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ABSTRACT 

The batch clustering algorithm for classification application requires the initial parameters and also has a 

drifting phenomenon for the stochastic process. The initial parameters are critical for the clustering to con-

verge to the partial optimum. The drifting phenomenon in original batch clustering still has space to be 

improved thus to speed up the convergence based on the initial parameters. This paper proposes an unsu-

pervised clustering method by addressing these two issues. Firstly, the estimation method for the initial 

parameters has been given in preliminary with a hierarchical manner of principal component analysis 

(PCA). The nonlinear parameters have been estimated based on a mathematical connection between PCA 

and clusters membership. With initial parameters, the drifting issue is addressed by combing the gradient 

descent and the batch clustering on an auxiliary objective to refine the initial parameters. The efficiency of 

the clustering process is proved based on the relationship between two quadratic functions followed by a 

justification. In addition, the effectiveness of the proposed method has been validated with the statistical F 

measure in classification application. The validation results show that the efficiency of the proposed gradi-

ent descent batch clustering has been improved significantly with trade-off to the accuracy in comparison 

of the original algorithms under the mean squared error (MSE) criterion. 

Keywords: batch clustering, gradient descent, image classification, principal component analysis, stochas-

tic process. 

INTRODUCTION  

The real time classification of image data such as 

the natural citrus fruit image is essentially nontrivial 

when the data is posed in color space nonlinearly, cf. 

Jimenez et al. (2000). Even with the noise removal and 

the quality enhancement, the fundamental envelope 

spectra is generally a multiclass classification problem 

to be solved Li et al. (2012). Basically the classification 

methods have been formed in either supervised or unsu-

pervised clustering, cf. Duda et al. (2000). Supervised 

classification methods are highly dependent on the 

credit of the training sample which is usually not avail-

able. Without ground truth, the unsupervised clustering 

methods are designed to find the hidden structure of the 

data by a competitive clustering using certain dissimilar-

ity metrics without statistical model assumption. The 

clustering algorithms are broadly classified into three 

categories namely partitional, hierarchical, and density-

based. Among which the hierarchical clustering discov-

ers a sequence of partitions in a hierarchical structure 

represented by graphical dendrogram in agglomerative 

and divisive forms by merging the closest pair or split-

ting the farthest pair of objects to form clusters, cf. Xu 

and Wunsch(2005). The difficulty for hierarchical clus-

tering algorithms is how to derive appropriate parame-

ters for the termination condition. On the other hand, the 

density-based clustering with such as neighborhood and 

the number of points in region is not designed by locat-

ing the features especially when the data is strongly 

dense or overlapped Ester et al. (1996) . However, the 

partitional clustering incorporates the shape and the 

number of clusters by using certain metrics and proto-

types. The well-known statistical c-means minimize the 

mean squared error (MSE) function as metrics for hy-

perspheres to classify the centroids of the clusters in 

form of the stochastic batch mode Linde et al. (2000) 

and the sample based gradient descent mode Macqueen 

(1967).  

There are some topical issues for the clustering al-

gorithms such as the local optimum and the initialization 

of the parameters. Based on the original C-means algo-

rithms several attempts have been made to solve the lo-

cal optimum issue such as by using GA (genetic algo-

rithm) Krishna and Murty (1999), SA (simulated anneal-

ing) BandyoPadhyay (2001), and the hybrid of SA or 
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EA (evolutionary algorithm) Delport (1996). Also an en-

hanced Linde-Buzo-Gray (LBG) is developed using the 

concept of the utility of the code word to overcome the 

local optimum issue. However it is found that the esti-

mation of the initial parameters is difficult to be ad-

dressed Patane, G. and M. Russo (2001). The original c-

means have also been extended into other forms by in-

corporating with fuzzy logic membership function in the 

literature Du et al. (2006) and Xu et al.  (2005) or com-

bined with the static and active mechanism in kd-tree es-

pecially for large scale or higher dimensional data Lai et 

al. (2008) but with requirement of the initial parameters. 

More variants of the original algorithm have circum-

vented on the parameters and the local optimum issue 

using such as the constructive clustering technique ISO-

DATA, self-creating learning algorithms, a method with 

imbalanced spatial distribution with a cluster, etc.  

In literature, more extended works have been tried 

on metrics for example by combining different metrics  

Qian et al. (2016). Since the random initialization of the 

parameter for clustering method normally give poor 

classification results Chen et al. (2005), and an alterna-

tive initialization method has been proposed using the 

mean of the index in lower and upper area with consec-

utive Euclidean distance along one attribute Khan 

(2012). However the measure may not be constant along 

the direction for example a dominant axis with maxi-

mum variance for the optimal partitional direction  

Sujatha and  Sona (2013). On the other hand, an spectral 

clustering algorithm has been proposed by selecting the 

most relevant eigenvector for analysis in clustering al-

gorithm using Xiang and Gong (2008). With the maxi-

mum number of clusters given for the affinity matrix, 

the estimated weight parameter is sensitive to the dense 

data. In practice, the initialization of parameters be-

comes nontrivial when the data is nonlinear. Hence the 

better way to estimate is to use the variance information 

in the space of the data with such as PCA solution. On 

the other hand, the batch clustering process with a drift-

ing issue still has space to be addressed even based on 

the original algorithms.  

