblems. Finally,
we conduct numerical experiments to analyze the
effectiveness of the proposed model.

The rest of this paper is organized as follows.
In Section 2, we introduce the basic concepts of the
proposed regularization and briefly review overlapping
group sparsity, hyper-Laplacian priors, and alternating
direction method of multipliers (ADMM). In Section
3, we propose a new model for image denoising and
derive an efficient algorithm to solve the corresponding
minimization problem. In section 4, the superiority
of the proposed method is proved by numerical
experiments. Finally, a conclusion is made in Section
5.

PRELIMINARIES

To provide a more comprehensive description
of the model, this section introduces three key
components: the overlapping group sparsity prior, the
hyper-Laplace prior, and the ADMM framework.

OVERLAPPING GROUP SPARSITY
PRIOR

In (Selesnick and Chen, 2013), the OGSTV has
been used to solve the problem of one-dimensional
signal denoising, which could effectively alleviate
staircase artifacts. Liu et al. (2015a;b) extended the
OGSTV function to the general two-dimensional case
as a new regularization, then they defined a K×K point
group of the image g ∈ Rn2

1 fi, j is the (i, j)-th pixel location of the n×n image, and this notation remains valid throughout the paper unless otherwise specified
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g̃i, j,k =


gi−ml , j−ml gi−ml , j−ml+1 · · · gi−ml , j+mr

gi−ml+1, j−ml gi−ml+1, j−ml+1 · · · gi−ml+1, j+mr
...

...
. . .

...
gi+mr , j−ml gi+mr , j−ml+1 · · · gi+mr , j+mr


∈ RK×K ,

(2)

where ml = ⌊K−1
2 ⌋, mr = ⌊K

2 ⌋, and ⌊x⌋ denotes the
largest integer which less than or equal to x. The center
of g̃i, j,k is located at (i, j), and gi, j,k is a vector obtained
by stacking the k columns of the matrix g̃i, j,k, i.e.,
gi, j,k = g̃i, j,k(:). Then the overlapping group sparsity
regularization can be defined as follows

φOT (g) = ∑
i, j+1

||g(i, j)K ||2. (3)

HYPER-LAPLACIAN PRIOR

Recent studies have shown that the hyper-
Laplacian prior can well approximate the heavy-tailed
distribution of gradients in natural scenes (Krishnan
and Fergus, 2009; Chang et al., 2017; Kong et al.,
2017). Moreover, the heavy-tailed distribution has also
been observed in MR images (Liu et al., 2014). The
corresponding hyper-Laplacian image prior can be
modeled as follows

p( f ) ∝

n

∏
i, j

e−||∇ f ||qq , (4)

where ||.||q denotes quasi-norm lq with 0 < q < 1,
namely, ||(∇ f )i, j||qq = |(∇x f )i, j|q + |(∇y f )i, j|q. Due to
the nonconvexity of lq in

φHL( f ) =
n

∑
i, j=1

||(∇ f )i, j||qq. (5)

In (Jon et al., 2021b), the overlapping group
sparsity also represents the hyper-Laplacian prior, and
the experimental results show that it can improve
the quality of the recovered image. Therefore, the
overlapping group sparsity regularization on hyper-
Laplacian prior (OGS-HL) is proposed for image
denoising and deblurring. The OGS-HL regularization
φOH(g) is defined as follows

ΦOH(g) =
n

∑
i, j=1

∥|g(i, j),k|q∥2 =
n

∑
i, j=1

√√√√ mr

∑
k1,k2=−ml

|gi+k1, j+k2 |2q,

(6)

where | · |q is the absolute value of the q-th power. It
is worth noting that ΦOH(g) reduces to φHL( f ) when

K= 1, and to φOT (g) when q = 1. However, ΦOH(g) is
generally nonconvex.

ADMM

The ADMM is a computational framework
for solving optimization problems. It decomposes
the original optimization problem into several
subproblems that are iteratively solved. ADMM is
particularly useful for solving constrained separable
optimization problems of the form:

min
x1,x2

ξ1(x1)+ξ2(x2)

s.t. Ax1 +Bx2 = d,
xi ∈ χi, i = 1,2

(7)

where ξi(·) : χi → R are closed convex functions,
A,B ∈ Rl×n, d ∈ Rl is a given vector. The augmented
Lagrangian function (Hestenes, 1969) for the problem
(7) is defined as

LA (x1,x2; µ) =ξ1(x1)+ξ2(x2)+µ
T (Ax1 +Bx2 −d)

+
δ

2
||Ax1 +Bx2 −d||22,

(8)

where µ ∈Rl is the Lagrange multiplier and δ > 0 is a
penalty parameter. The objective is to find the saddle
point of LA by alternatively minimizing LA with
respect to x1, x2 and µ . The ADMM algorithm to solve
the problem (7) is presented as Algorithm 1.

Algorithm 1 ADMM for minimizating the problem
(7).

1: initialization x0
1, x0

2, λ 0 and δ > 0,
2: iteration:

xk+1
1 = argminx1 ξ1(x1)+

δ

2 ||Ax1+Bxk
2−d+ µk

δ
||22,

xk+1
2 = argminx2 ξ2(x2) +

δ

2 ||Axk+1
1 + Bx2 − d +

µk

δ
||22,

µk+1 = µk +δ (Axk+1
1 +Bxk+1

2 −d),
k = k+1

3: until a stopping criterion is satisfied.

PROPOSED ALGORITHM

In this section, we first present the proposed MR
image denoising model, followed by its solution using
the ADMM framework.
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MODEL

The proposed MR image denoising model is of the
form

min
f

λ

2
||g− f ||22 +Φ(∇ f )+α||∇2 f ||pp, (9)

where λ , α > 0 are regularization parameters that
controls the data fidelity term and the nonconvex
second order regularization respectively.

OPTIMIZATION

To solve Eq. (9), we transform the original problem
into the following constrained optimization problem
by introducing two auxiliary variables x1 and x2

min
f

λ

2
||g− f ||22 +Φ(∇ f )+α||∇2 f ||pp,

s.t.x1 = ∇ f ,x2 = ∇
2 f .

(10)

To solve (10), we adopt ADMM (Boyd et al., 2011;
Wang et al., 2019) and transform Eq. (10) into the
following augmented Lagrangian function

LA ( f ,x1,x2; µ,δ ) =
λ

2
||g− f ||22 +Φ(∇ f )+α||∇2 f ||pp

−µ
T
1 (x1 −∇ f )+

δ

2
||x1 −∇ f ||22 −µ

T
2 (x2 −∇

2 f )

+
δ

2
||x2 −∇

2 f ||22,
(11)

where µT
1 , µT

2 are Lagrangian multipliers, δ is penalty
parameter. To solve Eq. (10), we utilize the ADMM
framework and iteratively update each variable by
minimizing Eq. (11). This iterative process can be
decomposed into several subproblems.

x1-subproblem

The x1-subproblem is the overlapping group sparse
on the hyper-Laplacian priors problem

xk+1
1 = argmin

x1

δ

2
||x1 − (∇ f k+1 +

µk
1

δ
)||22 +Φ(x1).

(12)

The problem (12) can be solved iteratively by the
majorization-minimization (MM) algorithm, and the
process of solving the related problem is discussed in
detail in (Jon et al., 2021b). Here, we express it in
lemma 1, as follows:

Lemma 1 we consider a minimization problem of
the form minv P(v) = λ

2 ||v− v0||22 +Φ(v), where λ

is a positive parameter and the functional Φ(v) =
∑

n
i, j=1 ∥|g(i, j),k|q∥2. In order to minimize P(v), the MM

algorithm is continuously iteratively solved to obtain

vk+1 = (I +
1
λ

qΛ(vk)T
Λ(vk)R(vk))−1v0, (13)

where R(v) = diag(|v|2q−2).

x2-subproblem

The x2-subproblem is a nonconvex denoising
problem due to the use of the nonconvex lp norm
second-order regularization

xk+1
2 = argmin

x2

δ

2
||x2 − (∇2 f k+1 +

µk
2

δ
)||22 +α||x2||pp.