Basically two main clustering methods can be im-

plemented such as the batch clustering and the gradient 

descent based methods. The gradient descent methods 

have three main variants. The stochastic gradient de-

scent clustering update the parameter using each training 

example. The batch gradient descent updates the param-

eter for whole dataset which is convex uniquely. The 

mini-batch clustering using n samples to update the pa-

rameter. Even with the convergence of the stochastic 

batch clustering, two clustering algorithms perform dif-

ferently with the initial parameters. In batch clustering, 

the pattern keeps changing from current cluster to the 

nearest cluster based on the update of the parameters 

with the simple competitive rule. Hence the update of 

mean of cluster with batch clustering still drifts around 

the ideal centroids. On the other hand, the gradient de-

scent clustering variants update the parameters with sim-

ple sample online, fixed number of samples, or the 

whole data samples for such as regression. However, the 

variants have not combined the gradient descent with the 

batch clustering on the multivariate non-convex case, 

meanwhile the number of samples belong to different 

nonlinear clusters with a parameter of centroid. Basi-

cally the optimization variants for the gradient descent 

have focused on the learning rate, the acceleration of 

SGD process with momentum, and the other strategies 

on top of the distributing methods such as data shuffling 

or by using curriculum learning Zaremba and Sutskever 

(2015) or batch normalization Ioffe and Szegedy (2015). 

Since the data such as the natural citrus color image data 

are normally non-convex in color space, the number of 

parameters for various color clusters is a nonlinear prob-

lem. If the gradient descent can be applied on each of 

clusters, the parameters of centroids can be directed to 

the minimum in negative gradient direction thus to ad-

dress the drifting phenomenon. To apply the gradient de-

scent on the nonlinear parameters, an auxiliary objective 

need to be reformed based on the original one. In addi-

tion, the clustering process still requires the initial pa-

rameters in preliminary.  

The contents are organized as follows. In section 2, 

the initialization of parameters is given in preliminary 

with a mathematical connection between PCA solution 

and the clustering membership. To refine the initialized 

parameters, the gradient descent batch clustering is de-

rived from the reformed objective. The speed-up of the 

clustering convergence is proved using the relationship 

between the quadratic functions followed by a mathe-

matical justification. The method is validated with sta-

tistical measure in comparison of the other original al-

gorithms. The last section draws a conclusion 

 

MATERIALS AND METHODS 

In this section, a gradient descent batch clustering 

algorithm is proposed for the nonlinear classification ap-

plication. The proposed method is based on the prelimi-

nary for the initialization of parameters namely the cen-

troids of the clusters. These parameters are refined to the 

partial optimum by the modified batch clustering algo-

rithm.  

When the data is posed in certain color space non-

linearly, for example the natural citrus fruit color image, 
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it is difficult to reveal the structure of the clusters in any 

one eigenvector subspace. Hence an iterative application 

of PCA solution in a hierarchical manner is proposed to 

reveal the hidden clusters in different subspaces of sub-

sets. Since PCA solution is obtained by maximization of 

variance of data in eigenvector subspace, the optimal so-

lution has been found to indicate the membership of at 

least two subsets in the subspace. The statistical PCA 

which is known as Karhunen-Loeve transform (KLT) 

Rao and Yip (2001) has a mapping function to extract a 

certain feature in a low-dimensional space. PCA auto-

matically extracts the eigenvectors based on the maxi-

mization of the variance of the projected data using the 

centered covariance matrix of the data Jolliffe (2002). 

The following defines PCA in the image data. 

Definition 2.1 Consider an original image data with 

p random variables arranged as a column vector, de-

noted x. The kth PC (principal component), yk, where 

k=1, 2,…, p, is given by: 

T

k ky = w x     (1) 

where 1 2[ ,  , , ]T

k pw w w=w  is an eigenvector of 

the covariance matrix corresponding to its eigenvalue 

k. The main objective of PCA is to find wk providing 

the maximum variance of the kth PC using the second 

central moment as presented in Eq.2:  

( ) ( )( )
2

var T T T T

k k k k kE E = − =
  

w x w x w x w w    (2) 

where ( )T

kE w x  is the expectation of the kth PC var-

iable and var(.) represents the variance and Σ is the co-

variance matrix of the elements of vector x. The result 

of Eq.2 is the objective function to be maximized to find 

the largest PC. Since the maximum will not be deter-

mined for finite wk, a normalized constraint 1T

k k =w w  

must be imposed. The quadratic objective function can 

be rewritten as in Eq.3: 

Maximize: T

k kw w    (3) 

Subjective to: 1T

k k =w w  

By combining the normalization constraint to the 

objective function, the standard optimization problem 

becomes Eq.4 using the techniques of Lagrange Multi-

pliers : 

Maximize: ( )1T T

k k k k k− −w w w w    (4) 

where k is a Lagrange multiplier. Taking a deriva-

tion of Eq.4 with respect to the variable wk gives the 

standard characteristic function: 

0k k k− =w w    (5) 

This function can be expressed in another form by

( ) 0k p k− =I w , where Ip is an ( )p p  identity matrix. 

Here λk is the eigenvalue, and wk is the corresponding 

eigenvector of covariance matrix Σ. Substituting Eq.5 

into the objective function, and using the normalization 

constraint, the solution for the maximum variance of the 

variable is the eigenvector corresponding to the largest 

eigenvalue of the covariance matrix Σ as shown in Eq.6: 

T T T

k k k k k k k k k  = = =w w w w w w    (6) 

PCA solution is to find the eigenvector wk and the 

corresponding eigenvalue k, which provide the maxi-

mum variance of vector x in kth PC direction. When 

there are number of nonlinear subsets or classes, at least 

the distance between two main subsets is maximized in 

the maximal eigenvector direction. PCA solution for the 

subsets is also independent from each other when the 

subsets are not interrelated. The use of PCA solution is 

based on a connection between the PCA solution and the 

membership of clusters. Firstly, the principal compo-

nents from PCA solution indicates the membership of 

clusters. On top of that the maximization of distance be-

tween two subsets always exist independently for two 

subsets. The mathematical verification and theorems 

follow the works  Otsu (1979), Ding and He (2004). The 

definition of C-means is then given by Eq.7 using the 

number of K centroids to cluster the data: 

2

1

( )
k

K

K i k

k i C

J
= 

= − x c    (7) 

where { : }i i Cx x , 1 2, ,..., ]T

nX = [x x x is the data 

matrix for data set C, /
k

k i ki C
n


=c x is the centroid of 

the subset Ck, nk is the size of subset Ck and
1

K

k

k

n n
=

= , K 

is the total number of all subsets, { : }k kC C C and 

1 2...... KC C C C=   . 

Let  

2( , ) ( )
k l

k l i j

i C j C

d C C
 

= − x x    (8) 

be the sum of squared distance (SSD) between two 

subsets Ck and Cl. When k l= , SSD between individuals 

within one class becomes the deformation formula of co-

variance for one subset as in Eq.9. The proof refers to 

Zhang et al. (2012).  

2

2
1 1

1
var( , ) ( )

2

k kn n

k k i j

i jk

C C
n = =

= − x x    (9) 

In this research, since the image data is divided into 

2 main subsets, the case with 2K = is considered to 

show the connection between PCA solution and the 
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membership of clusters in C-means algorithm. Note that 

this could be easily extended for more general cases. De-

note C1 and C2 as two subsets, where
1 2C C C = . Also 

note that
1 2 1n n n n+ = where n1/n and n2/n are the class 

occurrence probabilities. It is obvious from the defini-

tion that SSD of the whole data set C can be calculated 

using SSD within each of two subsets and SSD between 

two subsets as in Eq.10: 

1 1 2 2 1 2( , ) ( , ) ( , ) 2 ( , )d C C d C C d C C d C C= + +  (10) 

Substituting Eq.8 into Eq.9, the covariance of the 

whole data set C can be expressed in Eq.11: 

2 2

2

1
/ ( , )

2

T

T i ii
n d C C

n
 = = =y y y   (11) 

where 2

T  is the variance for the whole data set C, 

i i= −y x x  and /ii
n=x x . With Eq.11, Eq.10 can be 

expressed by Eq.12: 

2 2

1 1 2 2 1 22 ( , ) ( , ) 2 ( , )Tn d C C d C C d C C = + +  (12) 

Since the objective function JK for C-means cluster-

ing is related to the within class variance for all subsets 

based on the definition, using Eq.9, JK can be expressed 

by Eq.13: 

𝐽𝐾 = ∑ ∑ (𝑥𝑖 − 𝑐𝑘)
2

𝑖∈𝐶𝑘
𝐾
𝑘=1 = ∑ 𝑛𝑘𝜎𝑘

2𝐾
𝑘=1 =

∑
1

2𝑛𝑘
∑ (𝑥𝑖 − 𝑥𝑗)

2
𝑖,𝑗∈𝐶𝑘

𝐾
𝑘=1 =

1

2𝑛1
𝑑(𝐶1, 𝐶1) +

1

2𝑛2
𝑑(𝐶2, 𝐶2)   (13) 

where 2

k  is the within class variance for the subset 

Ck. Some algebra yields the following Eq.14 from 

Eq.12:  

𝑛𝜎𝑇
2 =

1

2𝑛1
(1 −

𝑛2

𝑛
)𝑑(𝐶1, 𝐶1) +

1

2𝑛2
(1 −

𝑛1

𝑛
)𝑑(𝐶2, 𝐶2) +

1

𝑛
𝑑(𝐶1, 𝐶2)  (14) 

 After rearrangement of Eq.14, the objective func-

tion JK can be re-expressed as Eq.15: 

𝐽𝐾 = 𝑛𝜎𝑇
2 −

𝑛1𝑛2

2𝑛
(
2𝑑(𝐶1,𝐶2)

𝑛1𝑛2
−

𝑑(𝐶1,𝐶1)

𝑛1
2 −

𝑑(𝐶2,𝐶2)

𝑛2
2 ) =

𝑛𝜎𝑇
2 −

1

2
𝐽𝐷   (15) 

where the right part is denoted as distance objective 

function, 1 2 1 2 1 1 2 2

2 2

1 2 1 2

2 ( , ) ( , ) ( , )
( )

2
D

n n d C C d C C d C C
J

n n n n n
= − − . 