(14)

Let yk+1 = (∇2 f k+1 +
µk

2
δ
), and use the iterative

reweighting l1 (IRL1) algorithm to minimize the
problem (14)

xk+1
2 = argmin

x2

1
2
||x2 − yk+1||22 +∑

i
γi|βi|. (15)

The solution to problem (15) is given by the one-
dimensional shrinkage function

xk+1
2 = shrink(yk+1,

γiα

δ
),

= max{|yk+1|− γiα

δ
,0} · sign(yk+1).

(16)

f-subproblem

The f-subproblem

f k+1 =argmin
f

λ

2
||g− f ||22 −µ

T
1 (x1 −∇ f )+

δ

2
||x1 −∇ f ||22

−µ
T
2 (x2 −∇

2 f )+
δ

2
||x2 −∇

2 f ||22,
(17)

Subproblem (17) is a least squares problem which
is equivalent to the corresponding normal equation

(λ I +δ∇
T

∇+δ (∇2)T
∇

2) f

= λg−∇
T

µ1 +δ∇
T xk

1 − (∇2)T
µ2 +δ (∇2)T xk

2.
(18)

For the periodic boundary condition of f , ∇T ∇

and (∇2)T ∇2 are block circulant with circulant blocks,
which can be diagonalized by 2D discrete Fourier
transform (Wu and Tai, 2010). Therefore, through one
FFT operation and one FFT inverse operation, we can
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obtain the optimal f as

f =F−1(
F [λg+δ∇T (xk

1 −
µ1
δ
)+δ (∇2)T (xk

2 −
µ2
δ
)]

λ I +δ [|F (∇)|2 + |F (∇2)|2]
).

(19)

Updating Lagrangian multiplier

Finally, the Lagrange multipliers are updated by
the following{

µ
k+1
1 = µk

1 +(xk+1
1 −∇ f k+1),

µ
k+1
2 = µk

2 +δ (∇2 f k+1 − xk+1
2 ).

(20)

We name the proposed method as the Laplacian prior
sparsity constraint and nonconvex second-order TV
penalty (LAPSTV) algorithm. The LAPSTV algorithm
is presented as Algorithm 2. And for this algorithm, we
have some remarks.

Algorithm 2 LAPSTV
1: initialization f 0, δ , µ0, α , K, N, p, q, set k = 0,
2: iteration:

Compute xk+1
1 according to Eq. (13),

Compute xk+1
2 according to Eq. (16),

Compute f k+1 according to Eq. (19),
Update µ

k+1
i , i = 1,2 according to Eq. (20),

k = k+1;
3: until a stopping criterion is satisfied.

Remark 1 In Algorithm 2, we solve the subproblems
iteratively in the order of xk+1

1 , xk+1
2 , f k+1, µ

k+1
i (i =

1,2). Different orders may yield different denoising
results.

Remark 2 In the x2-subproblem, the weight updated
at each iteration k in Eq. (15) is given by γi =

α p
(|xk

i |+ε)1−p , ε is a small number to avoid division

by zero. Choosing different weights may affect the
denoising results.

NUMERICAL EXPERIMENTS

In this section, we present several experimental
results to verify the effectiveness of the proposed
method for image denoising. In Fig. 1, all the
test images are from the Department of Radiology,
Maanshan People’s Hospital, Maanshan, China. The
experiment is under Windows 10 and MATLAB
R2021a operating system, and the CPU is AMD
R7 5800H 3.20GHz and 16GB RAM. MR images
used for analysis are corrupted by Gaussian noise

with a standard deviation of 15, 20, and 25. All
denoising methods measure the quality of recovered
images by Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) indices, which reflect
human subjective sensory and visual perception
quality, respectively (Irum et al., 2015; Zuo et al.,
2013).

The stopping criterion for all tested algorithms is
set to

|| fk+1 − fk||2
|| fk||2

≤ 1×10−5, (21)

where fk+1 and fk are the restored image at the current
iterate and previous iterate respectively.

RESULTS AND ANALYSIS
We compare our denoising results with two other

related methods: OGSTV (Liu et al., 2015b) and
HNHOTV-OGS (Adam and Paramesran, 2019). Their
regularizations are related to the proposed LAPSTV in
this paper.