On the other hand, the following relation always 

holds Otsu (1979): 

2 2 2

W B T  + =   (16) 

where 2

W  is the within class variance for two sub-

sets, 2 2 2

1 1 2 2W   = + , and 1 and 2 are the class oc-

currence probability, here 1 1n n = and 2 2n n = . The 

variables 1 and 2 are the variance of subset C1 and C2, 

and 2 2

1 2 1 2( )B  = −c c  is the between class variance, 

where c1 and c2 are the centroids of two subsets. By sub-

stituting 2

T , the total variance from Eq.16 into Eq.12 us-

ing Eq.9 for within class variance, it can be found that 

SSD between two subsets can be expressed as in Eq.17: 

1

𝑛1𝑛2
𝑑(𝐶1, 𝐶2) =

1

2𝑛1
2 𝑑(𝐶1, 𝐶1) +

1

2𝑛2
2 𝑑(𝐶2, 𝐶2) +

(𝑐1 − 𝑐2)
2       (17) 

By substituting Eq.17 into JD in Eq.15, JD becomes 

Eq.18: 

21 2
1 2( )D

n n
J

n
= −c c      (18) 

Eq.15 and Eq.18 indicate that the minimization of 

JK is equivalent to the maximization of SSD between 

two subsets in the distance objective function JD which 

is always positive, as given in Theorem 2.1. 

Theorem 2.1 For K = 2, the minimization of C-

means cluster objective function JK is equivalent to the 

maximization of the distance objective JD, which is al-

ways positive. 

Proof. See  Ding (2004).   

Next thing is to show that the eigenvector subspace 

indicates the membership for C-means clusters. Before 

that, the theorem for singular value decomposition 

(SVD) is necessary. With data matrix X, let

1 2[ , ,..., ]T

n=Y y y y be the centered data matrix, where

i i= −y x x and /ii
n=x x . Then

( )( )T

i jij
= − −A x x x x  is the covariance matrix which 

can be expressed by T=A U V , where U and V are two 

orthogonal matrices, with ( )rank r=A . Hence A is ex-

pressed by T

i i ii
=A u v , where  i are singular values, 

ui and vi are principal directions and principal compo-

nents respectively [62]. The following theorem shows 

the connection between the clusters membership indica-

tor and PCA solution.  

Theorem 2.2 For C-means clustering where K = 2, 

the continuous solution of the cluster indicator vector is 

the principal component v1, i.e., clusters C1, C2 are given 

by 

1 1 2 2{ : ( ) 0}, { : ( ) 0}C i i C i i=  = v v   (19) 

The optimal value of C-means objective satisfies 

the bounds 
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2 2

1 2Kn J n =−  y y   (20) 

Proof. See Ding (2004).                    

The covariance matrix is constructed by the sum of 

centered data for each variable. Then only the case with 

K = 2 is considered with meaning to classify the data into 

two main subsets in the proposed method. Note that this 

can be extended to more general case with K > 2. The 

existence of maximization between two independent 

subsets is given as follows.  

Theorem 2.3 For K = 2 case with the probability of 

class occurrence for two data subsets, the maximization 

of the between class distance always exist.  

Proof. The maximization of SSD between two sub-

sets in the distance objective JD in Eq.18 is equivalent to 

the maximization of 2 2

1 2 1 2( )B  = −c c . Hence the 

range of thresholding t is sought to maximize: 

1 2{ : ( )[1 ( )]}T t t t   = = −   (21) 

There are two situations only. If all the data belong 

to one class, then factor (t) is zero or one which means 

no subsets in the data set. Otherwise 0 ( ) 1t  is true, 

then 0 1 ( ) 1t −  , hence 0 ( )[1 ( )] 1t t  −  is true. 

Therefore, the maximum always exists.   

Theorem 2.1 and theorem 2.2 have shown the con-

nection between PCA solution and the clusters’ mem-

bership for C-means algorithm. The indication for min-

imum two subsets with maximization of between class 

distances is guaranteed. Another consideration is the ter-

mination of the use of PCA solution. Under the condi-

tion that x has a normal distribution, i.e., the ellipsoids 

given in Eq.22 which define contours of constant prob-

ability for the distribution of x, the following property 

shows that PCs of such ellipsoids represent the axes 

which can provide the maximal statistical variation and 

those axes are orthogonal from each other.  

Property 2.1 Considering the p-dimensional ellip-

soids 

1T = constant−
x x   (22) 

then the PCs define the principal axes of these ellip-

soids. Here x is the variable and Σ is the covariance ma-

trix of the elements of vector x.  

Proof.  See Jolliffe (2002).                  

The geometric property of ellipsoids is of statistical 

relevance if the distribution of x is assumed as multivar-

iate normal. The thresholds on the projection data on the 

maximal eigenvector generally become less credible as 

the number of classes to be separated increases nonline-

arly. However, PCs can be used to suggest suitable two 

main subsets based on the variance of intra classes from 

the mathematical connection. Then the global threshold 

on the projection data can be used to segment the data 

into two members in the maximal eigenvector subspace. 

This process is applied on the segmented or available 

subsets iteratively to reveal the hidden clusters hierar-

chically as given in table 1. In classification application, 

the process starts with the rearrangement of the image 

data as a ( n m  by 3) matrix using for example a*, b* 

components from CIE color space Lab and Hue compo-

nent from HSV color space where n m  is the resolu-

tion of image. 

Table 1. Algorithm 1 for initial parameters estima-

tion with PCA solution. 

Input 1:  Image data. 

Input 2:  Criterion of confidence level for var-

iance of PCs 

Output 1: Initial mean of clusters 

Condition 1: Standard deviation of PCs<Cri-

terion 

Start 

1. Rearrange image data according to a* b* 

and Hue from CIE color space Lab and HSV re-

spectively 

2. Apply PCA to find eigenvectors and eigen-

values for each (segmented) image data 

3. Check the termination criteria 

4. If the criteria is not met 

5. Project the image onto the maximum ei-

genvector space 

6. Apply a global thresholding providing the 

maximum variance in the subspace to divide each 

image data into two segmented images Otsu 

(1979) 

7. Else 

End 

 

With initial parameters given without disparity to 

the simplified objective in previous sections, the com-

petitive learning is a statistical cluster analysis which 

partitions n input patterns data, X, into K separated sub-

sets by minimizing the mean squared error in Eq.23: 
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2

1 1

1 kn K

kp p k

p kk

E w
n = =

= − x c   (23) 

where K is the number of centroids of clusters, nk is 

the number of data in cluster Ck, wkp is the connection 

weight assigned to prototype Ck with respect to xp, de-

noting the membership of data p into cluster k. It is dif-

ficult to use the gradient descent method, since the win-

ning prototypes must be determined with respect to each 

input pattern xp. By using the following functional, the 

gradient-descent method leads to sequential updating of 

the prototypes with respect to the input pattern xp.  

2

1

K

kp p k

k

E w
=

= − x c   (24) 

Based on Eq.24, assuming ( )w w t=c c  to be the win-

ning cluster centroid for input data t=x x  at time t. The 

gradient descent method leads to the sequential update 

of the prototype (centroid of cluster k) as follows. 

( ) ( ) ( ) ( )1w w t wt t t t+ = + −  c c x c   (25) 

( ) ( )1i it t+ =c c  , i w   (26) 

The gradient descent performs the update of param-

eter upon each example presented which causes the ob-

jective oscillate.   

On the other hand, the batch clustering is derived by 

minimizing the metric between the data and the relative 

clusters which it is close to in Eq.27.   

Minimize: ( )
1 1

( ) ,
n k

ij i j

i j

f , w D
= =

=X C x c   (27) 

Subject to: 
1

1, 1,...,
k

ij

j

w j k
=

= =  

0 1, 1,... , 1,...,ijw or i n j k= = =  

where D is certain metric for competitive rule, ix is 

one data instance, jc  is mean of one data cluster. As-

signing the instance to clusters is fixing the probability 

parameter wij, and then Eq.27 can be expressed in the 

mean squared error (MSE) function in Eq.28: 

2

1

1

1
( ,..., )

i j

k

k i j

j

E
n = 

= −
x c

c c x c   (28) 

where Euclidean metrics is measured as the compet-

itive rule to find the closest cluster jc for the instance ix . 

By minimizing E with respect to the centroids jc
 
and by 

setting the derivative jE c to zero, the original batch 

c-means is obtained in terms of time t in Eq.29: 

( ) ( )
1

1
i j

j i

j

t t
n 

+ = 
x c

c x   (29) 

where jn is the size of the instance in each cluster. 

At each step, the patterns keep changing from one clus-

ter to the nearest cluster with arg minj jj = −x c . The 

gradient descent clustering continues to update the pro-

totype upon the presentation of each new data pattern 

using in Eq.3 which is inefficient even with the random 

initialization of the prototypes or ad hoc approaches. On 

the other hand, the batch clustering still has a drifting 

issue using Eq.29 [13] for update of the prototype sto-

chastically based on the competitive rule. Since the sto-

chastic process doesn’t use search direction to certain 

minimum of parameter, the way to solve the drifting is-

sue is to minimize the objective by directing the solution 

to the minimum in search line of such as gradient de-

scent manner. Hence to apply the gradient descent on 

batch clustering, an auxiliary objective is necessary 

which includes a dependent variable such as the mean of 

each cluster and one input pattern by using the mean of 

cluster based on the original batch rule.  

 

PROPOSAL OF OBJECTIVE FOR 
GRADIENT DESCENT BATCH 
CLUSTERING METHOD 

To propose the auxiliary objective, consider any 

two vectors x and y in nE , the Cauchy-Schwarz inequal-

ity holds: x, y x y . As for case in Euclidean 

space, the triangle inequality follows the Cauchy-

Schwarz inequality which holds as follow
2 2 2

2+  + +x y x x y y . Assuming there are k 

clusters in the data set C, each data xi is covered by at 

least one of the clusters. Let any two vectors x and y to 

be replaced by the error between data xi and the mean of 

the winning cluster by i j−x c , for all i jCx , cj is the 

mean of cluster j with number of nj data, and 1,...,j k= , 

k is the number of clusters in data set C. The two data 

samples can be generalized for n number of data. Each 

of data wins at least one of clusters with simple compet-

itive rule, then the squared total error holds as follows: 

‖∑ ∑ (𝑥𝑖 − 𝑐𝑗)𝑥𝑖∈𝐶𝑗
𝑘
𝑗=1 ‖

2
≤ ∑ ∑ ‖𝑥𝑖 −𝑥𝑖∈𝐶𝑗

𝑘
𝑗=1

𝑐𝑗‖
2
+ 2∑ ∑ ‖𝑥𝑖 − 𝑐𝑗‖‖𝑥𝑙 − 𝑐𝑚‖𝑥𝑖∈𝐶𝑗,𝑥𝑙∈𝐶𝑚

𝑘
𝑗,𝑚=1,𝑗≠𝑚

  (30) 