In the whole experiment, we fix q= 0.9, k = 3, N =
5, p = 0.1, and other parameters are manually selected
to obtain the most satisfactory restoration quality.
For better comparison, the parameters in HNHOTV-
OGS are consistent with our method within the range
suggested in Adam’s paper. For OGSTV, we tune the
value of the regularization parameter λ to obtain the
best PSNR or SSIM value, while other parameters are
the same as suggested in the paper by Liu et al..

The effectiveness of this method on additive
Gaussian noise denoising is verified by experiments.
Three different noise levels σ = 15, σ = 20, and σ =
25 are added to the test image respectively to generate
each observed image. The obtained PSNR and SSIM
values are shown in Table 1, Table 2, and Table 3.

In each table, we observe that even at different
noise levels, compare with the denoising results of
the other two methods, the PSNR and SSIM values
of the proposed method were higher. This is because
the proposed method combines the advantages of
the hyper-Laplacian prior regularization term with
overlapping group sparsity and the second-order TV
term.

In Fig. 2-4, we present a comparison of the
denoised images obtained using three different
methods for the MR images of ”abdomen” and
”pelvic” at σ= 15, ”sacroiliac” and ”head” at σ=20,
and ”ankle” and ”mrcp” at σ=25, respectively. Based
on the obtained results, it can be observed that
the denoising effect of the OGSTV method is not
optimal, as there are still subtle blocky artifacts
present in the denoised images. The most closely
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(a) abdomen (b) pelvic (c) sacroiliac (d) head (e) ankle (f) mrcp

Fig. 1: MR images used for experiments, from left to right, are numbered from (a) to (f).

Table 1: The PSNR and SSIM values for denoised images by different methods when σ = 15.

σ Image Noised Denoised
OGSTV HNHOTV-OGS LAPSTV

15 abdomen 24.60/0.447 31.91/0.807 31.54/0.824 32.65/0.859
pelvic 24.60/0.342 31.26/0.755 33.716/0.899 34.87/0.914
sacroiliac 24.60/0.417 31.06/0.770 31.62/0.815 32.81/0.852
head 24.60/0.446 30.77/0.820 32.08/0.929 33.09/0.942
ankle 24.60/0.442 28.20/0.721 31.03/0.907 32.38/0.928
mrcp 24.60/0.359 32.10/0.775 34.04/0.907 35.03/0.922

Table 2: The PSNR and SSIM values for denoised images by different methods when σ = 20.

σ Image Noised Denoised
OGSTV HNHOTV-OGS LAPSTV

20 abdomen 22.10/0.337 30.59/0.763 30.17/0.780 31.28/0.819
pelvic 22.10/0.246 30.01/0.714 32.32/0.880 33.48/0.894
sacroiliac 22.10/0.308 29.83/0.723 30.38/0.780 31.54/0.819
head 22.10/0.357 29.40/0.787 30.35/0.904 31.43/0.919
ankle 22.10/0.350 27.83/0.754 29.36/0.880 30.77/0.905
mrcp 22.10/0.262 30.86/0.737 32.63/0.886 33.61/0.902

Table 3: The PSNR and SSIM values for denoised images by different methods when σ = 25.

σ Image Noised Denoised
OGSTV HNHOTV-OGS LAPSTV

25 abdomen 20.16/0.262 29.67/0.748 29.07/0.724 30.01/0.763
pelvic 20.16/0.187 29.35/0.757 31.44/0.862 32.37/0.874
sacroiliac 20.16/0.236 29.16/0.728 29.50/0.746 30.45/0.781
head 20.16/0.297 27.74/0.791 29.33/0.871 30.12/0.883
ankle 20.16/0.287 26.22/0.754 28.50/0.857 29.58/0.880
mrcp 20.16/0.200 30.22/0.772 31.64/0.865 32.43/0.879
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Fig. 2: The first and third lines are the recovered results for ”abdomen” and ”pelvic” with σ = 15, respectively,
while the second and fourth lines show the fragments corresponding to the zoomed images. (a1)-(a4) noisy image,
(b1)-(b4) OGSTV restored, (c1)-(c4) HNHOTV-OGS restored, (d1)-(d4) LAPSTV restored.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Fig. 3: The first and third lines are the recovered results for ”sacroiliac” and ”head” with σ = 20, respectively,
while the second and fourth lines show the fragments corresponding to the zoomed images. (a1)-(a4) noisy image,
(b1)-(b4) OGSTV restored, (c1)-(c4) HNHOTV-OGS restored, (d1)-(d4) LAPSTV restored.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Fig. 4: The first and third lines are the recovered results for ”ankle” and ”mrcp” with σ = 25, respectively, while
the second and fourth lines show the fragments corresponding to the zoomed images. (a1)-(a4) noisy image, (b1)-
(b4) OGSTV restored, (c1)-(c4) HNHOTV-OGS restored, (d1)-(d4) LAPSTV restored.
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comparable method to LAPSTV is HNHOTV-OGS.
The restored images obtained using HNHOTV-OGS
exhibit effective removal of staircase artifacts due to
the inclusion of higher-order terms, which results in
smoother images compared to LAPSTV. However,
with the introduction of a hyper-Laplacian prior on the
overlapping group sparsity term, LAPSTV is proposed
to preserve important textures and edges in the images
while effectively eliminating the staircase artifacts.

To facilitate a more comprehensive comparison
of the denoising effects of each method, we utilize
an image subtraction operation on the denoised
images obtained from the three methods. This involves
calculating the absolute value of the pixel-wise
differences between the final denoised image and
the clean image. Additionally, we plot the relative
error curve, which quantifies the difference between
the restored image and the original image after each
iteration, using Eq. (21).

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 5: The first line is the differential images
for “abdomen” (σ = 15), the second line shows
the corrected differential images (contrast ratio:
−40%). (a1)-(a2) differential images of OGSTV, (b1)-
(b2) differential images of HNHOTV-OGS, (c1)-(c2)
differential images of LAPSTV. The line chart shows
the relative errors of the three methods as the number
of iterations increases.

As shown in Fig. 5-7, the differential images
of LAPSTV exhibit the least noticeable differences

compared to the other methods. In the relative error
plot, each picture has a zoom-in patch to show
the relative error curve changes of LAPSTV and
HNHOTV-OGS. It can be observed that the curve
of LAPSTV decreases slightly faster than that of
HNHOTV-OGS at all three noise levels. Moreover,
LAPSTV also yields higher PSNR and SSIM values
compared to HNHOTV-OGS. Although the relative
error curve of OGSTV shows the fastest decrease
at noise levels σ=20 and 25, its denoising effect is
comparatively poor.

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 6: The first line is the differential images
for “sacroiliac” (σ = 20), the second line shows
the corrected differential images (contrast ratio:
−40%). (a1)-(a2) differential images of OGSTV, (b1)-
(b2) differential images of HNHOTV-OGS, (c1)-(c2)
differential images of LAPSTV. The line chart shows
the relative errors of the three methods as the number
of iterations increases.

VERIFY THE EFFECTIVENESS OF
REMOVING STAIRCASE ARTIFACTS
In order to verify the effectiveness of removing the

staircase artifacts by the hyper-Laplacian prior term
with overlapping group sparse (the second term of
the model), we named the nonconvex second-order
TV obtained by removing the second term Φ(∇ f ) in
the LAPSTV model (Eq. (9)) as LAPSTV-2nd term.
It uses ADMM directly and IRL1 algorithm to solve

128



Image Anal Stereol 2023;42:119-132

nonconvex lp problems. The LAPSTV is compared
with the LAPSTV-2nd term model and only the case
of p=0.1 is considered.

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 7: The first line is the differential images
for “ankle” (σ = 25), the second line shows
the corrected differential images (contrast ratio:
−40%). (a1)-(a2) differential images of OGSTV, (b1)-
(b2) differential images of HNHOTV-OGS, (c1)-(c2)
differential images of LAPSTV. The line chart shows
the relative errors of the three methods as the number
of iterations increases.

Fig. 8 and Fig. 9 show the PSNR and SSIM values
of LAPSTV and LAPSTV-2nd term at σ=30 and 40,
respectively. It can be seen that the PSNR and SSIM
values of LAPSTV-2nd term without the second term
decrease a lot. Fig. 10 is the restoration results of
LAPSTV and LAPSTV-2nd term for ”abdomen” at
σ=30. Fig. 11 is the restoration results of LAPSTV
and LAPSTV-2nd term for ”sacroiliac” at σ=40. It
can be observed from these figures that the denoising
effect of the Lapstv-2nd term is not ideal and tends to
magnify noise artifacts, while the LAPSTV recovery
image smooths out these staircase artifacts.