The first part of the right hand side is the sum of 

squared errors. The second part is the product of norm 

of two error factors which is no less than zero. Each of 
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two error factors is minimized using the simple compet-

itive rule. Hence the minimization of the squared total 

error is proportional to the sum of squared errors. The 

squared total error can be formed into the sum of errors 

for each different clusters as follows: 

( )
22

1 1 1

j

i j

nk k

i j i j j

j C j i

n
=  = =

 
− = −  

 
   

x

x c x c   (31) 

Now let the sum of each cluster data in Eq.31 as de-

pendent variable of independent data. The mean of the 

cluster is determined with respect to all the winning data 

to the cluster. Since the mean of each cluster is unique, 

the objective is to find the dependent variable to be close 

to the ideal mean of the cluster by including all the win-

ning data instances into the cluster. Since the parameters 

of centroids of clusters have been estimated in previous 

section, then the gradient descent can be applied to the 

deformed objective function with respect to each varia-

ble of mean of cluster by leaving others as constant in 

Eq.31 following the definition of the gradient descent 

(Defined as steepest descent). 

Definition 2.2 The method of steepest descent is de-

fined by the iterative algorithm 

1t t t t+ = −x x g   (32) 

where t is a nonnegative scalar minimizing 

( )t t tf −x g  and the gradient ( ) ( )
T

t tf=g x x is de-

fined as column vector. The search is along the negative 

direction of gradient to the minimum. The gradient de-

scent for the objective is as follows. 

Minimize: 
2

1

1 k

j j j

j

E n
n =

= − s c   (33) 

1

jn

j i

i=

=s x , 
i jCx  with mini k i j

j
− = −x c x c  and 

1

1, 1,...,
k

ij

j

w j k
=

= = , here 

0 1, 1,... , 1,...,ijw or i n j k= = = , where nj is the num-

ber of all winning data to cluster Cj, k is the number of 

clusters in data set C, and n is the total number of data. 

The probability wij is fixed by assigning all the nj win-

ning data in one cluster. The first order derivative with 

respect to variable cj is given by ( )
2 j

j j j

j

nE
n

n


= − −


s c

c

. Since the gradient of the objective with respect to the 

variable cj vanishes at a relative local minimum of each 

mean of clusters, and further the multiple of vector by a 

constant doesn’t change the direction of the vector, the 

gradient can be presented by 

22 j j

j

j j

nE

n n

 
= − −    

s
c

c
, by 

pertaining to the same relative local minimum vector. 

Hence by including the constants of the gradient into the 

nonnegative scalar ( )t , the gradient descent batch rule 

for Eq.33 is given by Eq.34. 

( ) ( ) ( )
( )

1
1 ( ) ( )

ji

j j ji
tj

t t t t t
n




 
+ = + − 

  


x c

c c x c   (34) 

where ( )
( )

1
( )

ji

ji
tj

t t
n 

 
− 

  


x c

x c decides the direction of 

the negative gradient to the minimum of the parameter. 

The objective is unconstrained since the sum of the win-

ning data in each cluster is changed based on the simple 

competitive rule. Hence the gradient descent batch clus-

tering is based on the update of the mean of cluster and 

the initial parameters. Since the objective has a similar 

quadratic form to the original objective, the convergence 

is justified by relating to the original quadratic form as 

follows.              

The part of gradient can be interpreted as the distor-

tion between the centroid to be converged to and the 

mean of cluster in a mathematical justification. Follow-

ing the definition and assigning the instance to clusters, 

the original c-means batch clustering by Eq.29 can be 

expressed in Eq.34 without changing the arithmetic by 

applying the clustering parameter ( )1 t
 
and denotes: 

( ) ( )
( )

1 1

1
( )

i j

i j

tj

t t t
n 

 
 = − 

  


x c

x c   (35) 

where ( )1 1t =  to maintain the original starting 

point, Δ1 in Eq.35 is the distortion between the mean of 

cluster and the centroid of cluster. Then the developed 

updated mean of cluster is given by Eq.36: 

( ) ( ) ( )
( )

2

1
1 ( ) ( )

i j

j j i j

tj

t t t t t
n 

 
  + = + − 

  


x c

c c x c   (36) 

where ( )j tc
 
is calculated using Eq.29 and denotes: 

( ) ( )
( )

2 2

1
( )

i j

i j

tj

t t t
n 

 
 = − 

  


x c

x c   (37) 

where ( )20 1t  , Δ2 in Eq.37 is the distortion be-

tween the mean of cluster and the centroid of cluster 

from Eq.36. With the same form in Eq.35 and Eq.37 and 

assuming that the updated means are the same in time of 

t, the distortion is decided by the clustering rate η1 and 

η2 respectively. Since 1 2   as defined, the result 

2 1    can be concluded. Therefore, the distortion 

of the mean by the proposed clustering is always less 

than the distortion by the original batch clustering. As 
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shown in Fig. 1, ‘’ represents the ideal mean of one 

spectral cluster j, where j = 1, 2,…,k. The initial mean of 

the cluster ‘*’ is given by the estimation process in the 

first part. The solid point ‘•’ represents the updated 

mean of the cluster by the original c-means batch clus-

tering. The circle point ‘’ represents the updated mean 

of the cluster by the proposed clustering process. There 

are three cases to be considered as shown graphically. 