PARAMETER SENSITIVITY ANALYSIS
The parameters that affect the performance mainly

include the index (q) of the hyper-Laplace prior, the
nonconvex lp norm (p), the group size (k), and the
number of MM iterations (N), these parameters need

to be carefully tuned to get more accurate results.
Therefore, we select two images, namely ”abdomen”
and ”sacroiliac”, to conduct tests with σ=20. This will
help us demonstrate the sensitivity of the proposed
model to these parameters.

(a)

(b)

Fig. 8: PSNR and SSIM values of LAPSTV-2nd item
and LAPSTV denoising results when σ = 30.

(a)

(b)

Fig. 9: PSNR and SSIM values of LAPSTV-2nd item
and LAPSTV denoising results when σ = 40.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 10: The first line is the recovered results for
”abdomen” with σ = 30, the second line shows the
fragments corresponding to the zoomed images. (a1)-
(a2) noisy image, (b1)-(b2) LAPSTV-2nd item restored,
(c1)-(c2) LAPSTV restored.

Firstly, in order to test the sensitivity of iteration
number N, other parameters are fixed. Table 4 shows
the influence of different MM iteration numbers N on
PSNR, SSIM, overall algorithm iteration number, and
time, and the best result is obtained when N=5. The
variation of the value of the group size K is important
for the quality of the recovered image, and it can be
obtained from Fig. 12 that when the group size K=3,
the performance is the best, and if K value continues
to increase, the curve will go downhill. The choice of
p values for nonconvex lp norm is crucial for restoring
sharp and clear edges, 0 < p ≤ 1. In Fig. 13, the PSNR
and SSIM values decrease as the p value increases
from 0.1 to 1. Therefore, p = 0.1 can obtain the best
PSNR and SSIM results.

The hyper-Laplace prior can well approximate
the heavy-tailed distribution of natural image
gradients, the overlapping group sparsity can alleviate
staircase artifacts by introducing additional structural
information, and the exponent q of the hyper-Laplace
prior is used to measure the overlapping group sparsity
of the image gradient (0 < q < 1). In Fig. 14, the
optimal PSNR and SSIM values are obtained as the
q value increases to 0.9. It is worth noting that when
q=1, this item will be the special case OGS-TV.

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 11: The first line is the recovered results for
”sacroiliac” with σ = 40, the second line shows the
fragments corresponding to the zoomed images. (a1)-
(a2) noisy image, (b1)-(b2) LAPSTV-2nd item restored,
(c1)-(c2) LAPSTV restored.

Table 4: Denoising results of different MM iterations
(N) when σ = 20

Image N PSNR SSIM Iter Time(s)

abdomen 1 29.33 0.709 51 0.991
5 31.28 0.819 58 2.593
10 31.25 0.818 58 4.449
100 31.24 0.818 58 37.328

sacroiliac 1 28.70 0.629 50 1.007
5 31.54 0.819 58 2.580
10 31.49 0.817 58 4.410
100 31.47 0.816 58 37.421

Fig. 12: PSNR and SSIM values for images denoised
by LAPSTV with different group sizes K when σ = 20.
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Fig. 13: PSNR and SSIM values with different p when
σ = 20.

Fig. 14: PSNR and SSIM values with different q when
σ = 20.

CONCLUSIONS

In this paper, we proposed a new MR images
denoising method for recovering high quality image
from a noisy image, We show that combining hyper-
Laplace prior with the overlapping group sparse
constraints and second-order nonconvex TV is a
feasible solution to the magnetic resonance image
denoising problem. This combination brings the ability
to mitigate staircase artifacts and preserve important
edges for effectively recoverying degraded image.
Numerical experiments show that under the three
different noise levels, the method is better than the
other three different methods in terms of PSNR and
SSIM. In future work, we plan to expand the ideal of
the proposed method to blind denoising and reduce the
model computation time.
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