The first case considers the location of the updated mean 

in the negative side with respect to the ideal and initial 

or pre-updated mean. The second case considers the lo-

cation of the updated mean in the positive side of the 

initial or pre-updated and the ideal mean. These two 

cases for the new updating rule clearly draw the mean of 

the cluster closer to the ideal mean of the cluster by in-

troducing the gain scalar which is less than the unit. The 

third case considers the location of the updated mean be-

tween the ideal and the initial or the pre-updated mean. 

In third case, the updated mean conforms to the original 

convergence process. The distortion is adjusted with the 

attenuated clustering gain scalar. It is clear that in case 

three the updated parameter follows the one updated 

with original clustering rule. Therefore, by combining 

all cases, the updated mean by the proposed clustering 

process is always driven closer to the ideal mean of the 

cluster thus to reduce the drifting issue.  

 

Fig. 1. Difference of updated mean between the mod-

ified batch clustering and original c-means batch 

clustering process. 

 

Considering all possible cases, the clustering gain 

( )2 t  is selected to be decreasing monotonically to the 

infinitesimal by starting with the initial clustering gain 

( ) 0 exp( )t t T= −  , where T is the bound of iteration 

and the initial clustering gain (0 0,1= . The empirical 

thumb rule can be used for T selection where the bound 

of iteration is a multiple of the size of initial number of 

data clusters. Regardless of the variants of SGD such as 

the momentum or learning gain, the decreasing gain sca-

lar guarantees that the updated mean converge to the 

ideal mean. However, the main contributor for the 

speed-up is due to the scenario of case 1 and case 2 dur-

ing the clustering process since the distortion always 

drives the parameter closer to ideal centroid of the hy-

persphere. The complexity of the performance of each 

iteration has no more change than about O(nkm) where 

n is the number of instance, k is the number of parame-

ters and m is dimension of vector. The factor for the 

speed-up of convergence is mainly the modification by 

directing the parameter with respect to the updated mean 

to the minimum of search method with gradient descent 

to reduce the drifting phenomena. The process of the 

gradient descent batch clustering in Table 2 is iterated 

until the mean square error of the updated mean reaches 

finite partial minimum in fast manner. 

 

Table 2. Algorithm 2 for gradient descent back clus-

tering process for refining the means of the clusters. 

Input 1: Image instance matrix. 

Input 2: Estimated initial mean of the clusters 

matrix 

Input 3: Error criterion for termination. 

Output: Converged mean of clusters in matrix 

for classification. 

1. Initialize 1t = , T is positive integer for ad-

justing clustering gain. 

2. while MSE Error criteria   

3. Adjust scalar ( )0 exp t T=  −   

4. Find number jn of instance in cluster j by

min , 1,..., , 1,...,i j i n j k− = =x c  

5. 
1

, 1,..., , 1,...,
i j

j i j

j

i n j k
n 

 = = =
x c

c x   % 

Update mean based on current mean. 

6. ( ) ( ) ( ) ( )1j j j jt t t t  + = + − c c c c  

7. MSE  calculation 

8. 1t t= +  

9. End 
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VALIDATION OF GRADIENT  
DESCENT BATCH CLUSTERING 

The proposed method is validated with two stages 

of experimental study. In the first step, some benchmark 

images available from Columbia multispectral image 

database Asuni et al. (2014) are selected and used for the 

comparison between the proposed method and the other 

original algorithms. Further the citrus fruit images cap-

tured under the natural lighting conditions are used in 

the second stage of the study. Three types of citrus color 

images are used: normal color image without any filters 

(termed VIS images), neutral filtered color images 

(termed NEUT images), and the linear polarizer filtered 

images (termed POLA images).  

The evaluation study is conducted with Matlab. 

Three variants of C-means clustering methods, namely 

the single data based gradient descent clustering (named 

as method1), the original batch clustering (named as 

method2) and the proposed gradient descent batch clus-

tering (named as method3) are used in the validation 

study. After the initial value of clusters centroids are 

identified, they are refined using C-means variant clus-

tering methods. After the clustering process converges 

to the finite partial minimum, the refined centroids are 

used to label the clusters in the image. The number of 

clusters estimated varied based on how fluently the 

background features are. As for the multispectral color 

image database, the standard color bars or the one with 

few blobs have cluster number estimated with certainty 

as shown in table 2. As for the natural citrus color image, 

the parameters are varied due to the unstructured back-

ground color. Hence only those salient color clusters are 

used to check the dissimilarity with the manually created 

ground truth references using F measure. The expecta-

tion of the accuracy measure for the variants of cluster-

ing is close based on the same pack of initial parameters. 

However the efficiency of the clustering process by the 

variants should be differed from each other.  

Table 3. Processing time (in second) for some color im-

ages.  

Method      a1      a2      a3      a4       a5      a6      a7      a8      a9     a10     a11    a12

Method1  2.33   2.71   8.07   5.75  10.96  4.14  41.88  5.30   6.05   8.28  20.56  5.97

Method2  0.23   3.47   6.25   3.63   3.22   0.80   8.37   2.09  14.70  2.79   2.72   9.86

Method3  0.22   0.79   0.87   0.98   1.05   0.37   2.34   1.18   1.72   1.09   0.74   1.21

No. of 
clusters 8        9      12      17       12      7       21       7        28       1       19      16

a1: Colour standard bars; a2: Balloons; a3: Beads; a4: Clay; a5: Feathers; a6: 

Colour Bars; a7: Glass tiles; a8: Jelly Beans; a9: Paints; a10: Pompoms; a11: 

Sponges; a12: Superballs;
 

 

 

Table 4. Processing time (in second) for citrus color im-

age with three Cmens methods. 

Cmeans variant methods        VIS               NEUT            POLA

Method1                              116.41             114.57            151.82

Method2                                77.85               70.96              78.73

Method3                                15.81               15.31              14.85

Method1: single data based gradient descent clustering process

Method2: original Cmeans batch clustering process

Method3: gradient descent batch clustering process

No. of clusters estimated          8                     19                    21

STD of parameters                   7                      7                      9

 

 

As a result the efficiency of the clustering procedure 

is given in Table 3 and Table 4 for two streams of color 

image data. As shown in the table the modified gradient 

descent batch clustering is much faster than other two 

clustering algorithms. The speed is significant even on 

each applied citrus fruit image data with variance based 

on the size of initial parameters estimated from the esti-

mation method in the first part. Since the objective of the 

algorithm is to converge the parameters into the ideal 

ones, due to the dimension of the parameter vector for 

illustration, the distortion between the mean of cluster 

and the parameter of centroid is measured in MSE as 

shown graphically in Fig. 4 with one example. In matrix 

the parameters are updated altogether. Hence when MSE 

of all parameters converge to finite minimum, it is 

agreed that the parameters converge to the ideal cen-

troids of clusters. As shown in the figure both batch clus-

tering algorithms (as shown in solid line and dash line) 

converge to finite minimum rapidly without much oscil-

lation. Since the decimal level is largely different in 

graphic with other two methods, hence MSE by SGD 

batch clustering algorithm is re-generated separately in 

Fig. 5. The modified clustering algorithm converges 

more rapidly in decimal level by comparing with the 

original batch clustering algorithm. As for the simple ex-

ample data based gradient descent cluster, the random 

selection of sample data from the whole image is used 

for the competitive rule. However it is clearly shown that 

the simple example data based gradient descent cluster-

ing still oscillates to further iterations. The results show 

that the change of the distortion of the means by the gra-

dient descent batch clustering can speed up the cluster-

ing convergence with the estimated initial parameters.  

The clustering accuracy measure for two types of 

color image database are given in Fig. 2 and Fig. 3 

graphically. The F measure can be read in Table 5 and 

Table 6. As expected the benchmark color images with 

standard color bars or less noise blobs have the same or 

very close F measure. Those with feature-fluent back-

ground noise are all acceptable even with some images 

having higher F measure comparably. The natural citrus 
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fruit images also have similar F measure for each type 

of color image averagely. The drop down of the F meas-

ure for the attenuated color image is due to the loss of 

the citrus fruit area by the attenuation function. Due to 

the non-Euclidean posture of the fruit body, the color of 

real time citrus fruit is non-homogeneous. Hence some 

area of fruit part is excluded into neighboring cluster 

thus to drop F measure in result. However the F measure 

for each type of citrus color image are very close. On top 

of the mathematical justification, the empirical study 

further validates that the change of the distortion be-

tween the mean of cluster and the parameter using SGD 

direction to the minimum can possibly drive the mean of 

cluster to the partial optimum more efficiently. There-

fore the overall performance proves the speed-up of the 

convergence to the partial optimum by the SGD batch 

clustering based on the initialization of the parameters. 

 

 

Fig. 2. F measure of clustering results for some color 

image database by three C-means methods. 

 

 

Fig. 3. F measure of clustering results for citrus color 

image by three C-means methods. 

 

Table 5. F measure for standard color image data-

base (Alpha:0.7). 

 a1    a2      a3      a4       a5      a6      a7      a8      a9    a10    a11    a12

Method1   1.0     0.9965  0.9765  0.9670  0.7266  0.4276  0.9936  0.9988  0.5349  0.9934  1.0000  0.9926

Method2   1.0     0.9950  0.9692  0.9668  0.7801  0.4276  0.9940  0.9989  0.6554  0.9977  1.0000  0.9932

Method3   1.0      0.9906  0.9693  0.9844  0.9296  0.4276  0.9859  0.9955  0.7898  0.9962  1.0000  0.9942

    Image

Method

 

Fig. 4. MSE of average mean distortion from three C-

means clustering variant algorithms. 

 

 

Fig. 5. MSE of average mean distortion from SGD batch 

clustering algorithm. 

 

CONCLUSIONS 

In this paper an unsupervised clustering method has 

been proposed for the image data classification applica-

tion. The clustering method consists of both the initiali-

zation of parameters and the gradient descent batch clus-

tering to speed up the refining clustering process. The 

parameters are estimated based on a mathematical con-

nection between PCA and C-means clustering member-

ship. The nonlinear centroids parameters are estimated 

with a hierarchical PCA solution along with the global 

threshold iteratively. Then the initial parameters are re-

fined by the proposed gradient descent batch clustering 

process. The modified clustering algorithm applies a 

gradient descent on the objective to direct the parameter 

to the partial optimum in search line. Therefore the drift-

ing of the original stochastic batch clustering is reduced 

based on both the mathematical justification and the val-

idation study. The validation results with statistical F 

measure proves a significant improvement of the effi-

ciency with tradeoff to the accuracy by the modified gra-

dient descent batch clustering. 
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